In Situ Synthesis of CoMoO4 Microsphere@rGO as a Matrix for High-Performance Li-S Batteries at Room and Low Temperatures
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Synthesis of S/CoMoO4@rGO Composites
3.2. Polysulfide Adsorption Sample Preparation
3.3. Electrochemical Measurements
4. Conclusions
- The CoMoO4@rGO composite material was synthesized using a solvothermal method followed by low-temperature annealing. The microspherical structure significantly alleviates volume expansion and damage to the electrode during the charge–discharge process. Compared to CoMoO4, the introduction of rGO reduces the size of CoMoO4 microspheres, indirectly increasing the specific surface area of CoMoO4. The increased number of adsorption sites compared to the control materials significantly suppresses the shuttling effect.
- At room temperature, the S/CoMoO4@rGO cathode exhibits the least battery polarization compared to the control materials. The electrochemical impedance tests also reveal the smallest charge transfer resistance and the best ionic diffusion rate. This outstanding performance accelerates the conversion of LiPS, resulting in a reversible specific capacity of 1562 mAh g−1 for the battery at 0.1 C. After cycling at a density of 2 C for 1000 cycles, it also exhibits a capacity decay rate of 0.0026%.
- At low temperatures, the lithium–sulfur battery based on the S/CoMoO4@rGO cathode exhibits good cycling stability. Furthermore, when the temperature drops to −30 °C, the battery can still perform the liquid–solid reaction at the third platform. Data obtained at room and low temperatures indicate that the CoMoO4@rGO composite material is an excellent cathode material for lithium–sulfur batteries. Relative to the studies on battery systems at room temperature, the research on the low-temperature performance of lithium–sulfur batteries is currently not extensive. This provides a new perspective for the selection of cathode materials for lithium–sulfur batteries.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Fan, X.; Li, Q.; Yang, H.; Khoshi, M.R.; Xu, Y.; Wang, C. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397. [Google Scholar] [CrossRef]
- Lin, X.; Gu, Y.; Shen, X.; Wang, W.; Hong, Y.; Wu, Q.; Dong, Q. An oxygen-blocking oriented multifunctional solid–electrolyte interphase as a protective layer for a lithium metal anode in lithium–oxygen batteries. Energy Environ. Sci. 2021, 14, 3632. [Google Scholar] [CrossRef]
- Song, J.; Yang, X.; Zeng, S.; Cai, M.; Zhang, L.; Dong, Q.; Wu, Q. Solid-state microscale lithium batteries prepared with microfabrication processes. J. Micromech. Microeng. 2009, 19, 045004. [Google Scholar] [CrossRef]
- Xiong, H.; Luo, Y.; Deng, D.; Zhu, C.; Song, J.; Weng, J.; Wu, Q.; Fan, X.; Li, G.; Zeng, Y.; et al. In-situ synthesis Fe3C@C/rGO as matrix for high performance lithium-sulfur batteries at room and low temperatures. J. Colloid Interface Sci. 2024, 668, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lin, L.; Zhang, C.; Liu, L.; Li, Y.; Qiao, Z.; Peng, D. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 2022, 9, 2106004. [Google Scholar] [CrossRef]
- Jiao, X.; Hu, J.; Zuo, Y.; Qi, J.; Yan, W.; Zhang, J. Self-recovery catalysts of ZnIn2S4@ In2O3 heterostructures with multiple catalytic centers for cascade catalysis in lithium−sulfur battery. Nano Energy 2024, 119, 109078. [Google Scholar] [CrossRef]
- Wang, R.; Cui, W.; Chu, F.; Wu, F. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145–159. [Google Scholar] [CrossRef]
- Seh, Z.W.; Sun, Y.; Zhang, Q.; Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634. [Google Scholar] [CrossRef]
- Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 2022, 34, 2200102. [Google Scholar] [CrossRef]
- Peng, L.; Wei, Z.; Wan, C.; Li, J.; Chen, Z.; Zhu, D.; Duan, X. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770. [Google Scholar] [CrossRef]
- Wang, N.; Li, H.; Ji, J.; Liu, J.; Zhang, Q.; Ma, S.; Bai, Z. Engineering Oxygen Vacancies in In2O3 with Enhanced Polysulfides Immobilization and Selective Catalytic Capability. Small 2024, 20, 2401567. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Luo, C.; Wang, T.; Zhou, G.; Deng, Y.; He, Y.; Yang, Q. Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 2020, 32, 2000315. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Li, K.; Xie, M.; Chen, J.; Zhou, H.; Wu, X.; Li, D. Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium–sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19446–19453. [Google Scholar] [CrossRef]
- Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S. Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893. [Google Scholar] [CrossRef]
- Zheng, S.; Khan, N.; Worku, B.E.; Wang, B. Review and prospect on low-temperature lithium-sulfur battery. Chem. Eng. J. 2024, 484, 149610. [Google Scholar] [CrossRef]
- Jayaprakash, N.; Shen, J.; Moganty, S.S. Porous Hollow Carbon Sulfur Composites for High Power Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2011, 123, 6026–6030. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, Q.; Pei, F.; Wang, Q.; Zhang, Y.; Du, L.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Fan, L.; et al. Interfaces Engineering Toward Stable Lithium-Sulfur Batteries. Energy Environ. Sci. 2024, 17, 1330–1367. [Google Scholar] [CrossRef]
- You, Y.; Zhang, F.; Yu, H.; Li, Q.; Liu, Q. Fe2O3-decorated hollow CNT as efficient cathode coatings for high-performance lithium-sulfur batteries. Mater. Today Commun. 2024, 38, 108479. [Google Scholar] [CrossRef]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Menz, F.; Bauer, M.; Böse, O.; Pausch, M.; Danzer, M.A. Investigating the Thermal Runaway Behaviour of Fresh and Aged Large Prismatic Lithium-Ion Cells in Overtemperature Experiments. Batteries 2023, 9, 159. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.; Zu, C.; Su, Y. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, X.; Li, S.; Wu, Y.; Yang, T.; Liu, J.; Qian, T.; Yan, C. Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode. J. Energy Chem. 2022, 64, 496–502. [Google Scholar] [CrossRef]
- Peng, H.; Huang, J.; Cheng, X.; Zhang, Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Song, N.; He, J.; Li, X. Graphene and its derivatives in lithium–sulfur batteries. Mater. Today Energy 2018, 9, 319–335. [Google Scholar] [CrossRef]
- Yao, W.; Xu, J.; Ma, L. Recent Progress for Concurrent Realization of Shuttle-Inhibition and Dendrite-Free Lithium–Sulfur Batteries. Adv. Mater. 2023, 35, 2212116. [Google Scholar] [CrossRef]
- Zhou, G.; Yin, L.; Wang, D.; Li, L.; Pei, S.; Gentle, I.R.; Cheng, H. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 2013, 7, 5367–5375. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, X.; Xia, H.; Hong, Y.; Liu, X.; Cai, S.; Dong, Q. A functionalized membrane for lithium–oxygen batteries to suppress the shuttle effect of redox mediators. J. Mater. Chem. A 2019, 7, 14260–14270. [Google Scholar] [CrossRef]
- Na, H.; Xu, L.; Xu, Y.; Zhou, J.; Liu, J.; Wang, Z.; Qian, T.; Yan, C. Functional-selected LiF-intercalated-graphene enabling ultra-stable lithium sulfur battery. J. Energy Chem. 2021, 58, 78–84. [Google Scholar]
- Gueon, D.; Hwang, J.T.; Yang, S.B.; Cho, E.; Sohn, K.; Yang, D.K.; Moon, J.H. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium–sulfur battery cathodes. ACS Nano 2018, 12, 226–233. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Wang, J.; Zhao, W.; Shi, Z. Application of ZIF-8 coated with titanium dioxide in cathode material of lithium-sulfur battery. J. Solid State Electrochem. 2021, 25, 2065–2074. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, Q.; Guo, W.; Li, X. Polypyrrole-modified carbon nanotubes@ manganese dioxide@ sulfur composite for lithium–sulfur batteries. Ionics 2019, 25, 3107–3119. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Shao, A.; Xiong, D.; Liu, J.; Lao, C.; Kumar, R.V. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery. Sci. China Mater. 2020, 63, 2443–2455. [Google Scholar] [CrossRef]
- Dong, G.; Zhao, H.; Xu, Y.; Zhang, X.; Cheng, X.; Gao, S.; Huo, L. Hollow hydrangea-like and hollow spherical CoMoO4 micro/nano-structures: pH-dependent synthesis, formation mechanism, and enhanced lithium storage performance. J. Alloys Compd. 2019, 785, 563–572. [Google Scholar] [CrossRef]
- Mahankali, K.; Nagarajan, S.; Thangavel, N.K.; Rajendran, S.; Yeddala, M.; Arava, L.M. Metal-based electrocatalysts for high-performance lithium-sulfur batteries: A review. Catalysts 2020, 10, 1137. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Zhang, C.; Ma, L.; Zhang, S.; Huang, Q.; Wei, W. Selective catalysis of single V atoms and VN1-x nanodots enables fast polysulfides conversion in lithium–sulfur batteries. Chem. Eng. J. 2023, 452, 139410. [Google Scholar] [CrossRef]
- Ding, N.; Li, X.; Chien, S.W.; Liu, Z.; Zong, Y. In situ monitoring the viscosity change of an electrolyte in a Li-S battery. Chem. Commun. 2017, 53, 10152–10155. [Google Scholar] [CrossRef]
- Gupta, A.; Bhargav, A.; Jones, J.P.; Bugga, R.V.; Manthiram, A. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium–sulfur batteries. Chem. Mater. 2020, 32, 2070–2077. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, T.; Wang, P.; Yuan, M.; Li, Q.; Feng, S. Challenges and Solutions for Low-Temperature Lithium–Sulfur Batteries: A Review. Materials 2023, 16, 4359. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Guo, Q.; Liu, J.; Wang, H. The Polarization and Heat Generation Characteristics of Lithium-Ion Battery with Electric–Thermal Coupled Modeling. Batteries 2023, 9, 529. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Ma, C.; Yang, Z.; Chen, G.; Wang, L.; Sun, Z. Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li-S batteries. J. Mater. Chem. A 2020, 8, 1212–1220. [Google Scholar] [CrossRef]
- Fan, C.; Zheng, Y.; Zhang, X.; Shi, Y.; Liu, S.; Wang, H.; Zhang, J. High-performance and low-temperature lithium-sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Ma, S.; Duan, R.; Zhao, Y.; Zhang, Y.; Li, C. Low temperature performance enhancement of high-safety lithium-sulfur battery enabled by synergetic adsorption and catalysis. Electrochim. Acta 2020, 353, 136470. [Google Scholar] [CrossRef]
- Zeng, P.; Yuan, C.; An, J.; Yang, X.; Cheng, C.; Yan, T.; Sun, X. Achieving reversible precipitation-decomposition of reactive Li2S towards high-areal-capacity lithium-sulfur batteries with a wide-temperature range. Energy Storage Mater. 2022, 44, 425–432. [Google Scholar] [CrossRef]
- Baumann, D.A.; Bennett, A.E.; Díaz, K.J.; Thoi, V.S. Chemical Sulfide Tethering Improves Low-Temperature Li-S Battery Cycling. ACS Appl. Mater. Interfaces 2021, 13, 50862–50868. [Google Scholar]
- Gao, N.; Zhang, Y.; Chen, C. Low-temperature Li-S battery enabled by CoFe bimetallic catalysts. J. Mater. Chem. A 2022, 10, 8378–8389. [Google Scholar] [CrossRef]
- Gao, N.; Li, B.; Li, X.; Zhao, J.; Wang, B. CoFe alloy-decorated interlayer with a synergistic catalytic effect improves the electrochemical kinetics of polysulfide conversion. ACS Appl. Mater. Interfaces 2021, 13, 57193–57203. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Liu, J.; Sun, D.; Ma, X.; Jin, Y.; Cui, Y. A multifunctional graphene oxide-Zn (II)-triazole complex for improved performance of lithium-sulfur battery at low temperature. Electrochim. Acta 2018, 271, 58–66. [Google Scholar] [CrossRef]
- Chen, J.; Lei, J.; Zhou, J.; Chen, X.; Deng, R.; Qian, M.; Wu, F. Polysulfides adsorption and catalysis dual-sites on metal-doped molybdenum oxide nanoclusters for Li-S batteries with wide operating temperature. Nano Res. 2024. [Google Scholar] [CrossRef]
- Wang, T.; Wang, F.; Shi, Z.; Cui, S.; Zhang, Z.; Liu, W.; Jin, Y. Synergistic Effect of In2O3/NC-Co3O4 Interface on Enhancing the Redox Conversion of Polysulfides for High-Performance Li-S Cathode Materials at Low Temperatures. ACS Appl. Mater. Interfaces 2024, 16, 31158–31170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Xiong, H.; Liang, J.; Yan, J.; Deng, D.; Li, Y.; Wu, Q. In Situ Synthesis of CoMoO4 Microsphere@rGO as a Matrix for High-Performance Li-S Batteries at Room and Low Temperatures. Molecules 2024, 29, 5146. https://doi.org/10.3390/molecules29215146
Zhang R, Xiong H, Liang J, Yan J, Deng D, Li Y, Wu Q. In Situ Synthesis of CoMoO4 Microsphere@rGO as a Matrix for High-Performance Li-S Batteries at Room and Low Temperatures. Molecules. 2024; 29(21):5146. https://doi.org/10.3390/molecules29215146
Chicago/Turabian StyleZhang, Ronggang, Haiji Xiong, Jia Liang, Jinwei Yan, Dingrong Deng, Yi Li, and Qihui Wu. 2024. "In Situ Synthesis of CoMoO4 Microsphere@rGO as a Matrix for High-Performance Li-S Batteries at Room and Low Temperatures" Molecules 29, no. 21: 5146. https://doi.org/10.3390/molecules29215146
APA StyleZhang, R., Xiong, H., Liang, J., Yan, J., Deng, D., Li, Y., & Wu, Q. (2024). In Situ Synthesis of CoMoO4 Microsphere@rGO as a Matrix for High-Performance Li-S Batteries at Room and Low Temperatures. Molecules, 29(21), 5146. https://doi.org/10.3390/molecules29215146