1-Acetyl-β-Carboline from a Jeju Gotjawal Strain Lentzea sp. JNUCC 0626 and Its Melanogenic Stimulating Activity in B16F10 Melanoma Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phylogenetic Analysis
2.2. Isolation and Structural Identification of Compounds
2.3. Stimulatory Effect of JNUCC 0626 Extracts on Melanogenesis in B16F10 Cells
2.4. Stimulating Effect of 1-Acetyl-β-Carboline on Melanogenesis in B16F10 Cells
2.5. Effect of 1-Acetyl-β-Carboline on Microphthalmia-Associated Transcription Factor and Melanogenic Enzymes
2.6. Effect of 1-Acetyl-β-Carboline on the Extracellular Signal-Regulated Kinase (ERK) Signaling Pathway
2.7. 1-Acetyl-β-Carboline Is Safe for Human Skin
3. Materials and Methods
3.1. Media, Chemicals, and Antibodies
3.2. Isolation of Bacterial Strain and Culture Conditions
3.3. 16S rRNA Gene Sequence and Phylogenetic Analysis
3.4. Isolation of 1-Acetyl-β-Carboline
3.4.1. General Protocol
3.4.2. Fermentation, Extraction, and Isolation
3.5. Cell Culture and Cell Viability
3.6. Measurement of Melanin Contents
3.7. Measurement of Intracellular Tyrosinase Activity
3.8. Western Blot
3.9. Human Skin Patch Test
3.10. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takahashi, Y.; Nakashima, T. Actinomycetes, an Inexhaustible Source of Naturally Occurring Antibiotics. Antibiotics 2018, 24, 45. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J. Med. Microbiol. 2020, 69, 1040–1048. [Google Scholar] [CrossRef]
- Ossai, J.; Khatabi, B.; Nybo, S.E.; Kharel, M.K. Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. J. Appl. Microbiol. 2022, 132, 59–77. [Google Scholar] [CrossRef]
- Parra, J.; Beaton, A.; Seipke, R.F.; Wilkinson, B.; Hutchings, M.I.; Duncan, K.R. Antibiotics from rare actinomycetes, beyond the genus Streptomyces. Curr. Opin. Microbiol. 2023, 76, 102385. [Google Scholar] [CrossRef]
- Wei, B.; Du, A.Q.; Ying, T.T.; Hu, G.A.; Zhou, Z.Y.; Yu, W.C.; He, J.; Yu, Y.L.; Wang, H.; Xu, X.W. Secondary Metabolic Potential of Kutzneria. J. Nat. Prod. 2023, 86, 1120–1127. [Google Scholar] [CrossRef]
- Tiwari, K.; Gupta, R.K. Rare actinomycetes: A potential storehouse for novel antibiotics. Crit. Rev. Biotechnol. 2012, 32, 108–132. [Google Scholar] [CrossRef]
- Wei, B.; Luo, X.; Zhou, Z.Y.; Hu, G.A.; Li, L.; Lin, H.W.; Wang, H. Discovering the secondary metabolic potential of Saccharothrix. Biotechnol. Adv. 2024, 70, 108295. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Wu, X.; Stumpf, S.D.; Qi, Y.; D’Alessandro, J.M.; Nepal, K.K.; Sarotti, A.M.; Cao, S.; Blodgett, J.A.V. Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster. Proc. Natl. Acad. Sci. USA 2022, 119, e2117941119. [Google Scholar] [CrossRef]
- Liu, H.B.; Davison, J.R.; Rajwani, R.; Zhao, G.; Ohlemacher, S.I.; O’Connor, R.D.; Bewley, C.A. Lentzeacins, A-E, New Bacterial-Derived 2,5- and 2,6-Disubstituted Pyrazines from a BGC-Rich Soil Bacterium Lentzea sp. GA3-008. Molecules 2021, 26, 7197. [Google Scholar] [CrossRef]
- Zheng, S.; Oh, S.; Fang, M.; Bellere, A.D.; Jung, J.; Nguyen, T.T.M.; Jeong, J.; Yi, T.H. Streptomyces spp. Isolated from Rosa davurica Rhizome for Potential Cosmetic Application. Cosmetics 2022, 9, 126. [Google Scholar] [CrossRef]
- Kim, H.M.; Hyun, C.G. Miglitol, an Oral Antidiabetic Drug, Downregulates Melanogenesis in B16F10 Melanoma Cells through the PKA, MAPK, and GSK3β/β-Catenin Signaling Pathways. Molecules 2022, 28, 115. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Chung, Y.C.; Hyun, C.G. Induction of Melanogenesis by Fosfomycin in B16F10 Cells Through the Upregulation of P-JNK and P-p38 Signaling Pathways. Antibiotics 2020, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Kim, M.J.; Hillman, P.F.; Oh, D.C.; Fenical, W.; Nam, S.J.; Lim, K.M. Deoxyvasicinone with Anti-Melanogenic Activity from Marine-Derived Streptomyces sp. CNQ-617. Mar. Drugs. 2022, 20, 155. [Google Scholar] [CrossRef]
- Guo, W.; Xu, F.; Zhuang, Z.; Liu, Z.; Xie, J.; Bai, L. Ebosin Ameliorates Psoriasis-Like Inflammation of Mice via miR-155 Targeting tnfaip3 on IL-17 Pathway. Front. Immunol. 2021, 12, 662362. [Google Scholar] [CrossRef]
- Ahn, I.S.; Chung, B.Y.; Cho, S.I.; Kim, H.O.; Park, C.W.; Lee, C.H. Epidermal cysts in a tacrolimus treated renal transplant recipient. Ann. Dermatol. 2011, 23 (Suppl. S2), S182–S184. [Google Scholar] [CrossRef]
- De La Hoz-Romo, M.C.; Díaz, L.; Villamil, L. Marine Actinobacteria a New Source of Antibacterial Metabolites to Treat Acne Vulgaris Disease-A Systematic Literature Review. Antibiotics 2022, 11, 965. [Google Scholar] [CrossRef]
- Kang, J.K.; Kang, H.K.; Hyun, C.G. Anti-Inflammatory Effects of Spiramycin in LPS-Activated RAW 264.7 Macrophages. Molecules 2022, 27, 3202. [Google Scholar] [CrossRef]
- Hong, C.Y.; Yoon, R.; Hwang, J.D.; Jwa, M.S. Exploring Community Symbiotic Tourism Programs for the Utilization and Conservation of Ecology in Lava Stony Forest (Gotjawal) of Jeju Island, Korea. Sustainability 2020, 12, 8371. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, D.S.; Lee, K.C.; Lee, J.S.; King, G.M.; Kang, S. Microbial community structure and functional potential of lava-formed Gotjawal soils in Jeju, Korea. PLoS ONE 2018, 13, e0204761. [Google Scholar] [CrossRef]
- Hernández, M.; Calabi, M.; Conrad, R.; Dumont, M.G. Analysis of the microbial communities in soils of different ages following volcanic eruptions. Pedosphere 2020, 30, 126–134. [Google Scholar] [CrossRef]
- Kim, K.K.; Lee, K.C.; Eom, M.K.; Kim, J.S.; Kim, D.S.; Ko, S.H.; Lee, J.S. Variibacter gotjawalensis gen. nov., sp. nov., isolated from soil of a lava forest. Antonie Van Leeuwenhoek 2014, 105, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Tripathi, G.D.; Mishra, M.; Dashora, K. Actinomycetes–the microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatal. Agri. Biotechnol. 2021, 31, 101893. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathogen. 2017, 111, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Cha, I.T.; Lee, K.E.; Park, S.J. Chryseobacterium gotjawalense sp. nov. Isolated from Soil in the Volcanic Forest Gotjawal, Jeju Island. Curr. Microbiol. 2024, 81, 187. [Google Scholar] [CrossRef] [PubMed]
- Um, S.; Lee, J.; Kim, S.H. Lobophorin Producing Endophytic Streptomyces olivaceus JB1 Associated With Maesa japonica (Thunb.) Moritzi & Zoll. Front. Microbiol. 2022, 13, 881253. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Bae, S.; Lee, J.N.; Hyun, C.G. Anti-Melanogenic and Anti-Inflammatory Effects of 2′-Hydroxy-4′,6′-dimethoxychalcone in B16F10 and RAW264.7 Cells. Curr. Issues Mol. Biol. 2024, 46, 6018–6040. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Hyun, C.G. Isolation, Characterization, Genome Annotation, and Evaluation of Tyrosinase Inhibitory Activity in Secondary Metabolites of Paenibacillus sp. JNUCC32: A Comprehensive Analysis through Molecular Docking and Molecular Dynamics Simulation. Int. J. Mol. Sci. 2024, 25, 2213. [Google Scholar] [CrossRef]
- Han, H.; Hyun, C.G. Syringetin Promotes Melanogenesis in B16F10 Cells. Int. J. Mol. Sci. 2023, 24, 9960. [Google Scholar] [CrossRef]
- Kang, J.D.; Myers, C.J.; Harris, S.C.; Kakiyama, G.; Lee, I.K.; Yun, B.S.; Matsuzaki, K.; Furukawa, M.; Min, H.K.; Bajaj, J.S.; et al. Bile Acid 7α-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chem. Biol. 2019, 26, 27–34.e4. [Google Scholar] [CrossRef]
- Zou, R.; Wei, C.; Zhang, X.; Zhou, D.; Xu, J. Alkaloids from endophytic fungus Aspergillus fumigatus HQD24 isolated from the Chinese mangrove plant Rhizophora mucronata. Nat. Prod. Res. 2022, 36, 5069–5073. [Google Scholar] [CrossRef] [PubMed]
- Kuncharoen, N.; Bunbamrung, N.; Intaraudom, C.; Choowong, W.; Thawai, C.; Tanasupawat, S.; Pittayakhajonwut, P. Antimalarial and antimicrobial substances isolated from the endophytic actinomycete, Streptomyces aculeolatus MS1-6. Phytochemistry 2023, 207, 113568. [Google Scholar] [CrossRef] [PubMed]
- MacAlpine, J.; Daniel-Ivad, M.; Liu, Z.; Yano, J.; Revie, N.M.; Todd, R.T.; Stogios, P.J.; Sanchez, H.; O’Meara, T.R.; Tompkins, T.A.; et al. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat Commun. 2021, 12, 6151. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, T.; Sánchez-Arroyo, A.; de Las Rivas, B.; Muñoz, R. Lactobacillus species do not produce 1-acetyl-β-carboline. Nat. Commun. 2024, 15, 6442. [Google Scholar] [CrossRef]
- MacAlpine, J.; Daniel-Ivad, M.; Atere, D.; Laflamme, B.; Robbins, N.; Navarre, W.W.; Nodwell, J.; Whitesell, L.; Cowen, L.E. Reply to: Lactobacillus species do not produce 1-acetyl-β-carboline. Nat. Commun. 2024, 15, 6441. [Google Scholar] [CrossRef]
- Lee, D.S.; Eom, S.H.; Jeong, S.Y.; Shin, H.J.; Je, J.Y.; Lee, E.W.; Chung, Y.H.; Kim, Y.M.; Kang, C.K.; Lee, M.S. Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environ. Toxicol. Pharmacol. 2013, 35, 171–177. [Google Scholar] [CrossRef]
- Lee, N.; Chung, Y.C.; Kim, Y.B.; Park, S.M.; Kim, B.S.; Hyun, C.G. 7,8-Dimethoxycoumarin stimulates melanogenesis via MAPKs mediated MITF upregulation. Die Pharm.-Int. J. Pharm. Sci. 2020, 75, 107–111. [Google Scholar] [CrossRef]
- Chung, Y.C.; Ko, J.H.; Kang, H.K.; Kim, S.; Kang, C.I.; Lee, J.N.; Park, S.M.; Hyun, C.G. Antimelanogenic Effects of Polygonum tinctorium Flower Extract from Traditional Jeju Fermentation via Upregulation of Extracellular Signal-Regulated Kinase and Protein Kinase B Activation. Int. J. Mol. Sci. 2018, 19, 2895. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Sun, Y.; Zhou, J.; Gu, Y.; Li, Y. Baicalein inhibits melanogenesis through activation of the ERK signaling pathway. Int. J. Mol. Med. 2010, 25, 923–927. [Google Scholar] [CrossRef]
- Huang, H.C.; Yen, H.; Lu, J.Y.; Chang, T.M.; Hii, C.H. Theophylline enhances melanogenesis in B16F10 murine melanoma cells through the activation of the MEK 1/2, and Wnt/β-catenin signaling pathways. Food Chem. Toxicol. 2020, 137, 111165. [Google Scholar] [CrossRef]
- Kim, T.; Hyun, C.G. Imperatorin Positively Regulates Melanogenesis through Signaling Pathways Involving PKA/CREB, ERK, AKT, and GSK3β/β-Catenin. Molecules 2022, 27, 6512. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Song, H.S.; Yu, J.; Kim, Y.M. MiT Family Transcriptional Factors in Immune Cell Functions. Mol. Cells. 2021, 44, 342–355. [Google Scholar] [CrossRef] [PubMed]
Grade | Description of Clinical Observations |
---|---|
+1 | Slight erythema |
+2 | Moderate erythema, possibly with barely perceptible edema at the margin, papules may be present. |
+3 | Moderate erythema, with generalized edema |
+4 | Severe erythema with severe edema, with or without vesicles |
+5 | The severe reaction spread beyond the area of the patch |
No | Test Sample | No. of Responder | 1st Assessment | 2nd Assessment | Reaction Grade (R) * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
+1 | +2 | +3 | +4 | +1 | +2 | +3 | +4 | ||||
1 | 1-acetyl-β-carboline (25 μM) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1-acetyl-β-carboline (50 μM) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, K.-A.; Xu, Y.; Boo, K.-H.; Hyun, C.-G. 1-Acetyl-β-Carboline from a Jeju Gotjawal Strain Lentzea sp. JNUCC 0626 and Its Melanogenic Stimulating Activity in B16F10 Melanoma Cells. Molecules 2024, 29, 4586. https://doi.org/10.3390/molecules29194586
Hyun K-A, Xu Y, Boo K-H, Hyun C-G. 1-Acetyl-β-Carboline from a Jeju Gotjawal Strain Lentzea sp. JNUCC 0626 and Its Melanogenic Stimulating Activity in B16F10 Melanoma Cells. Molecules. 2024; 29(19):4586. https://doi.org/10.3390/molecules29194586
Chicago/Turabian StyleHyun, Kyung-A, Yang Xu, Kyung-Hwan Boo, and Chang-Gu Hyun. 2024. "1-Acetyl-β-Carboline from a Jeju Gotjawal Strain Lentzea sp. JNUCC 0626 and Its Melanogenic Stimulating Activity in B16F10 Melanoma Cells" Molecules 29, no. 19: 4586. https://doi.org/10.3390/molecules29194586
APA StyleHyun, K. -A., Xu, Y., Boo, K. -H., & Hyun, C. -G. (2024). 1-Acetyl-β-Carboline from a Jeju Gotjawal Strain Lentzea sp. JNUCC 0626 and Its Melanogenic Stimulating Activity in B16F10 Melanoma Cells. Molecules, 29(19), 4586. https://doi.org/10.3390/molecules29194586