Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics
Abstract
:1. Introduction
2. Xenorhabdus and Photorhabdus Bacteria as Nematode Symbionts
3. Natural Products of Xenorhabdus and Photorhabdus Bacteria
BGC Product | Class/ Biosynthetic Pathway * | Bioactivity | Biological Function/ Mechanism of Action | References |
---|---|---|---|---|
β-lactone | β-lactone | Insecticidal, immunosuppressive | Proteosome inhibitor disturbing cell cycle and causing immunodeficiency | [49] |
GameXPeptides | NRPS | Insecticidal, immunosuppressive, antiprotozoal | Suppressing nodule formation and spread of haemocytes. Unknown target, possibly heat shock proteins | [49,50,51] |
Odilorhabdin | NRPS | Antibacterial | By binding to the small ribosome subunit, it induces miscoding during translation | [52,53,54] |
Photoxenobactin | PKS/NRPS hybrid | Insecticidal | Virulence-related siderophore | [49] |
Phurealipid | Urealipid | Insecticidal, immunosuppressive | Mimics juvenile hormone to suppress insect immunity and immature development. Suppresses the production of antimicrobial peptides | [51,55,56] |
Putrebactin/avoroferrin | Siderophore | Insecticidal, immunosuppressive | Repression of histone deacetylase, suppressing the production of antimicrobial peptides | [57] |
Pyrazinone/lumizinone | NRPS | Cytotoxic | Possibly a cysteine protease inhibitor, disrupting the activation of signalling pathways | [58] |
Pyrrolizixenamide | NRPS | Antibacterial, antitumor, immunosuppressive | Probably a phospholipase A2 inhibitor | [59] |
Rhabdobranin | PKS/NRPS hybrid | Unknown | Prodrug activity mechanism | [49] |
Rhabdopeptide/ xenortide peptide | NRPS | Insecticidal, immunosuppressive, antiprotozoal, nematocidal, cytotoxic | Possibly inhibiting the serine protease cascade by preventing prophenyloxidase activation | [60,61,62,63,64] |
Rhabduscin | Other | Insecticidal, immunosuppressive | Inhibition of phenoloxidase | [65] |
Xenematide | NRPS | Antibacterial, insecticidal | Unknown | [66] |
Xenorhabdin/ xenorxide | NRPS | Insecticidal, antibacterial, antifungal, antiprotozoal, cytotoxic | Proteasome inhibitor Inhibition of RNA synthesis | [67,68] |
3.1. Natural Products Derived from Xenorhabdus and Photorhabdus Bacteria Targeting Eukaryotic Cells
3.2. Natural Products Derived from Xenorhabdus and Photorhabdus Bacteria with Antimicrobial Activities
BGC Product | Class/Biosynthetic Pathway * | Bioactivity | Biological Function/Mechanisms of Action | References |
---|---|---|---|---|
Anthraquinone | PKS | Antimicrobial, mosquitocidal, anti-neuroinflammatory, neuroprotective, probably ant and bird deterrent | Protection of neurons against induced cell death and suppression of neuroinflammation in mice | [84,94,103] |
β-lactam carbapenem | Other | Antibacterial | Unknown | [104] |
Carotenoid | Terpene | Antioxidant, cytotoxic, probably antibacterial | Unknown | [49,105] |
Darobactin | RiPP | Antibacterial | Disrupting the outer membrane of Gram- bacteria by targeting BamA chaperone | [106] |
Glidobactin/luminmycin | NRPS/PKS hybrid | Cytotoxic, antifungal | Proteasome inhibitor | [91,92,93] |
Indigoidine | NRPS | Antioxidant, probably antibacterial | Probably protective function against ROS and UV | [105,107] |
Isopropylstilbene/dialkylresorcinols/cyclohexanedione | Other | Antiprotozoal, antimicrobial, antioxidant, cytotoxic, immunomodulator | Quorum sensing, maintenance of nematode development—“food signal” | [108,109,110] |
Kolossin | NRPS | Antiprotozoal | Unknown | [111,112] |
Photopyrone | Other | Antibacterial | Quorum sensing | [113,114] |
Photobactin | Siderophore | Antibacterial | Facilities the growth of bacteria in a Fe-limited environment, supports the growth and reproduction of nematodes | [115] |
Ririwpeptide | NRPS | Unknown | Unknown | [49] |
4. Strategies for the Discovery of New Natural Products in Xenorhabdus and Photorhabdus Bacteria
4.1. Assessing Silent or Cryptic Biosynthetic Gene Clusters Through Genetic Engineering
4.2. Concentration of Bacterial Extracts, Alteration of Growth Condition, and Chemical Synthesis
4.3. Biosynthetic Gene Cluster Analysis in Xenorhabdus and Photorhabdus Bacteria
5. Xenorhabdus and Photorhabdus Metabolites as Promising Drug Leads
5.1. Darobactin
5.2. Dynobactin A
5.3. Odilorhabdins (ODLs)
5.4. Isopropylstilbene (IPS)
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beutler, J.A. Natural Products as a Foundation for Drug Discovery. CP Pharmacol. 2009, 46, 9.11.1–9.11.21. [Google Scholar] [CrossRef] [PubMed]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.-M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The Biofactory of Secondary Metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. The Science of Antibiotic Discovery. Cell 2020, 181, 29–45. [Google Scholar] [CrossRef]
- Scherlach, K.; Hertweck, C. Mining and Unearthing Hidden Biosynthetic Potential. Nat. Commun. 2021, 12, 3864. [Google Scholar] [CrossRef]
- Quinn, G.A.; Dyson, P.J. Going to Extremes: Progress in Exploring New Environments for Novel Antibiotics. Antimicrob. Resist. 2024, 2, 8. [Google Scholar] [CrossRef]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A New Antibiotic Kills Pathogens Without Detectable Resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef]
- Hemmerling, F.; Piel, J. Strategies to Access Biosynthetic Novelty in Bacterial Genomes for Drug Discovery. Nat. Rev. Drug Discov. 2022, 21, 359–378. [Google Scholar] [CrossRef]
- Crawford, J.M.; Clardy, J. Bacterial Symbionts and Natural Products. Chem. Commun. 2011, 47, 7559. [Google Scholar] [CrossRef]
- Eivazian Kary, N.; Mohammadi, D.; Girling, R. New Reports on Dixenic Associations Between the Symbionts of Entomopathogenic Nematodes, Photorhabdus and Xenorhabdus, and Non-Symbiotic Bacteria. J. Crop Prot. 2017, 6, 497–511. [Google Scholar]
- Ogier, J.-C.; Pagès, S.; Frayssinet, M.; Gaudriault, S. Entomopathogenic Nematode-Associated Microbiota: From Monoxenic Paradigm to Pathobiome. Microbiome 2020, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Somvanshi, V.S.; Lang, E.; Sträubler, B.; Spröer, C.; Schumann, P.; Ganguly, S.; Saxena, A.K.; Stackebrandt, E. Providencia Vermicola Sp. Nov., Isolated from Infective Juveniles of the Entomopathogenic Nematode Steinernema thermophilum. Int. J. Syst. Evol. Microbiol. 2006, 56, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Arias-Cordero, E.; Ping, L.; Reichwald, K.; Delb, H.; Platzer, M.; Boland, W. Comparative Evaluation of the Gut Microbiota Associated with the Below- and Above-Ground Life Stages (Larvae and Beetles) of the Forest Cockchafer, Melolontha hippocastani. PLoS ONE 2012, 7, e51557. [Google Scholar] [CrossRef]
- Sajnaga, E.; Skowronek, M.; Kalwasińska, A.; Kazimierczak, W.; Ferenc, K.; Lis, M.; Wiater, A. Nanopore-Sequencing Characterization of the Gut Microbiota of Melolontha melolontha Larvae: Contribution to Protection Against Entomopathogenic Nematodes? Pathogens 2021, 10, 396. [Google Scholar] [CrossRef]
- Singh, S.; Reese, J.M.; Casanova-Torres, Á.M.; Goodrich-Blair, H.; Forst, S. Microbial Population Dynamics in the Hemolymph of Manduca sexta Infected with Xenorhabdus nematophila and the Entomopathogenic Nematode Steinernema carpocapsae. Appl. Environ. Microbiol. 2014, 80, 4277–4285. [Google Scholar] [CrossRef]
- Skowronek, M.; Sajnaga, E.; Kazimierczak, W.; Lis, M.; Wiater, A. Screening and Molecular Identification of Bacteria from the Midgut of Amphimallon solstitiale Larvae Exhibiting Antagonistic Activity Against Bacterial Symbionts of Entomopathogenic Nematodes. Int. J. Mol. Sci. 2021, 22, 12005. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.P. Partners in Crime: Symbiont-Assisted Resource Acquisition in Steinernema Entomopathogenic Nematodes. Curr. Opin. Insect Sci. 2019, 32, 22–27. [Google Scholar] [CrossRef]
- Koppenhöfer, H. Bacterial Symbionts of Steinernema and Heterorhabditis. In Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts; Nguyen, K.B., Hunt, D.J., Eds.; Brill: Leiden, The Netherlands, 2007; pp. 735–808. ISBN 978-9-0041-5293-9. [Google Scholar]
- Machado, R.A.R.; Muller, A.; Ghazal, S.M.; Thanwisai, A.; Pagès, S.; Bode, H.B.; Hussein, M.A.; Khalil, K.M.; Tisa, L.S. Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. Isolated from Heterorhabditis Entomopathogenic Nematodes. Int. J. Syst. Evol. Microbiol. 2021, 71, 004610. [Google Scholar] [CrossRef]
- Machado, R.A.R.; Bhat, A.H.; Castaneda-Alvarez, C.; Askary, T.H.; Půža, V.; Pagès, S.; Abolafia, J. Xenorhabdus aichiensis Sp. Nov., Xenorhabdus anantnagensis Sp. Nov., and Xenorhabdus yunnanensis Sp. Nov., Isolated from Steinernema Entomopathogenic Nematodes. Curr. Microbiol. 2023, 80, 300. [Google Scholar] [CrossRef]
- Sajnaga, E.; Kazimierczak, W. Evolution and Taxonomy of Nematode-Associated Entomopathogenic Bacteria of the Genera Xenorhabdus and Photorhabdus: An Overview. Symbiosis 2020, 80, 1–13. [Google Scholar] [CrossRef]
- Koppenhöfer, H.; Gaugler, R. Entomopathogenic Nematode and Bacteria Mutualism. In Defensive Mutualism in Microbial Symbiosis; White, J., Torres, M., Eds.; CRC Press: Boca Raton, FL, USA, 2009; Volume 20090677, ISBN 978-1-4200-6931-0. [Google Scholar]
- Herbert, E.E.; Goodrich-Blair, H. Friend and Foe: The Two Faces of Xenorhabdus nematophila. Nat. Rev. Microbiol. 2007, 5, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.J. Photorhabdus: A Model for the Analysis of Pathogenicity and Mutualism. Cell. Microbiol. 2008, 10, 2159–2167. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.J. Photorhabdus: A Tale of Contrasting Interactions. Microbiology 2020, 166, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.P. Diversity, Biology and Evolutionary Relationships. In Nematode Pathogenesis of Insects and Other Pests; Campos-Herrera, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–27. ISBN 978-3-319-18265-0. [Google Scholar]
- Kazimierczak, W.; Skrzypek, H.; Sajnaga, E.; Skowronek, M.; Waśko, A.; Kreft, A. Strains of Photorhabdus Spp. Associated with Polish Heterorhabditis Isolates: Their Molecular and Phenotypic Characterization and Symbiont Exchange. Arch. Microbiol. 2017, 199, 979–989. [Google Scholar] [CrossRef]
- Murfin, K.E.; Lee, M.-M.; Klassen, J.L.; McDonald, B.R.; Larget, B.; Forst, S.; Stock, S.P.; Currie, C.R.; Goodrich-Blair, H. Xenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema Spp. Nematode Hosts. mBio 2015, 6, e00076-15. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Torres, Á.M.; Shokal, U.; Morag, N.; Eleftherianos, I.; Goodrich-Blair, H. The Global Transcription Factor Lrp Is Both Essential for and Inhibitory to Xenorhabdus nematophila Insecticidal Activity. Appl. Environ. Microbiol. 2017, 83, e00185-17. [Google Scholar] [CrossRef]
- Engel, Y.; Windhorst, C.; Lu, X.; Goodrich-Blair, H.; Bode, H.B. The Global Regulators Lrp, LeuO, and HexA Control Secondary Metabolism in Entomopathogenic Bacteria. Front. Microbiol. 2017, 8, 209. [Google Scholar] [CrossRef]
- Blackburn, D.; Wood, P.L.; Burk, T.J.; Crawford, B.; Wright, S.M.; Adams, B.J. Evolution of Virulence in Photorhabdus Spp., Entomopathogenic Nematode Symbionts. Syst. Appl. Microbiol. 2016, 39, 173–179. [Google Scholar] [CrossRef]
- Bisch, G.; Ogier, J.-C.; Médigue, C.; Rouy, Z.; Vincent, S.; Tailliez, P.; Givaudan, A.; Gaudriault, S. Comparative Genomics Between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios Within an Entomopathogenic Bacterial Species. Genome Biol. Evol. 2016, 8, 148–160. [Google Scholar] [CrossRef]
- Kim, I.-H.; Aryal, S.K.; Aghai, D.T.; Casanova-Torres, Á.M.; Hillman, K.; Kozuch, M.P.; Mans, E.J.; Mauer, T.J.; Ogier, J.-C.; Ensign, J.C.; et al. The Insect Pathogenic Bacterium Xenorhabdus innexi Has Attenuated Virulence in Multiple Insect Model Hosts yet Encodes a Potent Mosquitocidal Toxin. BMC Genom. 2017, 18, 927. [Google Scholar] [CrossRef]
- Lacey, L.A.; Georgis, R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 2012, 44, 218–225. [Google Scholar]
- Eckstein, S.; Dominelli, N.; Brachmann, A.; Heermann, R. Phenotypic Heterogeneity of the Insect Pathogen Photorhabdus luminescens: Insights into the Fate of Secondary Cells. Appl. Environ. Microbiol. 2019, 85, e01910-19. [Google Scholar] [CrossRef]
- Dominelli, N.; Platz, F.; Heermann, R. The Insect Pathogen Photorhabdus luminescens Protects Plants from Phytopathogenic Fusarium graminearum via Chitin Degradation. Appl. Environ. Microbiol. 2022, 88, e00645-22. [Google Scholar] [CrossRef]
- Clarke, D.J. The Regulation of Secondary Metabolism in Photorhabdus. In The Molecular Biology of Photorhabdus Bacteria; ffrench-Constant, R.H., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 402, pp. 81–102. ISBN 978-3-319-52714-7/978-3-319-52715-4. [Google Scholar]
- Akhurst, R.J. Antibiotic Activity of Xenorhabdus Spp., Bacteria Symbiotically Associated with Insect Pathogenic Nematodes of the Families Heterorhabditidae and Steinernematidae. Microbiology 1982, 128, 3061–3065. [Google Scholar] [CrossRef] [PubMed]
- Paul, V.J.; Frautschy, S.; Fenical, W.; Nealson, K.H. Antibiotics in Microbial Ecology: Isolation and Structure Assignment of Several New Antibacterial Compounds from the Insect-Symbiotic bacteria Xenorhabdus Spp. J. Chem. Ecol. 1981, 7, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Webster, J.M. Antibiotic Production in Relation to Bacterial Growth and Nematode Development in Photorhabdus–Heterorhabditis Infected Galleria mellonella Larvae. FEMS Microbiol. Lett. 2000, 189, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Sztaricskai, F.; Dinya, Z.; Batta, G.; Szallas, E.; Szentirmai, A.; Fodor, A. Anthraquinones Produced by Enterobacters and Nematodes. Acta Chim. Hung. 1992, 129, 697–707. [Google Scholar]
- Li, J.; Chen, G.; Wu, H.; Webster, J.M. Identification of Two Pigments and a Hydroxystilbene Antibiotic from Photorhabdus luminescens. Appl. Environ. Microbiol. 1995, 61, 4329–4333. [Google Scholar] [CrossRef]
- Duchaud, E.; Rusniok, C.; Frangeul, L.; Buchrieser, C.; Givaudan, A.; Taourit, S.; Bocs, S.; Boursaux-Eude, C.; Chandler, M.; Charles, J.-F.; et al. The Genome Sequence of the Entomopathogenic Bacterium Photorhabdus luminescens. Nat. Biotechnol. 2003, 21, 1307–1313. [Google Scholar] [CrossRef]
- Stock, S.P.; Kusakabe, A.; Orozco, R.A. Secondary Metabolites Produced by Heterorhabditis Symbionts and Their Application in Agriculture: What We Know and What to Do Next. J. Nematol. 2017, 49, 373–383. [Google Scholar] [CrossRef]
- Parihar, R.D.; Dhiman, U.; Bhushan, A.; Gupta, P.K.; Gupta, P. Heterorhabditis and Photorhabdus Symbiosis: A Natural Mine of Bioactive Compounds. Front. Microbiol. 2022, 13, 790339. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, J.; Malan, A.P.; Dicks, L.M.T. Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds. Front. Microbiol. 2018, 9, 3177. [Google Scholar] [CrossRef] [PubMed]
- Tobias, N.J.; Shi, Y.-M.; Bode, H.B. Refining the Natural Product Repertoire in Entomopathogenic Bacteria. Trends Microbiol. 2018, 26, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-M.; Bode, H.B. Chemical Language and Warfare of Bacterial Natural Products in Bacteria–Nematode–Insect Interactions. Nat. Prod. Rep. 2018, 35, 309–335. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-M.; Hirschmann, M.; Shi, Y.-N.; Ahmed, S.; Abebew, D.; Tobias, N.J.; Grün, P.; Crames, J.J.; Pöschel, L.; Kuttenlochner, W.; et al. Global Analysis of Biosynthetic Gene Clusters Reveals Conserved and Unique Natural Products in Entomopathogenic Nematode-Symbiotic Bacteria. Nat. Chem. 2022, 14, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Bode, H.B.; Reimer, D.; Fuchs, S.W.; Kirchner, F.; Dauth, C.; Kegler, C.; Lorenzen, W.; Brachmann, A.O.; Grün, P. Determination of the Absolute Configuration of Peptide Natural Products by Using Stable Isotope Labeling and Mass Spectrometry. Chem. A Eur. J. 2012, 18, 2342–2348. [Google Scholar] [CrossRef]
- Nollmann, F.I.; Dauth, C.; Mulley, G.; Kegler, C.; Kaiser, M.; Waterfield, N.R.; Bode, H.B. Insect-Specific Production of New GameXPeptides in Photorhabdus luminescens TTO1, Widespread Natural Products in Entomopathogenic Bacteria. ChemBioChem 2015, 16, 205–208. [Google Scholar] [CrossRef]
- Pantel, L.; Florin, T.; Dobosz-Bartoszek, M.; Racine, E.; Sarciaux, M.; Serri, M.; Houard, J.; Campagne, J.-M.; De Figueiredo, R.M.; Midrier, C.; et al. Odilorhabdins, Antibacterial Agents That Cause Miscoding by Binding at a New Ribosomal Site. Mol. Cell 2018, 70, 83–94.e7. [Google Scholar] [CrossRef]
- Zhao, M.; Lepak, A.J.; Marchillo, K.; VanHecker, J.; Andes, D.R. In Vivo Pharmacodynamic Characterization of a Novel Odilorhabdin Antibiotic, NOSO-502, Against Escherichia coli and Klebsiella pneumoniae in a Murine Thigh Infection Model. Antimicrob. Agents Chemother. 2018, 62, e01067-18. [Google Scholar] [CrossRef]
- Racine, E.; Nordmann, P.; Pantel, L.; Sarciaux, M.; Serri, M.; Houard, J.; Villain-Guillot, P.; Demords, A.; Vingsbo Lundberg, C.; Gualtieri, M. In Vitro and In Vivo Characterization of NOSO-502, a Novel Inhibitor of Bacterial Translation. Antimicrob. Agents Chemother. 2018, 62, e01016-18. [Google Scholar] [CrossRef]
- Nollmann, F.I.; Heinrich, A.K.; Brachmann, A.O.; Morisseau, C.; Mukherjee, K.; Casanova-Torres, Á.M.; Strobl, F.; Kleinhans, D.; Kinski, S.; Schultz, K.; et al. A Photorhabdus Natural Product Inhibits Insect Juvenile Hormone Epoxide Hydrolase. ChemBioChem 2015, 16, 766–771. [Google Scholar] [CrossRef]
- Ahmed, S.; Tafim Hossain Hrithik, M.; Chandra Roy, M.; Bode, H.; Kim, Y. Phurealipids, Produced by the Entomopathogenic Bacteria, Photorhabdus, Mimic Juvenile Hormone to Suppress Insect Immunity and Immature Development. J. Invertebr. Pathol. 2022, 193, 107799. [Google Scholar] [CrossRef]
- Hirschmann, M.; Grundmann, F.; Bode, H.B. Identification and Occurrence of the Hydroxamate Siderophores Aerobactin, Putrebactin, Avaroferrin and Ochrobactin C as Virulence Factors from Entomopathogenic Bacteria. Environ. Microbiol. 2017, 19, 4080–4090. [Google Scholar] [CrossRef]
- Park, H.B.; Crawford, J.M. Pyrazinone Protease Inhibitor Metabolites from Photorhabdus luminescens. J. Antibiot. 2016, 69, 616–621. [Google Scholar] [CrossRef]
- Schimming, O.; Challinor, V.L.; Tobias, N.J.; Adihou, H.; Grün, P.; Pöschel, L.; Richter, C.; Schwalbe, H.; Bode, H.B. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids. Angew. Chem. Int. Ed. 2015, 54, 12702–12705. [Google Scholar] [CrossRef]
- Reimer, D.; Cowles, K.N.; Proschak, A.; Nollmann, F.I.; Dowling, A.J.; Kaiser, M.; Constant, R.F.; Goodrich-Blair, H.; Bode, H.B. Rhabdopeptides as Insect-Specific Virulence Factors from Entomopathogenic Bacteria. ChemBioChem 2013, 14, 1991–1997. [Google Scholar] [CrossRef]
- Reimer, D.; Nollmann, F.I.; Schultz, K.; Kaiser, M.; Bode, H.B. Xenortide Biosynthesis by Entomopathogenic Xenorhabdus nematophila. J. Nat. Prod. 2014, 77, 1976–1980. [Google Scholar] [CrossRef]
- Cai, X.; Nowak, S.; Wesche, F.; Bischoff, I.; Kaiser, M.; Fürst, R.; Bode, H.B. Entomopathogenic Bacteria Use Multiple Mechanisms for Bioactive Peptide Library Design. Nat. Chem. 2017, 9, 379–386. [Google Scholar] [CrossRef]
- Zhao, L.; Cai, X.; Kaiser, M.; Bode, H.B. Methionine-Containing Rhabdopeptide/Xenortide-Like Peptides from Heterologous Expression of the Biosynthetic Gene Cluster kj12ABC in Escherichia coli. J. Nat. Prod. 2018, 81, 2292–2295. [Google Scholar] [CrossRef]
- Abebew, D.; Sayedain, F.S.; Bode, E.; Bode, H.B. Uncovering Nematicidal Natural Products from Xenorhabdus Bacteria. J. Agric. Food Chem. 2022, 70, 498–506. [Google Scholar] [CrossRef]
- Crawford, J.M.; Portmann, C.; Zhang, X.; Roeffaers, M.B.J.; Clardy, J. Small Molecule Perimeter Defense in Entomopathogenic Bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, 10821–10826. [Google Scholar] [CrossRef]
- Crawford, J.M.; Portmann, C.; Kontnik, R.; Walsh, C.T.; Clardy, J. NRPS Substrate Promiscuity Diversifies the Xenematides. Org. Lett. 2011, 13, 5144–5147. [Google Scholar] [CrossRef]
- Bode, E.; Brachmann, A.O.; Kegler, C.; Simsek, R.; Dauth, C.; Zhou, Q.; Kaiser, M.; Klemmt, P.; Bode, H.B. Simple “On-Demand” Production of Bioactive Natural Products. ChemBioChem 2015, 16, 1115–1119. [Google Scholar] [CrossRef]
- Gulsen, S.H.; Tileklioglu, E.; Bode, E.; Cimen, H.; Ertabaklar, H.; Ulug, D.; Ertug, S.; Wenski, S.L.; Touray, M.; Hazir, C.; et al. Antiprotozoal Activity of Different Xenorhabdus and Photorhabdus Bacterial Secondary Metabolites and Identification of Bioactive Compounds Using the easyPACId Approach. Sci. Rep. 2022, 12, 10779. [Google Scholar] [CrossRef]
- Cimen, H.; Touray, M.; Gulsen, S.H.; Hazir, S. Natural Products from Photorhabdus and Xenorhabdus: Mechanisms and Impacts. Appl. Microbiol. Biotechnol. 2022, 106, 4387–4399. [Google Scholar] [CrossRef]
- Federici, B.A. Overview of the Basic Biology of Bacillus thuringiensis with Emphasis on Genetic Engineering of Bacterial Larvicides for Mosquito Control. Open Toxinol. J. 2013, 3, 83–100. [Google Scholar] [CrossRef]
- Sanda, N.B.; Hou, Y. The Symbiotic Bacteria—Xenorhabdus nematophila All and Photorhabdus luminescens H06 Strongly Affected the Phenoloxidase Activation of Nipa Palm Hispid, Octodonta nipae (Coleoptera: Chrysomelidae) Larvae. Pathogens 2023, 12, 506. [Google Scholar] [CrossRef]
- Kenney, E.; Hawdon, J.M.; O’Halloran, D.; Eleftherianos, I. Heterorhabditis bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus luminescens Through Suppression of the Imd Pathway. Front. Immunol. 2019, 10, 2372. [Google Scholar] [CrossRef]
- Shrestha, S.; Kim, Y. An Entomopathogenic Bacterium, Xenorhabdus Nematophila, Inhibits Hemocyte Phagocytosis of Spodoptera exigua by Inhibiting Phospholipase A2. J. Invertebr. Pathol. 2007, 96, 64–70. [Google Scholar] [CrossRef]
- Shrestha, S.; Hong, Y.P.; Kim, Y. Two Chemical Derivatives of Bacterial Metabolites Suppress Cellular Immune Responses and Enhance Pathogenicity of Bacillus thuringiensis Against the Diamondback Moth, Plutella xylostella. J. Asia-Pac. Entomol. 2010, 13, 55–60. [Google Scholar] [CrossRef]
- Seo, S.; Lee, S.; Hong, Y.; Kim, Y. Phospholipase A 2 Inhibitors Synthesized by Two Entomopathogenic Bacteria, Xenorhabdus nematophila and Photorhabdus temperata Subsp. temperata. Appl. Environ. Microbiol. 2012, 78, 3816–3823. [Google Scholar] [CrossRef]
- Eom, S.; Park, Y.; Kim, Y. Sequential Immunosuppressive Activities of Bacterial Secondary Metabolites from the Entomopahogenic Bacterium Xenorhabdus nematophila. J. Microbiol. 2014, 52, 161–168. [Google Scholar] [CrossRef]
- Mulley, G.; Beeton, M.L.; Wilkinson, P.; Vlisidou, I.; Ockendon-Powell, N.; Hapeshi, A.; Tobias, N.J.; Nollmann, F.I.; Bode, H.B.; Van Den Elsen, J.; et al. From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity. PLoS ONE 2015, 10, e0144937. [Google Scholar] [CrossRef]
- Da Silva, W.J.; Pilz-Júnior, H.L.; Heermann, R.; Da Silva, O.S. The Great Potential of Entomopathogenic Bacteria Xenorhabdus and Photorhabdus for Mosquito Control: A Review. Parasit. Vectors 2020, 13, 376. [Google Scholar] [CrossRef]
- Da Silva, J.L.R.; Undurraga Schwalm, F.; Eugênio Silva, C.; Da Costa, M.; Heermann, R.; Santos Da Silva, O. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae). J. Econ. Entomol. 2017, 110, 378–385. [Google Scholar] [CrossRef]
- Park, Y.; Kyo Jung, J.; Kim, Y. A Mixture of Bacillus thuringiensis Subsp. israelensis with Xenorhabdus nematophila-Cultured Broth Enhances Toxicity Against Mosquitoes Aedes albopictus and Culex pipiens Pallens (Diptera: Culicidae). J. Econ. Entomol. 2016, 109, 1086–1093. [Google Scholar] [CrossRef]
- Kim, I.-H.; Ensign, J.; Kim, D.-Y.; Jung, H.-Y.; Kim, N.-R.; Choi, B.-H.; Park, S.-M.; Lan, Q.; Goodman, W.G. Specificity and Putative Mode of Action of a Mosquito Larvicidal Toxin from the Bacterium Xenorhabdus innexi. J. Invertebr. Pathol. 2017, 149, 21–28. [Google Scholar] [CrossRef]
- Touray, M.; Ulug, D.; Gulsen, S.H.; Cimen, H.; Hazir, C.; Bode, H.B.; Hazir, S. Natural Products from Xenorhabdus and Photorhabdus how Promise as Biolarvicides Against AEDES ALBOPICTUS. Pest Manag. Sci. 2024, 80, 4231–4242. [Google Scholar] [CrossRef]
- Ahantarig, A.; Chantawat, N.; Waterfield, N.R.; ffrench-Constant, R.; Kittayapong, P. PirAB Toxin from Photorhabdus asymbiotica as a Larvicide Against Dengue Vectors. Appl. Environ. Microbiol. 2009, 75, 4627–4629. [Google Scholar] [CrossRef]
- Ahn, J.-Y.; Lee, J.-Y.; Yang, E.-J.; Lee, Y.-J.; Koo, K.-B.; Song, K.-S.; Lee, K.-Y. Mosquitocidal Activity of Anthraquinones Isolated from Symbiotic Bacteria Photorhabdus of Entomopathogenic Nematode. J. Asia-Pac. Entomol. 2013, 16, 317–320. [Google Scholar] [CrossRef]
- Incedayi, G.; Cimen, H.; Ulug, D.; Touray, M.; Bode, E.; Bode, H.B.; Orenlili Yaylagul, E.; Hazir, S.; Cakmak, I. Relative Potency of a Novel Acaricidal Compound from Xenorhabdus, a Bacterial Genus Mutualistically Associated with Entomopathogenic Nematodes. Sci. Rep. 2021, 11, 11253. [Google Scholar] [CrossRef]
- Kusakabe, A.; Wang, C.; Xu, Y.; Molnár, I.; Stock, S.P. Selective Toxicity of Secondary Metabolites from the Entomopathogenic Bacterium Photorhabdus luminescens sonorensis Against Selected Plant Parasitic Nematodes of the Tylenchina Suborder. Microbiol. Spectr. 2022, 10, e02577-21. [Google Scholar] [CrossRef]
- Esmati, N.; Maddirala, A.R.; Hussein, N.; Amawi, H.; Tiwari, A.K.; Andreana, P.R. Efficient Syntheses and Anti-Cancer Activity of Xenortides A–D Including Ent/Epi -Stereoisomers. Org. Biomol. Chem. 2018, 16, 5332–5342. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Hüttel, S.; Hu, S.; Zhang, W.; Ding, X.; Yin, J.; Yin, Y.; Müller, R.; Xia, L.; et al. A Novel Tumor-Targeting Strain of Xenorhabdus stockiae Exhibits Potent Biological Activities. Front. Bioeng. Biotechnol. 2022, 10, 984197. [Google Scholar] [CrossRef]
- Zhen, Y.; Lin, Y.; Li, Y.; Zhen, Y. Lidamycin Shows Highly Potent Cytotoxic to Myeloma Cells and Inhibits Tumor Growth in Mice. Acta Pharmacol. Sin. 2009, 30, 1025–1032. [Google Scholar] [CrossRef]
- Shi, Y.; Crames, J.J.; Czech, L.; Bozhüyük, K.A.J.; Shi, Y.; Hirschmann, M.; Lamberth, S.; Claus, P.; Paczia, N.; Rückert, C.; et al. Genome Mining Enabled by Biosynthetic Characterization Uncovers a Class of Benzoxazolinate-Containing Natural Products in Diverse Bacteria. Angew. Chem. Int. Ed. 2022, 61, e202206106. [Google Scholar] [CrossRef]
- Theodore, C.M.; King, J.B.; You, J.; Cichewicz, R.H. Production of Cytotoxic Glidobactins/Luminmycins by Photorhabdus asymbiotica in Liquid Media and Live Crickets. J. Nat. Prod. 2012, 75, 2007–2011. [Google Scholar] [CrossRef]
- Bian, X.; Plaza, A.; Zhang, Y.; Müller, R. Luminmycins A–C, Cryptic Natural Products from Photorhabdus luminescens Identified by Heterologous Expression in Escherichia coli. J. Nat. Prod. 2012, 75, 1652–1655. [Google Scholar] [CrossRef]
- Zhao, L.; Le Chapelain, C.; Brachmann, A.O.; Kaiser, M.; Groll, M.; Bode, H.B. Activation, Structure, Biosynthesis and Bioactivity of Glidobactin-like Proteasome Inhibitors from Photorhabdus laumondii. ChemBioChem 2021, 22, 1582–1588. [Google Scholar] [CrossRef]
- Yang, E.-J.; Kim, S.-H.; Lee, K.-Y.; Song, K.-S. Neuroprotective and Anti-Neuroinflammatory Activities of Anthraquinones Isolated from Photorhabdus temperata Culture Broth. J. Microbiol. Biotechnol. 2018, 28, 12–21. [Google Scholar] [CrossRef]
- Fodor, A.; Varga, I.; Hevesi, M.; Mathe-Fodor, A.; Racsko, J.; Hogan, J.A. Novel Anti-Microbial Peptides of Xenorhabdus Origin Against Multidrug Resistant Plant Pathogens. In A Search for Antibacterial Agents; Bobbarala, V., Ed.; InTech: London, UK, 2012; ISBN 9789535107248. [Google Scholar]
- Booysen, E.; Dicks, L.M.T. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus Spp.? A Review. Probiotics Antimicro. Prot. 2020, 12, 1310–1320. [Google Scholar] [CrossRef]
- Shahsavari, N.; Wang, B.; Imai, Y.; Mori, M.; Son, S.; Liang, L.; Böhringer, N.; Manuse, S.; Gates, M.F.; Morrissette, M.; et al. A Silent Operon of Photorhabdus luminescens Encodes a Prodrug Mimic of GTP. mBio 2022, 13, e00700-22. [Google Scholar] [CrossRef]
- Shi, D.; An, R.; Zhang, W.; Zhang, G.; Yu, Z. Stilbene Derivatives from Photorhabdus temperata SN259 and Their Antifungal Activities Against Phytopathogenic Fungi. J. Agric. Food Chem. 2017, 65, 60–65. [Google Scholar] [CrossRef]
- Houard, J.; Aumelas, A.; Noël, T.; Pages, S.; Givaudan, A.; Fitton-Ouhabi, V.; Villain-Guillot, P.; Gualtieri, M. Cabanillasin, a New Antifungal Metabolite, Produced by Entomopathogenic Xenorhabdus cabanillasii JM26. J. Antibiot. 2013, 66, 617–620. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, M.; Zhao, P.; Quan, C.; Li, X.; Wang, L.; Gao, W.; Li, J.; Zu, X.; Fu, D.; et al. Gram-Negative Bacilli-Derived Peptide Antibiotics Developed Since 2000. Biotechnol. Lett. 2018, 40, 1271–1287. [Google Scholar] [CrossRef]
- Grundmann, F.; Kaiser, M.; Schiell, M.; Batzer, A.; Kurz, M.; Thanwisai, A.; Chantratita, N.; Bode, H.B. Antiparasitic Chaiyaphumines from Entomopathogenic Xenorhabdus Sp. PB61.4. J. Nat. Prod. 2014, 77, 779–783. [Google Scholar] [CrossRef]
- Antonello, A.M.; Sartori, T.; Silva, M.B.; Prophiro, J.S.; Pinge-Filho, P.; Heermann, R.; Da Silva, O.S.; Romão, P.R.T. Anti-Trypanosoma Activity of Bioactive Metabolites from Photorhabdus luminescens and Xenorhabdus nematophila. Exp. Parasitol. 2019, 204, 107724. [Google Scholar] [CrossRef]
- Brachmann, A.O.; Joyce, S.A.; Jenke-Kodama, H.; Schwär, G.; Clarke, D.J.; Bode, H.B. A Type II Polyketide Synthase Is Responsible for Anthraquinone Biosynthesis in Photorhabdus luminescens. ChemBioChem 2007, 8, 1721–1728. [Google Scholar] [CrossRef]
- Derzelle, S.; Duchaud, E.; Kunst, F.; Danchin, A.; Bertin, P. Identification, Characterization, and Regulation of a Cluster of Genes Involved in Carbapenem Biosynthesis in Photorhabdus luminescens. Appl. Environ. Microbiol. 2002, 68, 3780–3789. [Google Scholar] [CrossRef] [PubMed]
- Celedón, R.S.; Díaz, L.B. Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications. Microorganisms 2021, 9, 739. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; et al. A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature 2019, 576, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Brachmann, A.O.; Kirchner, F.; Kegler, C.; Kinski, S.C.; Schmitt, I.; Bode, H.B. Triggering the Production of the Cryptic Blue Pigment Indigoidine from Photorhabdus luminescens. J. Biotechnol. 2012, 157, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Joyce, S.A.; Brachmann, A.O.; Glazer, I.; Lango, L.; Schwär, G.; Clarke, D.J.; Bode, H.B. Bacterial Biosynthesis of a Multipotent Stilbene. Angew. Chem. Int. Ed. 2008, 47, 1942–1945. [Google Scholar] [CrossRef] [PubMed]
- Schöner, T.A.; Kresovic, D.; Bode, H.B. Biosynthesis and Function of Bacterial Dialkylresorcinol Compounds. Appl. Microbiol. Biotechnol. 2015, 99, 8323–8328. [Google Scholar] [CrossRef]
- Hapeshi, A.; Benarroch, J.M.; Clarke, D.J.; Waterfield, N.R. Iso-Propyl Stilbene: A Life Cycle Signal? Microbiology 2019, 165, 516–526. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, H.; Xia, L.; Ding, X.; Hoffmann, T.; Hoffmann, M.; Bian, X.; Müller, R.; Fu, J.; Stewart, A.F.; et al. A New Recombineering System for Photorhabdus and Xenorhabdus. Nucl. Acids Res. 2015, 43, e36. [Google Scholar] [CrossRef]
- Bode, H.B.; Brachmann, A.O.; Jadhav, K.B.; Seyfarth, L.; Dauth, C.; Fuchs, S.W.; Kaiser, M.; Waterfield, N.R.; Sack, H.; Heinemann, S.H.; et al. Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase. Angew. Chem. Int. Ed. 2015, 54, 10352–10355. [Google Scholar] [CrossRef]
- Brachmann, A.O.; Brameyer, S.; Kresovic, D.; Hitkova, I.; Kopp, Y.; Manske, C.; Schubert, K.; Bode, H.B.; Heermann, R. Pyrones as Bacterial Signaling Molecules. Nat. Chem. Biol. 2013, 9, 573–578. [Google Scholar] [CrossRef]
- Hickey, A.; Pardo, L.M.; Reen, F.J.; McGlacken, G.P. Pyrones Identified as LuxR Signal Molecules in Photorhabdus and Their Synthetic Analogues Can Alter Multicellular Phenotypic Behavior of Bacillus atropheaus. ACS Omega 2021, 6, 33141–33148. [Google Scholar] [CrossRef]
- Ciche, T.A.; Blackburn, M.; Carney, J.R.; Ensign, J.C. Photobactin: A Catechol Siderophore Produced by Photorhabdus Luminescens, an Entomopathogen Mutually Associated with Heterorhabditis bacteriophora NC1 Nematodes. Appl. Environ. Microbiol. 2003, 69, 4706–4713. [Google Scholar] [CrossRef]
- Mollah, M.I.; Kim, Y. Virulent Secondary Metabolites of Entomopathogenic Bacteria Genera, Xenorhabdus and Photorhabdus, Inhibit Phospholipase A2 to Suppress Host Insect Immunity. BMC Microbiol. 2020, 20, 359. [Google Scholar] [CrossRef]
- Fuchs, S.W.; Sachs, C.C.; Kegler, C.; Nollmann, F.I.; Karas, M.; Bode, H.B. Neutral Loss Fragmentation Pattern Based Screening for Arginine-Rich Natural Products in Xenorhabdus and Photorhabdus. Anal. Chem. 2012, 84, 6948–6955. [Google Scholar] [CrossRef]
- Meesil, W.; Muangpat, P.; Sitthisak, S.; Rattanarojpong, T.; Chantratita, N.; Machado, R.A.R.; Shi, Y.-M.; Bode, H.B.; Vitta, A.; Thanwisai, A. Genome Mining Reveals Novel Biosynthetic Gene Clusters in Entomopathogenic Bacteria. Sci. Rep. 2023, 13, 20764. [Google Scholar] [CrossRef]
- Zhang, M.; Otsuki, K.; Li, W. Molecular Networking as a Natural Products Discovery Strategy. Acta Mater. Med. 2023, 2, 126–141. [Google Scholar] [CrossRef]
- Tobias, N.J.; Wolff, H.; Djahanschiri, B.; Grundmann, F.; Kronenwerth, M.; Shi, Y.-M.; Simonyi, S.; Grün, P.; Shapiro-Ilan, D.; Pidot, S.J.; et al. Natural Product Diversity Associated with the Nematode Symbionts Photorhabdus and Xenorhabdus. Nat. Microbiol. 2017, 2, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Wolff, H.; Bode, H.B. The Benzodiazepine-Like Natural Product Tilivalline Is Produced by the Entomopathogenic Bacterium Xenorhabdus eapokensis. PLoS ONE 2018, 13, e0194297. [Google Scholar] [CrossRef] [PubMed]
- Brockhurst, M.A.; Harrison, E.; Hall, J.P.J.; Richards, T.; McNally, A.; MacLean, C. The Ecology and Evolution of Pangenomes. Curr. Biol. 2019, 29, R1094–R1103. [Google Scholar] [CrossRef]
- Bozhüyük, K.A.J.; Zhou, Q.; Engel, Y.; Heinrich, A.; Pérez, A.; Bode, H.B. Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. In The Molecular Biology of Photorhabdus Bacteria; ffrench-Constant, R.H., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 402, pp. 55–79. [Google Scholar] [CrossRef]
- Qin, Y.; Jia, F.; Li, X.; Li, B.; Ren, J.; Yang, X.; Li, G. Improving the Yield of Xenocoumacin 1 by PBAD Promoter Replacement in Xenorhabdus nematophila CB6. Agriculture 2021, 11, 1251. [Google Scholar] [CrossRef]
- Duan, J.; Yuan, B.; Jia, F.; Li, X.; Chen, C.; Li, G. Development of an Efficient and Seamless Genetic Manipulation Method for Xenorhabdus and Its Application for Enhancing the Production of Fabclavines. J. Agric. Food Chem. 2024, 72, 274–283. [Google Scholar] [CrossRef]
- Bode, E.; Heinrich, A.K.; Hirschmann, M.; Abebew, D.; Shi, Y.; Vo, T.D.; Wesche, F.; Shi, Y.; Grün, P.; Simonyi, S.; et al. Promoter Activation in Δ Hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angew. Chem. Int. Ed. 2019, 58, 18957–18963. [Google Scholar] [CrossRef]
- Qin, Y.; Jia, F.; Zheng, X.; Li, X.; Duan, J.; Li, B.; Shen, H.; Yang, X.; Ren, J.; Li, G. Enhancing the Production of Xenocoumacin 1 in Xenorhabdus nematophila CB6 by a Combinatorial Engineering Strategy. J. Agric. Food Chem. 2023, 71, 8959–8968. [Google Scholar] [CrossRef]
- Dong, Y.; Li, X.; Duan, J.; Qin, Y.; Yang, X.; Ren, J.; Li, G. Improving the Yield of Xenocoumacin 1 Enabled by In Situ Product Removal. ACS Omega 2020, 5, 20391–20398. [Google Scholar] [CrossRef]
- Beck, C.; Garzón, J.F.G.; Weber, T. Recent Advances in Re-Engineering Modular PKS and NRPS Assembly Lines. Biotechnol. Bioproc. E 2020, 25, 886–894. [Google Scholar] [CrossRef]
- Cai, X.; Zhao, L.; Bode, H.B. Reprogramming Promiscuous Nonribosomal Peptide Synthetases for Production of Specific Peptides. Org. Lett. 2019, 21, 2116–2120. [Google Scholar] [CrossRef]
- Kegler, C.; Bode, H.B. Artificial Splitting of a Non-Ribosomal Peptide Synthetase by Inserting Natural Docking Domains. Angew. Chem. Int. Ed. 2020, 59, 13463–13467. [Google Scholar] [CrossRef]
- Huang, X.; Sun, Y.; Liu, S.; Li, Y.; Li, C.; Sun, Y.; Ding, X.; Xia, L.; Hu, Y.; Hu, S. Recombineering Using RecET-Like Recombinases from Xenorhabdus and Its Application in Mining of Natural Products. Appl. Microbiol. Biotechnol. 2022, 106, 7857–7866. [Google Scholar] [CrossRef]
- Schimming, O.; Fleischhacker, F.; Nollmann, F.I.; Bode, H.B. Yeast Homologous Recombination Cloning Leading to the Novel Peptides Ambactin and Xenolindicin. ChemBioChem 2014, 15, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Dudnik, A.; Bigler, L.; Dudler, R. Heterologous Expression of a Photorhabdus luminescens Syrbactin-Like Gene Cluster Results in Production of the Potent Proteasome Inhibitor Glidobactin A. Microbiol. Res. 2013, 168, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Feng, J.-T.; Zhang, Q.; Zhang, X. Optimization of Fermentation Condition for Antibiotic Production by Xenorhabdus nematophila with Response Surface Methodology. J. Appl. Microbiol. 2008, 104, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Booysen, E.; Rautenbach, M.; Stander, M.A.; Dicks, L.M.T. Profiling the Production of Antimicrobial Secondary Metabolites by Xenorhabdus khoisanae J194 Under Different Culturing Conditions. Front. Chem. 2021, 9, 626653. [Google Scholar] [CrossRef]
- Sa-uth, C.; Rattanasena, P.; Chandrapatya, A.; Bussaman, P. Modification of Medium Composition for Enhancing the Production of Antifungal Activity from Xenorhabdus stockiae PB09 by Using Response Surface Methodology. Int. J. Microbiol. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.M.; Kontnik, R.; Clardy, J. Regulating Alternative Lifestyles in Entomopathogenic Bacteria. Curr. Biol. 2010, 20, 69–74. [Google Scholar] [CrossRef]
- Lango-Scholey, L.; Brachmann, A.O.; Bode, H.B.; Clarke, D.J. The Expression of stlA in Photorhabdus luminescens Is Controlled by Nutrient Limitation. PLoS ONE 2013, 8, e82152. [Google Scholar] [CrossRef] [PubMed]
- Wenski, S.L.; Cimen, H.; Berghaus, N.; Fuchs, S.W.; Hazir, S.; Bode, H.B. Fabclavine Diversity in Xenorhabdus Bacteria. Beilstein J. Org. Chem. 2020, 16, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Du, A.; Ying, T.; Zhou, Z.; Yu, W.; Hu, G.; Luo, X.; Ma, M.; Yu, Y.; Wang, H.; Wei, B. Non-ribosomal Peptide Biosynthetic Potential of the Nematode Symbiont Photorhabdus. Environ. Microbiol. Rep. 2022, 14, 917–925. [Google Scholar] [CrossRef]
- Mohite, O.S.; Lloyd, C.J.; Monk, J.M.; Weber, T.; Palsson, B.O. Pangenome Analysis of Enterobacteria Reveals Richness of Secondary Metabolite Gene Clusters and Their Associated Gene Sets. Synth. Syst. Biotechnol. 2022, 7, 900–910. [Google Scholar] [CrossRef]
- Park, H.B.; Crawford, J.M. Lumiquinone A, an α-Aminomalonate-Derived Aminobenzoquinone from Photorhabdus luminescens. J. Nat. Prod. 2015, 78, 1437–1441. [Google Scholar] [CrossRef]
- Tobias, N.J.; Linck, A.; Bode, H.B. Natural Product Diversification Mediated by Alternative Transcriptional Starting. Angew. Chem. Int. Ed. 2018, 57, 5699–5702. [Google Scholar] [CrossRef]
- Chaston, J.M.; Suen, G.; Tucker, S.L.; Andersen, A.W.; Bhasin, A.; Bode, E.; Bode, H.B.; Brachmann, A.O.; Cowles, C.E.; Cowles, K.N.; et al. The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes. PLoS ONE 2011, 6, e27909. [Google Scholar] [CrossRef]
- Johnston, I.; Osborn, L.J.; Markley, R.L.; McManus, E.A.; Kadam, A.; Schultz, K.B.; Nagajothi, N.; Ahern, P.P.; Brown, J.M.; Claesen, J. Identification of Essential Genes for Escherichia coli Aryl Polyene Biosynthesis and Function in Biofilm Formation. NPJ Biofilms Microbiomes 2021, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Murfin, K.E.; Whooley, A.C.; Klassen, J.L.; Goodrich-Blair, H. Comparison of Xenorhabdus bovienii Bacterial Strain Genomes Reveals Diversity in Symbiotic Functions. BMC Genom. 2015, 16, 889. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Yi, Y.; Kang, G.-H.; Choi, Y.-H.; Kim, P.; Baek, N.-I.; Kim, Y. Identification of an Antibacterial Compound, Benzylideneacetone, from Xenorhabdus nematophila Against Major Plant-Pathogenic Bacteria. FEMS Microbiol. Lett. 2004, 239, 241–248. [Google Scholar] [CrossRef]
- Fuchs, S.W.; Grundmann, F.; Kurz, M.; Kaiser, M.; Bode, H.B. Fabclavines: Bioactive Peptide–Polyketide-Polyamino Hybrids from Xenorhabdus. ChemBioChem 2014, 15, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Proschak, A.; Schultz, K.; Herrmann, J.; Dowling, A.J.; Brachmann, A.O.; ffrench-Constant, R.; Müller, R.; Bode, H.B. Cytotoxic Fatty Acid Amides from Xenorhabdus. ChemBioChem 2011, 12, 2011–2015. [Google Scholar] [CrossRef]
- Gualtieri, M.; Aumelas, A.; Thaler, J.-O. Identification of a New Antimicrobial Lysine-Rich Cyclolipopeptide Family from Xenorhabdus nematophila. J. Antibiot. 2009, 62, 295–302. [Google Scholar] [CrossRef]
- Fuchs, S.W.; Proschak, A.; Jaskolla, T.W.; Karas, M.; Bode, H.B. Structure Elucidation and Biosynthesis of Lysine-Rich Cyclic Peptides in Xenorhabdus nematophila. Org. Biomol. Chem. 2011, 9, 3130. [Google Scholar] [CrossRef]
- Ohlendorf, B.; Simon, S.; Wiese, J.; Imhoff, J.F. Szentiamide, an N -Formylated Cyclic Depsipeptide from Xenorhabdus szentirmaii DSM 16338 T. Nat. Prod. Commun. 2011, 6, 1934578X1100600. [Google Scholar] [CrossRef]
- Nollmann, F.I.; Dowling, A.; Kaiser, M.; Deckmann, K.; Grösch, S.; ffrench-Constant, R.; Bode, H.B. Synthesis of Szentiamide, a Depsipeptide from Entomopathogenic Xenorhabdus szentirmaii with Activity Against Plasmodium Falciparum. Beilstein J. Org. Chem. 2012, 8, 528–533. [Google Scholar] [CrossRef]
- Kronenwerth, M.; Bozhüyük, K.A.J.; Kahnt, A.S.; Steinhilber, D.; Gaudriault, S.; Kaiser, M.; Bode, H.B. Characterisation of Taxlllaids A–G.; Natural Products from Xenorhabdus indica. Chem. Eur. J. 2014, 20, 17478–17487. [Google Scholar] [CrossRef]
- Schneditz, G.; Rentner, J.; Roier, S.; Pletz, J.; Herzog, K.A.T.; Bücker, R.; Troeger, H.; Schild, S.; Weber, H.; Breinbauer, R.; et al. Enterotoxicity of a Nonribosomal Peptide Causes Antibiotic-Associated Colitis. Proc. Natl. Acad. Sci. USA 2014, 111, 13181–13186. [Google Scholar] [CrossRef]
- Grundmann, F.; Kaiser, M.; Kurz, M.; Schiell, M.; Batzer, A.; Bode, H.B. Structure Determination of the Bioactive Depsipeptide Xenobactin from Xenorhabdus Sp. PB30.3. RSC Adv. 2013, 3, 22072. [Google Scholar] [CrossRef]
- Zhou, Q.; Grundmann, F.; Kaiser, M.; Schiell, M.; Gaudriault, S.; Batzer, A.; Kurz, M.; Bode, H.B. Structure and Biosynthesis of Xenoamicins from Entomopathogenic Xenorhabdus. Chem. Eur. J. 2013, 19, 16772–16779. [Google Scholar] [CrossRef] [PubMed]
- Reimer, D.; Luxenburger, E.; Brachmann, A.O.; Bode, H.B. A New Type of Pyrrolidine Biosynthesis Is Involved in the Late Steps of Xenocoumacin Production in Xenorhabdus nematophila. ChemBioChem 2009, 10, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qiu, D.; Yang, H.; Liu, Z.; Zeng, H.; Yuan, J. Antifungal Activity of Xenocoumacin 1 from Xenorhabdus nematophilus Var. Pekingensis Against Phytophthora infestans. World J. Microbiol. Biotechnol. 2011, 27, 523–528. [Google Scholar] [CrossRef]
- Proschak, A.; Zhou, Q.; Schöner, T.; Thanwisai, A.; Kresovic, D.; Dowling, A.; ffrench-Constant, R.; Proschak, E.; Bode, H.B. Biosynthesis of the Insecticidal Xenocyloins in Xenorhabdus bovienii. ChemBioChem 2014, 15, 369–372. [Google Scholar] [CrossRef]
- Brachmann, A.O.; Forst, S.; Furgani, G.M.; Fodor, A.; Bode, H.B. Xenofuranones A and B: Phenylpyruvate Dimers from Xenorhabdus szentirmaii. J. Nat. Prod. 2006, 69, 1830–1832. [Google Scholar] [CrossRef]
- Kegler, C.; Nollmann, F.I.; Ahrendt, T.; Fleischhacker, F.; Bode, E.; Bode, H.B. Rapid Determination of the Amino Acid Configuration of Xenotetrapeptide. ChemBioChem 2014, 15, 826–828. [Google Scholar] [CrossRef]
- Zhou, Q.; Dowling, A.; Heide, H.; Wöhnert, J.; Brandt, U.; Baum, J.; ffrench-Constant, R.; Bode, H.B. Xentrivalpeptides A–Q: Depsipeptide Diversification in Xenorhabdus. J. Nat. Prod. 2012, 75, 1717–1722. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, S.; Zhang, Q. Chemical Synthesis and Biosynthesis of Darobactin. Tetrahedron Lett. 2023, 116, 154337. [Google Scholar] [CrossRef]
- Kaur, H.; Jakob, R.P.; Marzinek, J.K.; Green, R.; Imai, Y.; Bolla, J.R.; Agustoni, E.; Robinson, C.V.; Bond, P.J.; Lewis, K.; et al. The Antibiotic Darobactin Mimics a β-Strand to Inhibit Outer Membrane Insertase. Nature 2021, 593, 125–129. [Google Scholar] [CrossRef]
- Groß, S.; Panter, F.; Pogorevc, D.; Seyfert, C.E.; Deckarm, S.; Bader, C.D.; Herrmann, J.; Müller, R. Improved Broad-Spectrum Antibiotics Against Gram-Negative Pathogens via Darobactin Biosynthetic Pathway Engineering. Chem. Sci. 2021, 12, 11882–11893. [Google Scholar] [CrossRef] [PubMed]
- Seyfert, C.E.; Müller, A.V.; Walsh, D.J.; Birkelbach, J.; Kany, A.M.; Porten, C.; Yuan, B.; Krug, D.; Herrmann, J.; Marlovits, T.C.; et al. New Genetically Engineered Derivatives of Antibacterial Darobactins Underpin Their Potential for Antibiotic Development. J. Med. Chem. 2023, 66, 16330–16341. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.D.; Iinishi, A.; Modaresi, S.M.; Yoo, B.-K.; Curtis, T.D.; Lariviere, P.J.; Liang, L.; Son, S.; Nicolau, S.; Bargabos, R.; et al. Computational Identification of a Systemic Antibiotic for Gram-Negative Bacteria. Nat. Microbiol. 2022, 7, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Nesic, M.; Ryffel, D.B.; Maturano, J.; Shevlin, M.; Pollack, S.R.; Gauthier, D.R.; Trigo-Mouriño, P.; Zhang, L.-K.; Schultz, D.M.; McCabe Dunn, J.M.; et al. Total Synthesis of Darobactin A. J. Am. Chem. Soc. 2022, 144, 14026–14030. [Google Scholar] [CrossRef]
- Muñoz, K.A.; Hergenrother, P.J. Computational Discovery of Dynobactin Antibiotics. Nat. Microbiol. 2022, 7, 1512–1513. [Google Scholar] [CrossRef]
- Racine, E.; Gualtieri, M. From Worms to Drug Candidate: The Story of Odilorhabdins, a New Class of Antimicrobial Agents. Front. Microbiol. 2019, 10, 2893. [Google Scholar] [CrossRef]
- Zhao, M.; Lepak, A.J.; Andes, D.R. 1383. In Vivo Pharmacokinetic/Pharmacodynamic (PK/PD) Evaluation of NOSO-502, a First-in-Class Odilorhabdin Antibiotic, Against E. coli (EC) and K. pneumoniae (KPN) in the Murine Neutropenic Thigh Model. Open Forum Infect. Dis. 2018, 5, S424. [Google Scholar] [CrossRef]
- Lanois-Nouri, A.; Pantel, L.; Fu, J.; Houard, J.; Ogier, J.-C.; Polikanov, Y.S.; Racine, E.; Wang, H.; Gaudriault, S.; Givaudan, A.; et al. The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific. mBio 2022, 13, e02826-21. [Google Scholar] [CrossRef] [PubMed]
- Krin, E.; Derzelle, S.; Bedard, K.; Adib-Conquy, M.; Turlin, E.; Lenormand, P.; Hullo, M.; Bonne, I.; Chakroun, N.; Lacroix, C.; et al. Regulatory Role of UvrY in Adaptation of Photorhabdus luminescens Growth Inside the Insect. Environ. Microbiol. 2008, 10, 1118–1134. [Google Scholar] [CrossRef]
- Langer, A.; Moldovan, A.; Harmath, C.; Joyce, S.A.; Clarke, D.J.; Heermann, R. HexA Is a Versatile Regulator Involved in the Control of Phenotypic Heterogeneity of Photorhabdus luminescens. PLoS ONE 2017, 12, e0176535. [Google Scholar] [CrossRef]
- Park, H.B.; Sampathkumar, P.; Perez, C.E.; Lee, J.H.; Tran, J.; Bonanno, J.B.; Hallem, E.A.; Almo, S.C.; Crawford, J.M. Stilbene Epoxidation and Detoxification in a Photorhabdus luminescens-Nematode Symbiosis. J. Biol. Chem. 2017, 292, 6680–6694. [Google Scholar] [CrossRef]
- Hadchity, L.; Houard, J.; Lanois, A.; Payelleville, A.; Nassar, F.; Gualtieri, M.; Givaudan, A.; Abi Khattar, Z. The AcrAB Efflux Pump Confers Self-Resistance to Stilbenes in Photorhabdus laumondii. Res. Microbiol. 2023, 174, 104081. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.R.; Stein Gold, L.; Cameron, M.C.; Golant, A.; Lewitt, G.M.; Bruno, M.J.; Martin, G.; Brown, P.M.; Rubenstein, D.S.; Butners, V.; et al. Tapinarof Cream 1% Once Daily for the Treatment of Plaque Psoriasis: Case Photography of Clinical Outcomes from Three Phase 3 Trials. Dermatol. Ther. 2023, 13, 2443–2460. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, S.; Rodrigues, M.A.; Vender, R.; Torres, T. Tapinarof for the Treatment of Psoriasis. Dermatol. Ther. 2022, 35, e15931. [Google Scholar] [CrossRef] [PubMed]
- Assaf, J.; Sarkis, J.; Tomb, R. Tapinarof and the Future of Topical Treatments in Plaque Psoriasis. J. Am. Acad. Dermatol. 2021, 84, e283–e284. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, L.; Zheng, M. A Novel Topical Treatment for Plaque Psoriasis: Benvitimod/Tapinarof. J. Am. Acad. Dermatol. 2022, 86, e137–e138. [Google Scholar] [CrossRef]
BGC Product | Class/Biosynthetic Pathway * | Activity | Biological Function/Mechanism of Action | References |
---|---|---|---|---|
Ambactin | NRPS | Antiprotozoal | Unknown | [133] |
Aerobactin | Siderophore | Insecticidal | Virulence-related metalloprotein | [57] |
Aryl-polyene lipid | Other | Unknown | Biofilm formation, protection against oxidative stress | [49,146] |
Benzylideneacetone | Other | Antibacterial, immunosuppresive | Inhibition of phospholipase A2, inhibition of haemocyte nodule formation | [75,148] |
Bicornitun | NRPS | Antimicrobial cytotoxic | Unknown | [117] |
Cabanillasin | NRPS/PKS hybrid | Antifungal | Unknown | [99] |
Fabclavine | NRPS/PKS/ PUFA hybrid | Antibacterial, antiprotozoal, antifungal, nematocidal, insecticidal, cytotoxic | Disruption of midgut epithelial cells and pH balance | [68,81,82,149] |
Indole/oxindole | Indole | Antifungal, antibacterial, insecticidal, immunosuppressive, cytotoxic, nematocidal | Phospholipase A2 inhibitor | [75,86,116] |
Lipocitide | NRPS | Unknown | Inhibition of the nitric oxide pathway | [49] |
Nematophin | NRPS | Antibacterial | Unknown | [150] |
PAX peptide | NRPS | Antibacterial, antifungal, antiprotozoal | Unknown | [51,68,151,152] |
Szentiamide | NRPS | Antiparasitic, cytotoxic | Disruption of haemocytes | [153,154] |
Taxlllaid | NRPS | Antiprotozoal, cytotoxic | Unknown | [155] |
Tilivalline | NRPS | Cytotoxic | Disruption of gut epithelial cells | [121,156] |
Rhabdopeptides | NRPS | Cytotoxic, antiprotozoal, hemotoxic | Unknown | [60] |
Xefoampeptide | NPRS | Insecticidal | Unknown | [120] |
Xenobactin | NRPS | Antiparasitic, antibacterial | [157] | |
Xenoamicin | NRPS | Antiprotozoal, cytotoxic | Probable interaction with cytoplasmic membrane | [158] |
Xenocoumacin | NRPS/PKS hybrid | Antibacterial, antifungal, nematocidal, insecticidal, antiprotozoal, acaricidal, anti-ulcer | Inhibition of mRNA translation. Prodrug activation mechanism | [64,68,85,159,160] |
Xenocycloin | PKS | Insecticidal, cytotoxic | Disruption haemocytes | [161] |
Xenofuranone | PKS | Cytotoxic, antibacterial | Unknown | [162] |
Xenotetrapeptide | NRPS | Insecticidal, cytotoxic | Unknown | [163] |
Xentrivalpeptide | NRPS | Unknown | Unknown | [164] |
Xenortide/ tryptamide | NRPS | Antiprotozoal, cytotoxic | Unknown | [61,87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajnaga, E.; Kazimierczak, W.; Karaś, M.A.; Jach, M.E. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024, 29, 5151. https://doi.org/10.3390/molecules29215151
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules. 2024; 29(21):5151. https://doi.org/10.3390/molecules29215151
Chicago/Turabian StyleSajnaga, Ewa, Waldemar Kazimierczak, Magdalena Anna Karaś, and Monika Elżbieta Jach. 2024. "Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics" Molecules 29, no. 21: 5151. https://doi.org/10.3390/molecules29215151
APA StyleSajnaga, E., Kazimierczak, W., Karaś, M. A., & Jach, M. E. (2024). Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules, 29(21), 5151. https://doi.org/10.3390/molecules29215151