Antimicrobial Activity of Anionic Bis(N-Heterocyclic Carbene) Silver Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis, Characterization, and Theoretical Analysis of Complexes 2a–g
2.2. Structural Characterization of 1f, 2c, and 2g in the Solid State
2.3. Antimicrobial Studies
2.4. NMR Solution Behavior of Complexes 2: Experimental and Computational Determination of 109Ag NMR Chemical Shifts
2.5. Electronic and Steric Properties of NHCR Ligands
3. Materials and Methods
3.1. General
3.2. Synthesis
- (2-(1-(2-((carboxymethyl)amino)-2-oxoethyl)-1H-imidazol-3-ium-3-yl) acetyl) glycinate, HLGlyGly (1f). Compounds glycylglycine (10 g, 0.076 mol), glyoxal (4.4 mL, 0.038 mol), and formaldehyde (2.9 mL, 0.038 mol) were mixed in a 100 mL flask, dissolved in Millipore H2O (30 mL) and heated at 60 °C overnight. The solution was then left to crystallize in air, yielding a pale brown solid of compound 1f, which was filtered, washed with cold water and dried under vacuum (4.85 g, 43% yield). IR (ATR, cm−1): 3245 (w), 3081 (w), 3037 (w), 2951 (w), 2983 (w), 1663 (vs), 1594 (m), 1564 (s), 1440 (m), 1414 (m), 1376 (m), 1353 (m), 1308 (m), 1264 (m), 1241 (s), 1219 (s), 1188 (vs), 1095 (s), 1034 (vs), 975 (m), 905 (m), 889 (s), 778 (vs), 717 (s), 689 (s), 662 (s), 630 (s), 597 (s), 572 (m), 553 (m), 531 (m), 503 (m), 420 (w). 1H NMR (D2O, 300 MHz): δ 3.93 (s, 4H, CH2COO), 5.15 (s, 4H, CH2Im), 7.56 (d, 2H, J = 2 Hz, CH, H4/H5), 8.94 (s, 1H, CH, H2). 13C{1H} NMR (D2O, 75 MHz): δ 42.4 (s, CH2COO), 50.9 (s, CH2Im), 123.6 (s, CH, C4/C5), 138.5 (s, CH, C2), 167.1 (s, CONH), 174.6 (s, COO). HR-MS (negative mode), found: m/z = 299.0987, calculated for C11H15N4O6 [HLGlyGly + H]−, 299.0986. Elemental Anal. Calc. for C11H14N4O6 (1f): C, 44.30; H, 4.73; N, 18.79. Found: C, 44.44; H, 4.76, N, 18.25%.
- 3-(1-(2-carboxyethyl)-1H-imidazol-3-ium-3-yl)propanoate), HLβ−Ala (1g). Compounds β-alanine, (10 g, 0.11 mol), glyoxal (6.5 mL, 0.056 mol) and formaldehyde (4.3 mL, 0.056 mol) were mixed in a 100 mL flask, dissolved in Millipore H2O (20 mL) and heated at 70 °C for 2.5 h. The solution was then left to crystallize in air, yielding a pale brown solid of compound 1g, which was filtered, washed with cold water and dried under vacuum (9.9 g, 83% yield). IR (ATR, cm−1): 3251 (w), 3168 (w), 3151 (m), 3108 (m), 3087 (m), 3038 (m), 2954 (m), 2885 (w), 1664 (s), 1635 (s), 1568 (m), 1553 (s), 1442 (m), 1413 (m), 1370 (m), 1318 (w), 1291 (w), 1242 (m), 1220 (w), 1188 (m), 1150 (vs), 1132 (m), 1064 (m), 1033 (m), 1007 (w), 978 (m), 944 (m), 906 (m), 893 (m), 871 (m), 836 (vs), 778 (s), 755 (vs), 702 (s), 666 (s), 641 (vs), 632 (vs), 599 (m), 569 (m), 551 (m), 525 (vs), 409 (m). 1H NMR (D2O, 300 MHz): δ 2.82 (t, 4H, J = 7Hz, CH2COO), 4.39 (t, 4H, J = 7 Hz), CH2Im), 7.46 (d, 2H, J = 2 Hz), CH, H4/H5), 8.77 (s, 1H, CH, H2). 13C{1H} NMR (D2O, 75 MHz): δ 35.7 (s, CH2COO), 45.9 (s, CH2Im), 122.4 (s, CH, C4/C5), 136.1 (s, CH, C2), 176.0 (s, COO). HR-MS (negative mode), found: m/z = 211.0723, calculated for C9H11N2O4 [HLβ−Ala]−, 211.0724. Elemental Anal. Calc. for C9H12N2O4 (1g): C, 50.94; H, 5.70; N, 13.20. Found: C, 50.88; H, 5.74, N, 12.87%.
- Sodium bis(1,3-bis(2-((carboxylatomethyl)amino)-2-oxoethyl)-imidazol-2-ylidene)argentate(3-), Na3[Ag(NHCGlyGly)2] (2f). Compounds HLGlyGly, 1f, (0.298 g, 1.00 mmol) and Ag2O (0.058 g, 0.25 mmol) were mixed in a Schlenk flask and dissolved in deoxygenated H2O (5 mL) under a nitrogen atmosphere. NaOH (0.060 g, 1.5 mmol) was then added, and the mixture was stirred for 16 h at room temperature in the dark. Afterward, the mixture was centrifuged and filtered, and the filtrate was concentrated to one-quarter of the volume using an intermediate trap. EtOH was added as a cosolvent until precipitation of a white solid was observed. The solution was then cooled to 0 °C. Uncolored crystals of compound 2f were obtained (0.180 g, 47% yield). IR (ATR, cm−1): 3294 (m), 3096 (w), 1662 (s), 1601 (vs), 1558 (s), 1454 (m), 1387 (vs), 1328 (m), 1270 (m), 1251 (m), 1183 (m), 1031 (m), 957 (w), 914 (m), 818 (w), 769 (m), 757 (m), 675 (s), 633 (m), 559 (s), 536 (s), 515 (s), 413 (w). 1H NMR (D2O, 300 MHz): δ 3.78 (s, 4H, CH2COO), 5.11 (s, 4H, CH2CONH), 7.54 (d, 2H, J = 2 Hz, CH, H4/H5). 13C{1H} NMR (D2O, 75 MHz): δ 43.4 (s, CH2COO), 51.0 (s, CH2CONH), 123.5 (s, CH, C4/C5), 166.8 (s, CONH), 176.3 (s, COO). Elemental Anal. Calc. for C22H26N8O13AgNa3 (2f·H2O): C, 33.56; H, 3.33; N, 14.23. Found: C, 33.65; H, 3.38, N, 13.83%.
- Sodium bis(1,3-bis(2-carboxylatoethyl)-imidazol-2-ylidene)argentate(3-), Na3[Ag(NHCβ−Ala)2] (2g). Compounds HLβ−Ala, 1g, (0.212 g, 1.00 mmol) and Ag2O (0.058 g, 0.25 mmol) were mixed in a Schlenk flask and dissolved in deoxygenated H2O (5 mL) under a nitrogen atmosphere. NaOH (0.060 g, 1.5 mmol) was then added and a dark brown solid was observed. The mixture was stirred for 16 h at room temperature in the dark. Afterward, the mixture was centrifuged and filtered, and the filtrate was concentrated to one-quarter of the volume using an intermediate trap. EtOH was then added as a cosolvent until precipitation of a white solid was observed. The solution was then cooled to 0 °C and uncolored crystals of compound 2g were obtained (0.200 g, 67% yield). IR (ATR, cm−1): 3137 (m), 3088 (m), 2937 (m), 1567(vs), 1448 (m), 1400 (vs), 1338 (m), 1307 (m), 1284 (m), 1252 (m), 1231 (m), 1182 (w), 1158 (m), 1110 (w), 1052 (m), 1024 (w), 980 (w), 936 (m), 865 (m), 838 (w), 789 (m), 747 (s), 686 (s), 665 (s), 643 (m), 618 (m), 542 (m), 475 (m), 441 (s), 414 (m). 1H NMR (D2O, 300 MHz): δ 2.70 (m, 8H, CH2COO), 4.37 (t, 8H, CH2NHC), 7.17 (s, 4H, CH, H4/H5). 13C{1H} NMR (D2O, 75 MHz): δ 39.8 (s, CH2COO), 48.8 (s, CH2NHC), 121.2 (s, CH, C4/C5), 179.2 (s, COO). Elemental Anal. Calc. for C18H26N4O11AgNa3 (2g·3H2O): C, 33.20; H, 4.02; N, 8.60. Found: C, 33.26; H, 4.34, N, 8.33%.
3.3. Antimicrobial Studies
3.4. Hemolysis Assays
3.5. NMR Details
3.6. Computational Details
3.7. Single-Crystal X-ray Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellotti, P.; Koy, M.; Hopkinson, M.N.; Glorius, F. Recent Advances in the Chemistry and Applications of N-Heterocyclic Carbenes. Nat. Rev. Chem. 2021, 5, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, J.P.; Xu, R.; Bai, S.; Wang, D.; Yang, G.P.; Sun, L.Y.; Li, P.; Han, Y.F. N-Heterocyclic Carbenes and Their Precursors in Functionalised Porous Materials. Chem. Soc. Rev. 2021, 50, 13559–13586. [Google Scholar] [CrossRef] [PubMed]
- Voloshkin, V.A.; Tzouras, N.V.; Nolan, S.P. Recent Advances in the Synthesis and Derivatization of N-Heterocyclic Carbene Metal Complexes. Dalton Trans. 2021, 50, 12058–12068. [Google Scholar] [CrossRef] [PubMed]
- Poyatos, M.; César, V. NHC Ligands in Organometallic Chemistry and Catalysis. Eur. J. Inorg. Chem. 2024, 27, e202300729. [Google Scholar] [CrossRef]
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef] [PubMed]
- Loh, Y.K.; Melaimi, M.; Gembicky, M.; Munz, D.; Bertrand, G. A Crystalline Doubly Oxidized Carbene. Nature 2023, 623, 66–70. [Google Scholar] [CrossRef]
- Gil-Moles, M.; O’Beirne, C.; Esarev, I.V.; Lippmann, P.; Tacke, M.; Cinatl, J.; Bojkova, D.; Ott, I. Silver N-Heterocyclic Carbene Complexes Are Potent Uncompetitive Inhibitors of the Papain-like Protease with Antiviral Activity against SARS-CoV-2. RSC Med. Chem. 2023, 14, 1260–1271. [Google Scholar] [CrossRef]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent Advances in Gold-NHC Complexes with Biological Properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef]
- Garrison, J.C.; Youngs, W.J. Ag(I) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Application. Chem. Rev. 2005, 105, 3978–4008. [Google Scholar] [CrossRef]
- Gautier, A.; Cisnetti, F. Advances in Metal-Carbene Complexes as Potent Anti-Cancer Agents. Metallomics 2012, 4, 23–32. [Google Scholar] [CrossRef]
- Teyssot, M.L.; Jarrousse, A.S.; Manin, M.; Chevry, A.; Roche, S.; Norre, F.; Beaudoin, C.; Morel, L.; Boyer, D.; Mahiou, R.; et al. Metal-NHC Complexes: A Survey of Anti-Cancer Properties. Dalton Trans. 2009, 35, 6894–6902. [Google Scholar] [CrossRef] [PubMed]
- Mercs, L.; Albrecht, M. Beyond Catalysis: N-Heterocyclic Carbene Complexes as Components for Medicinal, Luminescent, and Functional Materials Applications. Chem. Soc. Rev. 2010, 39, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gust, R. Update on Metal N-Heterocyclic Carbene Complexes as Potential Anti-Tumor Metallodrugs. Coord. Chem. Rev. 2016, 329, 191–213. [Google Scholar] [CrossRef]
- Kankala, S.; Thota, N.; Björkling, F.; Taylor, M.K.; Vadde, R.; Balusu, R. Silver Carbene Complexes: An Emerging Class of Anticancer Agents. Drug Dev. Res. 2019, 80, 188–199. [Google Scholar] [CrossRef]
- Johnson, N.A.; Southerland, M.R.; Youngs, W.J. Recent Developments in the Medicinal Applications of Silver-Nhc Complexes and Imidazolium Salts. Molecules 2017, 22, 1263. [Google Scholar] [CrossRef]
- Janssen-Müller, D.; Schlepphorst, C.; Glorius, F. Privileged Chiral N-Heterocyclic Carbene Ligands for Asymmetric Transition-Metal Catalysis. Chem. Soc. Rev. 2017, 46, 4845–4854. [Google Scholar] [CrossRef]
- Diaz Velazquez, H.; Verpoort, F. N-Heterocyclic Carbene Transition Metal Complexes for Catalysis in Aqueous Media. Chem. Soc. Rev. 2012, 41, 7032–7060. [Google Scholar] [CrossRef] [PubMed]
- Schaper, L.A.; Hock, S.J.; Herrmann, W.A.; Kühn, F.E. Synthesis and Application of Water-Soluble NHC Transition-Metal Complexes. Angew. Chem.-Int. Ed. 2013, 52, 270–289. [Google Scholar] [CrossRef]
- Guo, J.; Qian, Y.; Sun, B.; Sun, Z.; Chen, Z.; Mao, H.; Wang, B.; Yan, F. Antibacterial Amino Acid-Based Poly(Ionic Liquid) Membranes: Effects of Chirality, Chemical Bonding Type, and Application for MRSA Skin Infections. ACS Appl. Bio. Mater. 2019, 2, 4418–4426. [Google Scholar] [CrossRef]
- Carrasco, C.J.; Montilla, F.; Álvarez, E.; Galindo, A.; Pérez-Aranda, M.; Pajuelo, E.; Alcudia, A. Homochiral Imidazolium-Based Dicarboxylate Silver(I) Compounds: Synthesis, Characterisation and Antimicrobial Properties. Dalton Trans. 2022, 51, 5061–5071. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Carrasco, C.J.; Montilla, F.; Álvarez, E.; Galindo, A.; Pérez-Aranda, M.; Pajuelo, E.; Alcudia, A. Antimicrobial Properties of Amino-Acid-Derived N-Heterocyclic Carbene Silver Complexes. Pharmaceutics 2022, 14, 748. [Google Scholar] [CrossRef]
- Ronga, L.; Varcamonti, M.; Tesauro, D. Structure–Activity Relationships in NHC–Silver Complexes as Antimicrobial Agents. Molecules 2023, 28, 4435. [Google Scholar] [CrossRef]
- Isbel, S.R.; Patil, S.A.; Bugarin, A. NHCs Silver Complexes as Potential Antimicrobial Agents. Inorg. Chim. Acta 2024, 563, 121899. [Google Scholar] [CrossRef]
- Caballero, P.; Colodrero, R.M.P.; Conejo, M.d.M.; Pastor, A.; Álvarez, E.; Montilla, F.; Carrasco, C.J.; Nicasio, A.I.; Galindo, A. Homochiral Imidazolium-Based Dicarboxylate Compounds: Structure and Solution Behaviour. Inorg. Chim. Acta 2020, 513, 119923. [Google Scholar] [CrossRef]
- Carrasco, C.; Montilla, F.; Galindo, A. Molybdenum-Catalyzed Enantioselective Sulfoxidation Controlled by a Nonclassical Hydrogen Bond between Coordinated Chiral Imidazolium-Based Dicarboxylate and Peroxido Ligands. Molecules 2018, 23, 1595. [Google Scholar] [CrossRef] [PubMed]
- Nicasio, A.I.; Montilla, F.; Álvarez, E.; Colodrero, R.P.; Galindo, A. Synthesis and Structural Characterization of Homochiral 2D Coordination Polymers of Zinc and Copper with Conformationally Flexible Ditopic Imidazolium-Based Dicarboxylate Ligands. Dalton Trans. 2017, 46, 471–482. [Google Scholar] [CrossRef]
- Borrego, E.; Nicasio, A.I.; Álvarez, E.; Montilla, F.; Córdoba, J.M.; Galindo, A. Synthesis and Structural Characterization of Homochiral Coordination Polymers with Imidazole-Based Monocarboxylate Ligands. Dalton Trans. 2019, 48, 8731–8739. [Google Scholar] [CrossRef]
- Sánchez, A.; Sanz-Garrido, J.; Carrasco, C.J.; Montilla, F.; Álvarez, E.; González-Arellano, C.; Carlos Flores, J.; Galindo, A. Synthesis and Characterization of Chiral Bidentate Bis(N-Heterocyclic Carbene)-Carboxylate Palladium and Nickel Complexes. Inorg. Chim. Acta 2022, 537, 120946. [Google Scholar] [CrossRef]
- Carrasco, C.J.; Montilla, F.; Álvarez, E.; Conejo, M.d.M.; Pastor, A.; Galindo, A. Recent Developments in Amino Acid-Derived Imidazole-, Imidazolium- and N-Heterocyclic Carbene-Carboxylate Complexes. Inorg. Chim. Acta 2023, 557, 121717. [Google Scholar] [CrossRef]
- Carrasco, C.J.; Montilla, F.; Álvarez, E.; Calderón-Montaño, J.M.; López-Lázaro, M.; Galindo, A. Chirality Influence on the Cytotoxic Properties of Anionic Chiral Bis(N-Heterocyclic Carbene)Silver Complexes. J. Inorg. Biochem. 2022, 235, 111924. [Google Scholar] [CrossRef]
- Debus, H. Ueber Die Einwirkung Des Ammoniaks Auf Glyoxal. Justus Liebigs Ann. Chem. 1858, 107, 199–208. [Google Scholar] [CrossRef]
- Radziszewski, B. Ueber Glyoxalin Und Seine Homologe. Berichte Der Dtsch. Chem. Ges. 1882, 15, 2706–2708. [Google Scholar] [CrossRef]
- Saxer, S.; Marestin, C.; Mercier, R.; Dupuy, J. The Multicomponent Debus-Radziszewski Reaction in Macromolecular Chemistry. Polym. Chem. 2018, 9, 1927–1933. [Google Scholar] [CrossRef]
- Steeples, E.; Kelling, A.; Schilde, U.; Esposito, D. Amino Acid-Derived N-Heterocyclic Carbene Palladium Complexes for Aqueous Phase Suzuki-Miyaura Couplings. New J. Chem. 2016, 40, 4922–4930. [Google Scholar] [CrossRef]
- Davídek, T.; Velísek, J.; Davídek, J.; Pech, P. Glycylglycine-Derived 1,3-Disubstituted Imidazole in Nonenzymatic Browning Reactions. J. Agric. Food Chem. 1991, 39, 1374–1377. [Google Scholar] [CrossRef]
- Tapu, D.; Dixon, D.A.; Roe, C. 13C NMR Spectroscopy of “Arduengo-Type” Carbenes and Their Derivatives. Chem. Rev. 2009, 109, 3385–3407. [Google Scholar] [CrossRef] [PubMed]
- Baquero, E.A.; Silbestri, G.F.; Gómez-Sal, P.; Flores, J.C.; De Jesús, E. Sulfonated Water-Soluble N-Heterocyclic Carbene Silver(I) Complexes: Behavior in Aqueous Medium and as NHC-Transfer Agents to Platinum(II). Organometallics 2013, 32, 2814–2826. [Google Scholar] [CrossRef]
- Papini, G.; Pellei, M.; Gioia Lobbia, G.; Burini, A.; Santini, C. Sulfonate- or Carboxylate-Functionalized N-Heterocyclic Bis-Carbene Ligands and Related Water Soluble Silver Complexes. Dalton Trans. 2009, 35, 6985–6990. [Google Scholar] [CrossRef]
- Marinelli, M.; Pellei, M.; Cimarelli, C.; Dias, H.V.R.; Marzano, C.; Tisato, F.; Porchia, M.; Gandin, V.; Santini, C. Novel Multicharged Silver(I)–NHC Complexes Derived from Zwitterionic 1,3-Symmetrically and 1,3-Unsymmetrically Substituted Imidazoles and Benzimidazoles: Synthesis and Cytotoxic Properties. J. Organomet. Chem. 2016, 806, 45–53. [Google Scholar] [CrossRef]
- Moore, L.R.; Cooks, S.M.; Anderson, M.S.; Schanz, H.J.; Griffin, S.T.; Rogers, R.D.; Kirk, M.C.; Shaughnessy, K.H. Synthesis and Characterization of Water-Soluble Silver and Palladium Imidazol-2-Ylidene Complexes with Noncoordinating Anionic Substituents. Organometallics 2006, 25, 5151–5158. [Google Scholar] [CrossRef]
- Roland, S.; Jolivalt, C.; Cresteil, T.; Eloy, L.; Bouhours, P.; Hequet, A.; Mansuy, V.; Vanucci, C.; Paris, J.M. Investigation of a Series of Silver-N-Heterocyclic Carbenes as Antibacterial Agents: Activity, Synergistic Effects, and Cytotoxicity. Chem.-A Eur. J. 2011, 17, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Aher, S.; Das, A.; Muskawar, P.; Osborne, J.; Bhagat, P. Synthesis, Characterization and Antimicrobial Properties of Methylbenzyl and Nitrobenzyl Containing Imidazolium-Based Silver N-Heterocyclic Carbenes. J. Mol. Liq. 2017, 233, 270–277. [Google Scholar] [CrossRef]
- Muniyappan, N.; Advaya, G.R.; Sujitha, E.; Sabiah, S. Picolyl and Benzyl Functionalized Biphenyl NHC Carbenes and Their Silver Complexes: Sigma Donating and Antimicrobial Properties. J. Organomet. Chem. 2021, 954–955, 122075. [Google Scholar] [CrossRef]
- Shahini, C.R.; Achar, G.; Budagumpi, S.; Tacke, M.; Patil, S.A. Non–Symmetrically p–Nitrobenzyl–Substituted N–Heterocyclic Carbene–Silver(I) Complexes as Metallopharmaceutical Agents. Appl. Organomet. Chem. 2017, 31, e3819. [Google Scholar] [CrossRef]
- Wright, B.D.; Shah, P.N.; McDonald, L.J.; Shaeffer, M.L.; Wagers, P.O.; Panzner, M.J.; Smolen, J.; Tagaev, J.; Tessier, C.A.; Cannon, C.L.; et al. Synthesis, Characterization, and Antimicrobial Activity of Silver Carbene Complexes Derived from 4,5,6,7-Tetrachlorobenzimidazole against Antibiotic Resistant Bacteria. Dalton Trans. 2012, 41, 6500–6506. [Google Scholar] [CrossRef]
- Napoli, M.; Saturnino, C.; Cianciulli, E.I.; Varcamonti, M.; Zanfardino, A.; Tommonaro, G.; Longo, P. Silver(I) N-Heterocyclic Carbene Complexes: Synthesis, Characterization and Antibacterial Activity. J. Organomet. Chem. 2013, 725, 46–53. [Google Scholar] [CrossRef]
- Tutar, U.; Çelik, C.; Şahin, N. Allyl Functionalized Benzimidazolium-Derived Ag(I)-N-Heterocyclic Carbene Complexes: Anti-Biofilm and Antimicrobial Properties. Pharm. Chem. J. 2022, 56, 54–60. [Google Scholar] [CrossRef]
- Krivdin, L.B. Computational NMR of Heavy Nuclei Involving 109 Ag, 113 Cd, 119 Sn, 125 Te, 195 Pt, 199 Hg, 205 Tl, and 207 Pb. Russ. Chem. Rev. 2021, 90, 1166–1212. [Google Scholar] [CrossRef]
- Fujisawa, K.; Okano, M.; Martín-Pastor, M.; López-Sánchez, R.; Elguero, J.; Alkorta, I. Multinuclear Magnetic Resonance Studies of Five Silver(I) Trinuclear Pyrazolate Complexes. Struct. Chem. 2021, 32, 215–224. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Dias, H.V.R.; Parasar, D.; Martín-Pastor, M. An Experimental and Computational NMR Study of Organometallic Nine-Membered Rings: Trinuclear Silver(I) Complexes of Pyrazolate Ligands. Magn. Reson. Chem. 2020, 58, 319–328. [Google Scholar] [CrossRef]
- Hansen, C.; Docherty, S.R.; Cao, W.; Yakimov, A.V.; Copéret, C.; Zurich, E. 109Ag NMR Chemical Shift as a Descriptor for Brønsted Acidity from Molecules to Materials. Chem. Sci. 2023, 15, 3028–3032. [Google Scholar] [CrossRef]
- Patil, S.; Deally, A.; Gleeson, B.; Müller-Bunz, H.; Paradisi, F.; Tacke, M. Novel Benzyl-Substituted N-Heterocyclic Carbene–Silver Acetate Complexes: Synthesis, Cytotoxicity and Antibacterial Studies. Metallomics 2011, 3, 74–88. [Google Scholar] [CrossRef]
- Sosa, C.; Andzelm, J.; Elkin, B.C.; Wimmer, E.; Dobbs, K.D.; Dixon, D.A. A Local Density Functional Study of the Structure and Vibrational Frequencies of Molecular Transition-Metal Compounds. J. Phys. Chem. 1992, 96, 6630–6636. [Google Scholar] [CrossRef]
- Siiskonen, A.; Priimagi, A. Benchmarking DFT Methods with Small Basis Sets for the Calculation of Halogen-Bond Strengths. J. Mol. Model. 2017, 23, 50. [Google Scholar] [CrossRef]
- Byun, H.G.; Kim, I.; Kwon, H.S.; Bae, G.T. Comparisons of the Functional and Basis Set Combinations for Silicon Oxide Clusters: A Density Functional Theory Study. Bull. Korean Chem. Soc. 2017, 38, 1310–1315. [Google Scholar] [CrossRef]
- Tolman, C.A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977, 77, 313–348. [Google Scholar] [CrossRef]
- Huynh, H.V. Electronic Properties of N-Heterocyclic Carbenes and Their Experimental Determination. Chem. Rev. 2018, 118, 9457–9492. [Google Scholar] [CrossRef]
- Gusev, D.G. Electronic and Steric Parameters of 76 N-Heterocyclic Carbenes in Ni(CO)3(NHC). Organometallics 2009, 28, 6458–6461. [Google Scholar] [CrossRef]
- Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.; Oliva, R.; Scarano, V.; Cavallo, L. SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps. Organometallics 2016, 35, 2286–2293. [Google Scholar] [CrossRef]
- Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the Online Computer-Aided Design of Catalytic Pockets. Nat. Chem. 2019, 11, 872–879. [Google Scholar] [CrossRef]
- Clavier, H.; Nolan, S.P. Percent Buried Volume for Phosphine and N-Heterocyclic Carbene Ligands: Steric Properties in Organometallic Chemistry. Chem. Commun. 2010, 46, 841–861. [Google Scholar] [CrossRef]
- Weske, S.; Li, Y.; Wiegmann, S.; John, M. H(C)Ag: A Triple Resonance NMR Experiment for 109Ag Detection in Labile Silver-Carbene Complexes. Magn. Reson. Chem. 2015, 53, 291–294. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitale. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Godbout, N.; Salahub, D.R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation. Can. J. Chem. 1992, 70, 560–571. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. 01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Bruker SAINT+. SAINT+; Bruker AXS Inc.: Madison, WI, USA, 2007. [Google Scholar]
- Sheldrick, G.M. SADABS, Programs for Scaling and Absorption Correction of Area Detector Data. In SADABS, Programs for Scaling and Absorption Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Van Der Sluis, P.; Spek, A.L. BYPASS: An Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. Acta Crystallogr. Sect. A 1990, 46, 194–201. [Google Scholar] [CrossRef]
Complex | E. coli | P. aeruginosa | S. aureus | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
2a | 0.167 | 0.200 | 0.167 | >0.400 | 0.167 | 0.267 |
2b | 0.200 | 0.200 | 0.167 | 0.200 | 0.134 | 0.134 |
2c | 0.267 | 0.300 | 0.267 | 0.300 | 0.233 | 0.300 |
2c′ | 0.200 | 0.200 | 0.200 | 0.200 | 0.200 | 0.233 |
2d | 0.267 | 0.300 | 0.300 | 0.300 | 0.267 | 0.300 |
2e | 0.233 | 0.267 | 0.233 | 0.300 | 0.233 | 0.433 |
2f | 0.233 | 0.267 | 0.233 | 0.300 | 0.233 | 0.300 |
2g | 0.233 | 0.267 | 0.200 | 0.300 | 0.200 | 0.465 |
AgNO3 | 0.167 | 0.200 | 0.200 | 0.400 | 0.167 | 0.333 |
Complex | 109Ag Resonances (ppm) | ||
---|---|---|---|
Experimental | Calculated | ||
δ(109Ag) | σ(109Ag) | δ(109Ag) | |
2a | not observed | 3550 | 598 |
2b | 651 | 3539 | 609 |
2c | 660 | 3501 | 646 |
2d | 660 | 3563 | 585 |
2e | 666 | 3486 | 661 |
2f | not observed | 3508 | 639 |
2g | 640 | 3476 | 671 |
NHCR Ligand | TEP (cm−1) a | %Vbur b |
---|---|---|
NHCGly | 2018.4 | 26.3 |
NHCAla | 2019.4 | 29.0 |
NHCVal | 2019.6 | 30.2 |
NHCIle | 2020.3 | 30.4 |
NHCLeu | 2021.5 | 28.6 |
NHCβ−Ala | 2021.6 | 26.2 |
NHCGlyGly | 2039.6 | 26.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco, C.J.; Montilla, F.; Villalobo, E.; Angulo, M.; Álvarez, E.; Galindo, A. Antimicrobial Activity of Anionic Bis(N-Heterocyclic Carbene) Silver Complexes. Molecules 2024, 29, 4608. https://doi.org/10.3390/molecules29194608
Carrasco CJ, Montilla F, Villalobo E, Angulo M, Álvarez E, Galindo A. Antimicrobial Activity of Anionic Bis(N-Heterocyclic Carbene) Silver Complexes. Molecules. 2024; 29(19):4608. https://doi.org/10.3390/molecules29194608
Chicago/Turabian StyleCarrasco, Carlos J., Francisco Montilla, Eduardo Villalobo, Manuel Angulo, Eleuterio Álvarez, and Agustín Galindo. 2024. "Antimicrobial Activity of Anionic Bis(N-Heterocyclic Carbene) Silver Complexes" Molecules 29, no. 19: 4608. https://doi.org/10.3390/molecules29194608
APA StyleCarrasco, C. J., Montilla, F., Villalobo, E., Angulo, M., Álvarez, E., & Galindo, A. (2024). Antimicrobial Activity of Anionic Bis(N-Heterocyclic Carbene) Silver Complexes. Molecules, 29(19), 4608. https://doi.org/10.3390/molecules29194608