Synthesis and Characterization of 3,4-Bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF): A Novel Low-Melting Insensitive Energetic Material
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis
2.2. Single-Crystal X-ray Diffraction
2.3. Thermodynamic Performance Analysis
2.3.1. Thermal Stability
2.3.2. Thermal Decomposition Mechanism
2.4. Physicochemical and Detonation Properties
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Computational Methods
- Electrostatic potential (ESP) and Molecular Orbital Calculations
- Bond Energy Calculations
3.3. Synthetic Methods
- Synthesis of 2-Azidoethanol
- Synthesis of NAeTF and AeNTF
- Synthesis of DAeTF
3.4. Single-Crystal Preparation Method of DAeTF
3.5. Thermal Performance Experimental Methods
- Differential scanning calorimetry experiments
- In situ FTIR experiments
- TG-DSC-FTIR-MS experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravi, P.; Badgujar, D.M.; Gore, G.M.; Tewari, S.P.; Sikder, A.K. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36, 393–403. [Google Scholar] [CrossRef]
- Akhavan, J. The Chemistry of Explosives; The Royal Society of Chemistry: London, UK, 2004. [Google Scholar] [CrossRef]
- Viswanath, D.S.; Ghosh, T.K.; Boddu, V.M. Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties; Springer Nature: Dordrecht, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Pagoria, P.F.; Lee, G.S.; Mitchell, A.R.; Schmidt, R.D. A Review of Energetic Materials Synthesis. Thermochim. Acta 2002, 384, 187–204. [Google Scholar] [CrossRef]
- Klapötke, T.M. Casting TNT as an Explosive. Nat. Chem. 2023, 15, 1480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Wang, J.J.; Gao, G.; Parke, K.; Ma, J. Pigment Epithelium-Derived Factor Downregulates Vascular Endothelial Growth Factor (VEGF) Expression and Inhibits VEGF–VEGF Receptor 2 Binding in Diabetic Retinopathy. J. Mol. Endocrinol. 2006, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dodard, S.G.; Sarrazin, M.; Hawari, J.; Paquet, L.; Ampleman, G.; Thiboutot, S.; Sunahara, G.I. Ecotoxicological Assessment of a High Energetic and Insensitive Munitions Compound: 2,4-Dinitroanisole (DNAN). J. Hazard. Mater. 2013, 262, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Sikder, N.; Sikder, A.K.; Bulakh, N.R.; Gandhe, B.R. 1,3,3-Trinitroazetidine (TNAZ), a Melt-Cast Explosive: Synthesis, Characterization and Thermal Behaviour. J. Hazard. Mater. 2004, 113, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zeman, S.; Shu, Y.; Wu, Z.; Wang, B.; Yin, S. Comparative Study of Melting Points of 3,4-Bis(3-Nitrofurazan-4-Yl)Furoxan (DNTF)/1,3,3-Trinitroazetidine (TNAZ) Eutectic Compositions Using Molecular Dynamic Simulations. RSC Adv. 2016, 6, 59141–59149. [Google Scholar] [CrossRef]
- Pogorelov, Y. Long- and Short-Range Magnetic Order in Granular Arrays with Dipolar Coupling. MSF 2001, 373–376, 117–120. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Ivanova, E.A.; Spiridonova, N.P.; Melnikova, S.F.; Tselinsky, I.V.; Suponitsky, K.Y.; Antipin, M.Y. Desilylative Nitration of C,N-Disilylated 3-Amino-4-methylfurazan. ChemInform 2006, 37, chin.200604121. [Google Scholar] [CrossRef]
- Cho, J.R.; Kim, K.J.; Cho, S.G.; Kim, J.K. ChemInform Abstract: Synthesis and Characterization of 1-Methyl-2,4,5-trinitroimidazole (MTNI). ChemInform 2002, 33, chin.200231134. [Google Scholar] [CrossRef]
- Keßenich, E.; Klapötke, T.M.; Knizek, J.; Nöth, H.; Schulz, A. Characterization, Crystal Structure of 2,4-Bis(triphenylphosphanimino)tetrazolo[5,1-a]-[1,3,5]triazine and Improved Crystal Structure of 2,4,6-Triazido-1,3,5-triazine. Berichte Der Dtsch. Chem. Ges. 1998, 1998, 2013–2016. [Google Scholar] [CrossRef]
- Knaggs, I.E. Crystal Structure of Cyanuric Triazide. Nature 1935, 135, 268. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, X.J.; Wang, J.L. 1-Methyl-4,5-dinitro-1H-imidazole. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, o1349–o1350. [Google Scholar] [CrossRef] [PubMed]
- Childs, C.M.; Steele, B.A.; Grivickas, P. High-Pressure Investigation of 2,4,6-Trinitro-3-bromoanisole (TNBA): Structural Determination and Piezochromism. J. Phys. Chem. C Nanomater. Interfaces 2022, 126, 1176–1187. [Google Scholar] [CrossRef]
- Grimmett, M.R.; Lim, K. Dinitration of 1-Methylpyrazole: 1-Methyl-3,4-dinitropyrazole. Aust. J. Chem. 1978, 31, 689–691. [Google Scholar] [CrossRef]
- Sausa, R.C.; Wingard, L.A.; Guzmán, P.E.; Pesce-Rodriguez, R.A.; Sabatini, J.J.; Zavalij, P.Y. Crystal structures of 5,5’-bis(hydroxymethyl)-3,3’-biisoxazole and 4,4’,5,5’-tetrakis(hydroxymethyl)-3,3’-biisoxazole. Acta Crystallogr. 2018, 74, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Ravi, P.; Koti Reddy, C.; Saikia, A.; Mohan Gore, G.; Kanti Sikder, A.; Prakash Tewari, S. Nitrodeiodination of Polyiodopyrazoles. Propellants Explos. Pyrotech. 2012, 37, 167–171. [Google Scholar] [CrossRef]
- Provatas, A.; Wall, C. Ageing of Australian DNAN Based Melt-Cast Insensitive Explosives. Propellants Explos. Pyrotech. 2016, 41, 555–561. [Google Scholar] [CrossRef]
- Wang, D.; Yang, L.; Zhu, W. Effects of Cocrystallization on the Structure and Properties of Melt-Cast Explosive 2,4-Dinitroanisole: A Computational Study. Molecules 2022, 27, 9010. [Google Scholar] [CrossRef]
- Perreault, N.N.; Manno, D.; Halasz, A.; Thiboutot, S.; Ampleman, G.; Hawari, J. Aerobic Biotransformation of 2,4-Dinitroanisole in Soil and Soil Bacillus Sp. Biodegradation 2012, 23, 287–295. [Google Scholar] [CrossRef]
- Yang, N.; Wu, T.; Bao, X.; Ma, T.; Huang, Y.; Liu, D.; Gong, X.; Wang, Y.A.; Xu, S.; Zhou, B. Exploring the Thermal Decomposition and Detonation Mechanisms of 2,4-Dinitroanisole by TG-FTIR-MS and Molecular Simulations. RSC Adv. 2024, 14, 11429–11442. [Google Scholar] [CrossRef]
- Sućeska, M.; Stimac Tumara, B.; Künzel, M. Using thermochemical code EXPLO5 to predict the performance parameters of explosives. Mater. Wysokoenergetyczne/High Energy Mater. 2021, 13, 17–27. [Google Scholar] [CrossRef]
- Frankel, M.B.; Wilson, E.R. Tris(2-azidoethyl)amine and Method of Preparation Thereof. U.S. Patent No. US4499723, 19 February 1985. [Google Scholar]
- Meng, G.; Guo, T.; Ma, T.; Zhang, J.; Shen, Y.; Sharpless, K.B.; Dong, J. Modular Click Chemistry Libraries for Functional Screens Using a Diazotizing Reagent. Nature 2019, 574, 86–89. [Google Scholar] [CrossRef]
- March, N.H. Electron Density Theory of Atoms and Molecules. J. Phys. Chem. 1982, 86, 2262–2267. [Google Scholar] [CrossRef]
- Horn, A.; Lanig, H. Encyclopedia of Computational Chemistry. J. Mol. Model. 1999, 5, 141–142. [Google Scholar] [CrossRef]
- Gerber, R.B.; Chaban, G.M.; Brauer, B.; Miller, Y. First-Principles Calculations of Anharmonic Vibrational Spectroscopy of Large Molecules. In Theory and Applications of Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2005; pp. 165–194. [Google Scholar] [CrossRef]
- Gedeck, P. Reviews in Computational Chemistry, Volume 10. J. Mol. Model. 1997, 3, 466. [Google Scholar] [CrossRef]
- Bickelhaupt, F.M. Book Review: Essentials of Computational Chemistry Theories and Models. By Christopher J. Cramer. Angew. Chem. Int. Ed. 2003, 42, 381. [Google Scholar] [CrossRef]
- Hehre, W.J. Ab Initio Molecular Orbital Theory. Acc. Chem. Res. 1976, 9, 399–406. [Google Scholar] [CrossRef]
- Pople, J.A.; Gordon, M. Molecular Orbital Theory of the Electronic Structure of Organic Compounds. I. Substituent Effects and Dipole Moments. J. Am. Chem. Soc. 1967, 89, 4253–4261. [Google Scholar] [CrossRef]
- Mitchell, D.J.; Schlegel, H.B.; Shaik, S.S.; Wolfe, S. Relationships between Geometries and Energies of Identity S N 2 Transition States: The Dominant Role of the Distortion Energy and Its Origin. Can. J. Chem. 1985, 63, 1642–1648. [Google Scholar] [CrossRef]
- Luo, Y.; Ju, R.; Li, B.; Meng, J.; Wang, X. Thermal Decomposition and Solidification Characteristics of BFFO. Crystals 2023, 13, 802. [Google Scholar] [CrossRef]
- Murray, J.S.; Lane, P.; Politzer, P.; Bolduc, P.R. A Relationship between Impact Sensitivity and the Electrostatic Potentials at the Midpoints of CNO2 Bonds in Nitroaromatics. Chem. Phys. Lett. 1990, 168, 135–139. [Google Scholar] [CrossRef]
- Murray, J.S.; Concha, M.C.; Politzer, P. Links between Surface Electrostatic Potentials of Energetic Molecules, Impact Sensitivities and C–NO 2 /N–NO 2 Bond Dissociation Energies. Mol. Phys. 2009, 107, 89–97. [Google Scholar] [CrossRef]
- Murray, J.S.; Lane, P.; Politzer, P. Relationships between Impact Sensitivities and Molecular Surface Electrostatic Potentials of Nitroaromatic and Nitroheterocyclic Molecules. Mol. Phys. 1995, 85, 1–8. [Google Scholar] [CrossRef]
- CCDC Database. Available online: https://www.ccdc.cam.ac.uk/structures (accessed on 21 August 2024).
- Gole, B.; Song, W.; Lackinger, M.; Mukherjee, P.S. Explosives Sensing by Using Electron-Rich Supramolecular Polymers: Role of Intermolecular Hydrogen Bonding in Significant Enhancement of Sensitivity. Chem. A Eur. J. 2014, 20, 13662–13680. [Google Scholar] [CrossRef]
- Luan, X.; Wang, Y.; Li, D.; Liu, P.; Hu, H.; Shi, Q.; Peng, S. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions. Angew. Chem. Int. Ed. 2005, 44, 3864–3867. [Google Scholar] [CrossRef]
- Anniyappan, M.; Talawar, M.B.; Sinha, R.K.; Murthy, K.P.S. Review on Advanced Energetic Materials for Insensitive Munition Formulations. Combust. Explos. Shock. Waves 2020, 56, 495–519. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Hwang, C.; Lu, K.; Yeh, T. Study on Thermal Characteristics of TNT Based Melt-Cast Explosives. Propellants Explos. Pyrotech. 2019, 44, 1270–1281. [Google Scholar] [CrossRef]
- Boddu, V.M.; Abburi, K.; Maloney, S.W.; Damavarapu, R. Thermophysical Properties of an Insensitive Munitions Compound, 2,4-Dinitroanisole. J. Chem. Eng. Data 2008, 53, 1120–1125. [Google Scholar] [CrossRef]
- Kim, S.H.; Nyande, B.W.; Kim, H.S.; Park, J.S.; Lee, W.J.; Oh, M. Numerical Analysis of Thermal Decomposition for RDX, TNT, and Composition B. J. Hazard. Mater. 2016, 308, 120–130. [Google Scholar] [CrossRef]
- Devi, T.G.; Muraleedharan, K.; Kaiman, M.P. Thermal Decomposition Kinetics of Zirconyl Oxalate, Zirconyl Oxalic Acid and Ammonium Zirconyl Oxalate. Thermochim. Acta 1991, 191, 105–113. [Google Scholar] [CrossRef]
- Cho, Y.-S.; Shim, M.-J.; Kim, S.-W. Thermal Degradation Kinetics of PE by the Kissinger Equation. Mater. Chem. Phys. 1998, 52, 94–97. [Google Scholar] [CrossRef]
- Lee, B.; Lee, M. Decomposition of 2,4,6-Trinitrotoluene (TNT) by Gamma Irradiation. Environ. Sci. Technol. 2005, 39, 9278–9285. [Google Scholar] [CrossRef] [PubMed]
- Steele, B.A. Initial Decomposition Mechanisms of 2,4,6-Triamino-1,3,5-Trinitrobenzene (TATB) and Their Kinetic Isotope Effect. J. Appl. Phys. 2023, 133, 075902. [Google Scholar] [CrossRef]
- Smith, R. Profile of the GMC. Medical Education and the GMC: Controlled or Stifled? BMJ 1989, 298, 1372–1375. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, J.; Zhang, T.; Yang, L.; Zhang, J.; Hu, X. Synthesis, Structural Investigation, Thermal Decomposition Mechanism and Sensitivity Properties of an Energetic Compound [Cd(DAT)6](ClO4)2 (DAT=1,5-Diaminotetrazole). J. Hazard. Mater. 2008, 160, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Agrawal, J.P.; Hodgson, R.D. Organic Chemistry of Explosives, 1st ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. (Eds.) Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Howald, R.A. Chemical Bonds and Bond Energy (Sanderson, R.T.). J. Chem. Educ. 1971, 48, A561. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Pang, L.; Mattelaer, C.-A.; Nautiyal, M.; De Graef, S.; Rozenski, J.; Strelkov, S.V.; Lescrinier, E.; Weeks, S.D.; Van Aerschot, A. Phenyltriazole-Functionalized Sulfamate Inhibitors Targeting Tyrosyl- or Isoleucyl-tRNA Synthetase. Bioorganic Med. Chem. 2020, 28, 115580. [Google Scholar] [CrossRef]
- Stepanov, A.I.; Astrat’ev, A.A.; Dashko, D.V.; Spiridonova, N.P.; Mel’nikova, S.F.; Tselinskii, I.V. Synthesis of Linear and Cyclic Compounds Containing the 3,4-Bis(Furazan-3-Yl)Furoxan Fragment. Russ. Chem. Bull. 2012, 61, 1024–1040. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, Y.; Gao, F.; Chen, B.; Lu, T.; Wang, Y. Synthesis and Characterization of 3,4-Bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF): A Novel Low-Melting Insensitive Energetic Material. Molecules 2024, 29, 4607. https://doi.org/10.3390/molecules29194607
Wu Y, Liu Y, Gao F, Chen B, Lu T, Wang Y. Synthesis and Characterization of 3,4-Bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF): A Novel Low-Melting Insensitive Energetic Material. Molecules. 2024; 29(19):4607. https://doi.org/10.3390/molecules29194607
Chicago/Turabian StyleWu, Yang, Yuezhou Liu, Fulei Gao, Bin Chen, Tingting Lu, and Yinglei Wang. 2024. "Synthesis and Characterization of 3,4-Bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF): A Novel Low-Melting Insensitive Energetic Material" Molecules 29, no. 19: 4607. https://doi.org/10.3390/molecules29194607
APA StyleWu, Y., Liu, Y., Gao, F., Chen, B., Lu, T., & Wang, Y. (2024). Synthesis and Characterization of 3,4-Bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF): A Novel Low-Melting Insensitive Energetic Material. Molecules, 29(19), 4607. https://doi.org/10.3390/molecules29194607