Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides
Abstract
:1. Introduction
2. Results and Discussions
2.1. Synthesis and Characterization of the Alanine-Decorated PBI
2.2. Self-Assembly of the PBI-L in i-PrOH
2.3. Effect of the Solvent on the Self-Assembly of the PBI-L
2.4. Effect of the Chirality on the Self-Assembly of the PBI
2.5. Self-Assembly of the Chiral PBI in Aqueous Solutions
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grant, M.J.; Wolfe, K.M.; Harding, C.R.; Welch, G.C. Biogenic amine sensors using organic π-conjugated materials as active sensing components and their commercialization potential. J. Mater. Chem. C 2023, 11, 9749–9767. [Google Scholar] [CrossRef]
- Shao, S.F.; Xie, C.Y.; Xia, Y.X.; Zhang, L.; Zhang, J.; Wei, S.; Kim, H.W.; Kim, S.S. Highly conjugated three-dimensional van der Waals heterostructure-based nanocomposite films for ultrahigh-responsive TEA gas sensors at room temperature. J. Mater. Chem. A 2022, 10, 2995–3008. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, F.S.; Sun, J.B.; Liu, M.Y.; Sun, M.; Lu, R. New non-traditional organogelator of β-diketone-boron difluoride complexes with terminal tetraphenylethene: Self-assembling and fluorescent sensory properties towards amines. Dyes Pigment. 2017, 145, 54–62. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Y.; Zhang, Q.; Dai, X.M.; Ling, P.H.; Gao, F. Engineering fluorescent semiconducting polymer nanoparticles for biological applications and beyond. Chem. Commun. 2021, 57, 1989–2004. [Google Scholar] [CrossRef]
- Wang, Y.X.; Feng, L.H.; Wang, S. Conjugated Polymer Nanoparticles for Imaging, Cell Activity Regulation, and Therapy. Adv. Funct. Mater. 2019, 29, 1806818. [Google Scholar] [CrossRef]
- Chen, S.; Huang, D.L.; Zeng, G.M.; Gong, X.M.; Xue, W.J.; Li, J.; Yang, Y.Y.; Zhou, C.Y.; Li, Z.H.; Yan, X.L.; et al. Modifying delafossite silver ferrite with polyaniline: Visible-light-response Z-scheme heterojunction with charge transfer driven by internal electric field. Chem. Eng. J. 2019, 370, 1087–1100. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, X.C.; Lin, Y.Y.; He, L.Y.; Jiang, J.X.; Xu, Y.F.; Wang, F. The effect of molecular structure and fluorination on the properties of pyrene-benzothiadiazole-based conjugated polymers for visible-light-driven hydrogen evolution. Polym. Chem. 2018, 9, 4468–4475. [Google Scholar] [CrossRef]
- Yang, H.F.; Li, C.; Liu, T.; Fellowes, T.; Chong, S.Y.; Catalano, L.; Bahri, M.; Zhang, W.W.; Xu, Y.J.; Liu, L.J.; et al. Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide production. Nat. Nanotechnol. 2023, 18, 2507. [Google Scholar] [CrossRef]
- Kim, B.G.; Kim, M.S.; Kim, J. Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-hexylthiophene for Organic Photovoltaic Cells. ACS Nano 2010, 4, 2160–2166. [Google Scholar] [CrossRef]
- Lin, C.Q.; Peng, R.X.; Song, W.; Chen, Z.Y.; Feng, T.T.; Sun, D.H.; Bai, Y.Q.; Ge, Z.Y. Multi-component Copolymerized Donors enable Frozen Nano-morphology and Superior Ductility for Efficient Binary Organic Solar Cells. Angew. Chem.-Int. Edit. 2024, 15, 2407040. [Google Scholar]
- Tokmoldin, N.; Deibel, C.; Neher, D.; Shoaee, S. Contemporary Impedance Analyses of Archetypical PM6:Y6 Bulk-Heterojunction Blend. Adv. Energy Mater. 2024, 17, 2401130. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, M.; Wang, H.; Sun, Y.; Li, Z.; Ma, R.; Liu, H.; Peña, T.A.D.; Chandran, H.T.; Li, M.; et al. Leveraging Compatible Iridium(III) Complexes to Boost Performance of Green Solvent-Processed Non-Fullerene Organic Solar Cells. Adv. Funct. Mater. 2024, 2024, 2411058. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, Y.; Zhang, M.; Ni, Y.; Zhang, F.; Jeong, S.Y.; Huang, T.; Li, X.; Woo, H.Y.; Zhang, J.; et al. Over 18.2% efficiency of layer–by–layer all–polymer solar cells enabled by homoleptic iridium(III) carbene complex as solid additive. Sci. Bull. 2024, 69, 2862–2869. [Google Scholar] [CrossRef]
- Yin, Y.; Zhu, S.Y.; Chen, S.W.; Lin, Z.Q.; Peng, J. Rapid Meniscus-Assisted Solution-Printing of Conjugated Block Copolymers for Field-Effect Transistors. Adv. Funct. Mater. 2022, 32, 2110824. [Google Scholar] [CrossRef]
- Besar, K.; Ardoña, H.A.M.; Tovar, J.D.; Katz, H.E. Demonstration of Hole Transport and Voltage Equilibration in Self-Assembled π-Conjugated Peptide Nanostructures Using Field-Effect Transistor Architectures. ACS Nano 2015, 9, 12401–12409. [Google Scholar] [CrossRef]
- Yui, X.; Xiao, K.; Chen, J.H.; Lavrik, N.V.; Hong, K.L.; Sumpter, B.G.; Geohegan, D.B. High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers. ACS Nano 2011, 5, 3559–3567. [Google Scholar] [CrossRef]
- Mu, X.Y.; Song, W.F.; Zhang, Y.; Ye, K.Q.; Zhang, H.Y.; Wang, Y. Controllable Self-Assembly of n-Type Semiconductors to Microtubes and Highly Conductive Ultralong Microwires. Adv. Mater. 2010, 22, 1002259. [Google Scholar] [CrossRef]
- Dannenhoffer, A.J.; Sai, H.; Harutyunyan, B.; Narayanan, A.; Powers-Riggs, N.E.; Edelbrock, A.N.; Passarelli, J.V.; Weigand, S.J.; Wasielewski, M.R.; Bedzyk, M.J.; et al. Growth of Extra-Large Chromophore Supramolecular Polymers for Enhanced Hydrogen Production. Nano Lett. 2021, 21, 3745–3752. [Google Scholar] [CrossRef]
- Tang, H.; Xiong, Y.C.; Zu, F.S.; Zhao, Y.; Wang, X.M.; Fu, Q.; Jie, J.S.; Yang, J.K.; Xu, D.Y. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules. Nanoscale 2016, 8, 11932–11939. [Google Scholar] [CrossRef]
- Chen, S.; Jacobs, D.L.; Xu, J.K.; Li, Y.X.; Wang, C.Y.; Zang, L. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Adv. 2014, 4, 48486–48491. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Brasseur, P.; Sullivan-Allsop, S.; Cai, R.S.; Silva, K.N.D.; Wang, S.Q.; Singh, H.A.; Yadav, K.; Santos, H.L.S.; Chundak, M.; et al. Ultralow Catalytic Loading for Optimised Electrocatalytic Performance of AuPt Nanoparticles to Produce Hydrogen and Ammonia. Angew. Chem.-Int. Edit. 2024, 63, e202405459. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.Y.; Wang, S.Q.; Zhang, X.H.; Ren, K.; Tan, S.Y.; Fang, F.; Xie, Z.H.; Jiang, J.Q. A strategy to improve the performance of TiO2 nanotube array film photocatalysts by magnetron-sputtered amorphous BiFeO3. Vacuum 2022, 202, 111135. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.J.; Li, Y.L. Preparation and Application of Supramolecular Functional Materials Based on π System. Prog. Chem. 2014, 26, 487–501. [Google Scholar]
- Kang, S.; Kim, G.H.; Park, S.J. Conjugated Block Copolymers for Functional Nanostructures. Acc. Chem. Res. 2022, 55, 2224–2234. [Google Scholar] [CrossRef]
- Gao, R.T.; Li, S.Y.; Liu, B.H.; Chen, Z.; Liu, N.; Zhou, L.; Wu, Z.Q. One-pot asymmetric living copolymerization-induced chiral self-assemblies and circularly polarized luminescence. Chem. Sci. 2024, 15, 2946–2953. [Google Scholar] [CrossRef]
- Fesseha, Y.A.; Manayia, A.H.; Liu, P.C.; Su, T.H.; Huang, S.Y.; Chiu, C.W.; Cheng, C.C. Photoreactive silver-containing supramolecular polymers that form self-assembled nanogels for efficient antibacterial treatment. J. Colloid Interface Sci. 2024, 654, 967–978. [Google Scholar] [CrossRef]
- Zhou, N.; Hailes, R.; Zhang, Y.Z.; Chen, Z.F.; Manners, I.; He, X.M. Controlling the supramolecular polymerization of dinuclear isocyanide gold(i) arylethynylene complexes through tuning the central π-conjugated moiety. Polym. Chem. 2020, 11, 2700–2707. [Google Scholar] [CrossRef]
- Nie, J.C.; Wang, Z.Q.; Huang, X.Y.; Lu, G.L.; Feng, C. Uniform Continuous and Segmented Nanofibers Containing a π-Conjugated Oligo(p-phenylene ethynylene) Core via “Living” Crystallization-Driven Self-Assembly: Importance of Oligo(pi--phenylene ethynylene) Chain Length. Macromolecules 2020, 53, 6299–6313. [Google Scholar] [CrossRef]
- Fernández, Z.; Sánchez, L.; Babu, S.S.; Fernández, G. Oligo(phenyleneethynylene)s: Shape-Tunable Building Blocks for Supramolecular Self-Assembly. Angew. Chem.-Int. Edit. 2024, 63, e2402259. [Google Scholar] [CrossRef]
- Reddy, N.R.; Aubin, M.; Kushima, A.; Fang, J.Y. Fluorescent H-Aggregate Vesicles and Tubes of a Cyanine Dye and Their Potential as Light-Harvesting Antennae. J. Phys. Chem. B 2021, 125, 7911–7918. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.Z.; Hong, N.Y.; Ahn, D.J. Monitoring Based on Narrow-Band Resonance Raman for “Phase-Shifting” π-Conjugated Polydiacetylene Vesicles upon Host-Guest Interaction and Thermal Stimuli. Small 2018, 14, 1800512. [Google Scholar] [CrossRef] [PubMed]
- Vespa, M.; MacFarlane, L.R.; Hudson, Z.M.; Manners, I. Crystallization-driven self-assembly of poly(3-hexylthiophene)- b-poly(2,5-bis(2-ethylhexyloxy)-pi-phenylene), a π-conjugated diblock copolymer with a rigid rod corona-forming block. Polym. Chem. 2024, 15, 1839–1850. [Google Scholar] [CrossRef]
- Duan, C.Y.; Xu, B.B.; Li, R.R.; Huang, X.Y.; Lin, S.L.; Feng, C. Combination of methylthio-chemistry with living crystallization-driven self-assembly toward uniform π-conjugated nanostructures with antibacterial activity, surface tailorability, tunable morphology and dimension. Sci. China-Chem. 2024, 67, 2341–2352. [Google Scholar] [CrossRef]
- Qi, R.; Qi, W.S.; Zhang, Y.; Liu, B.H.; Wang, J.; Li, H.M.; Yuan, H.M.; Xie, S.Z. Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers 2022, 14, 4125. [Google Scholar] [CrossRef]
- Nie, J.C.; Huang, X.Y.; Lu, G.L.; Winnik, M.A.; Feng, C. Living Crystallization-Driven Self-Assembly of Linear and V-Shaped Oligo(p-phenylene ethynylene)-Containing Block Copolymers: Architecture Effect of p-Conjugated Crystalline Segment. Macromolecules 2022, 55, 7856–7868. [Google Scholar] [CrossRef]
- Yang, Y.P.; Chen, S.Y.; Ni, X.L. Anion Recognition Triggered Nanoribbon-Like Self-Assembly: A Fluorescent Chemosensor for Nitrate in Acidic Aqueous Solution and Living Cells. Anal. Chem. 2015, 87, 7461–7466. [Google Scholar] [CrossRef]
- Qi, R.; Fan, W.H.; Huang, X.T.; Qi, W.S.; Zhang, Y.; Li, H.M.; Peng, C.; Gao, L.J.; Xie, S.Z. Controlled self-assembly of the perylene bisimides into rectangular and ribbon-like nanostructures. J. Mol. Liq. 2024, 398, 124267. [Google Scholar] [CrossRef]
- Yang, S.; Kang, S.Y.; Choi, T.L. Morphologically Tunable Square and Rectangular Nanosheets of a Simple Conjugated Homopolymer by Changing Solvents. J. Am. Chem. Soc. 2019, 141, 19138–19143. [Google Scholar] [CrossRef]
- Han, L.; Wang, M.J.; Jia, X.M.; Chen, W.; Qian, H.J.; He, F. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π-π interactions with controllable sizes. Nat. Commun. 2018, 9, 865. [Google Scholar] [CrossRef]
- Qi, R.; Zhu, Y.L.; Han, L.; Wang, M.J.; He, F. Rectangular Platelet Micelles with Controlled Aspect Ratio by Hierarchical Self-Assembly of Poly(3-hexylthiophene)-b-poly(ethylene glycol). Macromolecules 2020, 53, 6555–6565. [Google Scholar] [CrossRef]
- Qi, R.; Zhu, Y.L.; Han, L.; Wang, M.J.; He, F. Two dimensional hierarchical architectures fabricated by the self-assembly of poly(3-hexylthiophene)-b-polyethylene glycol. Polym. Chem. 2022, 13, 6400–6407. [Google Scholar] [CrossRef]
- Lee, E.; Hammer, B.; Kim, J.K.; Page, Z.; Emrick, T.; Hayward, R.C. Hierarchical Helical Assembly of Conjugated Poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) Diblock Copolymers. J. Am. Chem. Soc. 2011, 133, 10390–10393. [Google Scholar] [CrossRef] [PubMed]
- Kamps, A.C.; Fryd, M.; Park, S.J. Hierarchical Self-Assembly of Amphiphilic Semiconducting Polymers into Isolated, Bundled, and Branched Nanofibers. ACS Nano 2012, 6, 2844–2852. [Google Scholar] [CrossRef] [PubMed]
- Padghan, S.D.; Chung, M.C.; Zhang, Q.S.; Lin, W.C.; Chen, K.Y. 1,6,7-Trisubstituted perylene bisimides with tunable optical properties for colorimetric and “turn-on” fluorescence detection of HCl. Dyes Pigment. 2022, 202, 110303. [Google Scholar] [CrossRef]
- Koenig, J.D.B.; Piers, W.E.; Welch, G.C. Promoting photocatalytic CO2 reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. Chem. Sci. 2022, 13, 1049–1059. [Google Scholar] [CrossRef]
- Zhang, H.J.; Chen, X.J.; Zhang, Z.J.; Yu, K.Y.; Zhu, W.; Zhu, Y.F. Highly-crystalline Triazine-PDI Polymer with an Enhanced Built-in Electric Field for Full-Spectrum Photocatalytic Phenol Mineralization. Appl. Catal. B-Environ. 2021, 287, 119957. [Google Scholar] [CrossRef]
- Xu, Y.C.; Zheng, J.X.; Lindner, J.O.; Wen, X.B.; Jiang, N.Q.; Hu, Z.C.; Liu, L.L.; Huang, F.; Würthner, F.; Xie, Z.Q. Consecutive Charging of a Perylene Bisimide Dye by Multistep Low-Energy Solar-Light-Induced Electron Transfer Towards H2 Evolution. Angew. Chem.-Int. Edit. 2020, 59, 10363–10367. [Google Scholar] [CrossRef]
- Bonchio, M.; Syrgiannis, Z.; Burian, M.; Marino, N.; Pizzolato, E.; Dirian, K.; Rigodanza, F.; Volpato, G.A.; La Ganga, G.; Demitri, N.; et al. Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nat. Chem. 2019, 11, 146–153. [Google Scholar] [CrossRef]
- Burian, M.; Rigodanza, F.; Demitri, N.; Dordevic, L.; Marchesan, S.; Steinhartova, T.; Letofsky-Papst, I.; Khalakhan, I.; Mourad, E.; Freunberger, S.A.; et al. Inter-Backbone Charge Transfer as Prerequisite for Long-Range Conductivity in Perylene Bisimide Hydrogels. ACS Nano 2018, 12, 5800–5806. [Google Scholar] [CrossRef]
- Zhang, A.D.; Li, C.; Yang, F.; Zhang, J.Q.; Wang, Z.H.; Wei, Z.X.; Li, W.W. An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells. Angew. Chem.-Int. Edit. 2017, 56, 2694–2698. [Google Scholar] [CrossRef] [PubMed]
- Datar, A.; Balakrishnan, K.; Zang, L. One-dimensional self-assembly of a water soluble perylene diimide molecule by pH triggered hydrogelation. Chem. Commun. 2013, 49, 6894–6896. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, R.; Huang, X.; Yang, T.; Luo, P.; Qi, W.; Zhang, Y.; Yuan, H.; Li, H.; Wang, J.; Liu, B.; et al. Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides. Molecules 2024, 29, 4610. https://doi.org/10.3390/molecules29194610
Qi R, Huang X, Yang T, Luo P, Qi W, Zhang Y, Yuan H, Li H, Wang J, Liu B, et al. Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides. Molecules. 2024; 29(19):4610. https://doi.org/10.3390/molecules29194610
Chicago/Turabian StyleQi, Rui, Xiaotian Huang, Ting Yang, Peng Luo, Wensheng Qi, Yin Zhang, Haimei Yuan, Hongmei Li, Jian Wang, Baohua Liu, and et al. 2024. "Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides" Molecules 29, no. 19: 4610. https://doi.org/10.3390/molecules29194610
APA StyleQi, R., Huang, X., Yang, T., Luo, P., Qi, W., Zhang, Y., Yuan, H., Li, H., Wang, J., Liu, B., & Xie, S. (2024). Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides. Molecules, 29(19), 4610. https://doi.org/10.3390/molecules29194610