Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. hirtum), and Common Oregano (Origanum vulgare L. ssp. vulgare) Essential Oils against Selected Phytopathogens
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. EO Extraction and GC-MS/GC-FID Analysis
4.3. Antimicrobial Activity
4.3.1. Target Microorganisms
Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Communication from the Commission to the European Parliament; The European Council; The Council; The European Economic and Social Committee and the Committee of the Regions. The European Green Deal. 2019. Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 12 January 2024).
- Nollet, L.; Rathore, H.S. Green Pesticides Handbook; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, C. Nano bio pesticide: Today and future perspectives. In Biopesticides—Advances in Bio-Inoculant Science; Rakshit, A., Meena, V.S., Abhilash, P.C., Sarma, B.K., Singh, H.B., Fraceto, L., Parihar, M., Singh, A.K., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 201–204. [Google Scholar]
- Butu, M.; Rodino, S.; Butu, A. Biopesticide formulations- current challenges and future perspectives. In Biopesticides—Advances in Bio-Inoculant Science; Rakshit, A., Meena, V.S., Abhilash, P.C., Sarma, B.K., Singh, H.B., Fraceto, L., Parihar, M., Singh, A.K., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 19–29. [Google Scholar] [CrossRef]
- Chang, Y.; Harmon, P.F.; Treadwell, D.D.; Carrillo, D.; Sarkhosh, A.; Brecht, J.K. Biocontrol potential of essential oils in organic horticulture systems: From farm to fork. Front. Nutr. 2022, 8, 805138. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, S.; Kostic, M.; Kostic, I.; Krnjajic, S. Practical Approaches to Pest Control: The Use of Natural Compounds. In Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production; Kontogiannatos, D., Kourti, A., Ferreira Mendes, K., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Lahlali, R.; El-Hamss, H.; Mediouni Ben-Jemaa, J.; Ait Barka, E. The Use of Plant Extracts and Essential Oils as Biopesticides. Front. Agron. 2022, 4, 921965. [Google Scholar] [CrossRef]
- Kesraoui, S.; Andrés, M.F.; Berrocal-Lobo, M.; Soudani, S.; Gonzalez-Coloma, A. Direct and indirect effects of essential oils for sustainable crop protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef]
- Barragán, O.A.; Silva-Borjas, P.; Olmos-Peña, S. Scientific and technological trajectories for sustainable agricultural solutions: The case of biopesticides. In Biopesticides—Advances in Bio-Inoculant Science; Rakshit, A., Meena, V.S., Abhilash, P.C., Sarma, B.K., Singh, H.B., Fraceto, L., Parihar, M., Singh, A.K., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 93–105. [Google Scholar]
- Leonard, S.; Hommais, F.; Nasser, W.; Reverchon, S. Plant–phytopathogen interactions: Bacterial responses to environmental and plant stimuli. Environ. Microbiol. 2017, 19, 1689–1716. [Google Scholar] [CrossRef] [PubMed]
- Shuping, D.; Eloff, J.N. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Trad. Comp. Altern. Med. 2017, 14, 120–127. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 2019, 10, 409–424. [Google Scholar] [CrossRef]
- Kryczyński, S.; Weber, Z. Podstawy Fitopatologii; Powszechne Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2011. [Google Scholar]
- Singh, B.K.; Tiwari, S.; Maurya, A.; Kumar, S.; Dubey, N.K. Fungal and mycotoxin contamination of herbal raw materials and their protection by nanoencapsulated essential oils: An overview. Biocatal. Agric. Biotechnol. 2022, 39, 102257. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 authorising certain products and substances for use in organic production and establishing their lists. Off. J. Eur. Union 2021, L253, 21–25. Available online: https://eur-lex.europa.eu/eli/reg_impl/2021/1165/oj (accessed on 12 January 2024).
- Napoli, E.; Siracusa, L.; Ruberto, G. New tricks for old guys: Recent developments in the chemistry, biochemistry, applications and exploitation of selected species from the Lamiaceae family. Chem. Biodivers. 2020, 17, e1900677. [Google Scholar] [CrossRef]
- Elezi, F.; Plaku, F.; Ibraliu, A.; Stefkov, G.; Karapandzova, M.; Kulevanova, S.; Aliu, S. Genetic variation of oregano (Origanum vulgare L.) for etheric oil in Albania. Agric. Sci. 2013, 4, 449–453. [Google Scholar] [CrossRef]
- Gong, H.Y.; Liu, W.H.; Lv, G.Y.; Zhou, X. Analysis of essential oils of Origanum vulgare from six production areas of China and Pakistan. Bras. J. Pharm. 2014, 24, 25–32. [Google Scholar] [CrossRef]
- Zhang, X.L.; Guo, Y.S.; Wang, C.H.; Li, G.Q.; Xu, J.J.; Chung, H.Y.; Ye, W.C.; Li, Y.L.; Wang, G.C. Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chem. 2014, 152, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Kosakowska, O.; Węglarz, Z.; Bączek, K. Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate. Ind. Crop. Prod. 2019, 141, 111782. [Google Scholar] [CrossRef]
- Kosakowska, O.; Bączek, K.; Przybył, J.; Pawełczak, A.; Rolewska, K.; Węglarz, Z. Morphological and chemical traits as quality determinants of common thyme (Thymus vulgaris L.), on the example of ‘Standard Winter’ cultivar. Agronomy 2020, 10, 909. [Google Scholar] [CrossRef]
- Węglarz, Z.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Bączek, K. The quality of greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare) cultivated in the temperate climate of central Europe. Foods 2020, 9, 1671. [Google Scholar] [CrossRef]
- Kosakowska, O.; Węglarz, Z.; Bączek, K. The effect of open field and foil tunnel on yield and quality of the common thyme (Thymus vulgaris L.) in organic farming. Agronomy 2021, 11, 197. [Google Scholar] [CrossRef]
- Kosakowska, O.; Węglarz, Z.; Pióro-Jabrucka, E.; Przybył, J.; Kraśniewska, K.; Gniewosz, M.; Bączek, K. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules 2021, 26, 988. [Google Scholar] [CrossRef] [PubMed]
- Rohloff, J. Essential oil drugs—Terpene composition of aromatic herbs. In Production Practices and Quality Assessment of Food Crops; Dris, R., Jain, S.M., Eds.; Vol 3: Quality Handling and Evaluation; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2004; pp. 73–128. [Google Scholar]
- Thompson, J.D.; Chalchat, J.C.; Michet, A.; Linhart, Y.B.; Ehlers, B. Qualitative and quantitative variation on monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol. 2003, 29, 859–880. [Google Scholar] [CrossRef]
- Torras, J.; Grau, M.D.; Lopez, J.F.; de las Heras, F.X. Analysis of essential oils from chemotypes of Thymus vulgaris in Catalonia. J. Sci. Food Agric. 2007, 87, 2327–2333. [Google Scholar] [CrossRef]
- Chizzola, R.; Michitsch, H.; Franz, C. Antioxidant properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. J. Agric. Food Chem. 2008, 56, 6897–6904. [Google Scholar] [CrossRef]
- Satyal, P.; Murray, B.L.; Mcfeeters, R.L.; Setzer, W.N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Wesołowska, A.; Jadczak, D. Comparison of the chemical composition of essential oils isolated from two thyme (Thymus vulgaris L.) cultivars. Not. Bot. Horti. Agrobot. Cluj-Napoca 2019, 47, 829–835. [Google Scholar] [CrossRef]
- Grevsen, K.; Fretté, X.; Christensen, L.P. Content and composition of volatile terpenes, flavonoids and phenolic acids in Greek oregano (Origanum vulgare L. ssp. hirtum) at different development stages during cultivation in cool temperate climate. Eur. J. Horti. Sci. 2009, 74, 193–203. [Google Scholar]
- Azizi, A.; Hadian, J.; Gholami, M.; Friedt, W.; Honermeier, B. Correlations between Genetic, Morphological and Chemical Diversities in a Germplasm Collection of the Medicinal Plant Origanum vulgare L. Chem. Biodivers. 2012, 9, 2784–2801. [Google Scholar] [CrossRef]
- Lukas, B.; Schmiderer, C.; Novak, J. Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 2015, 119, 32–40. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Pasquier, B. Morphological and chemical studies of Origanum clones: Origanum vulgare L. ssp. vulgare. J. Essent. Oil Res. 1998, 11, 143–144. [Google Scholar] [CrossRef]
- Mockute, D.; Bernotiene, G.; Judzentiene, A. The essential oil of Origanum vulgare L. ssp. vulgare growing wild in Vilnius district (Lithuania). Phytochemistry 2001, 57, 65–69. [Google Scholar] [CrossRef]
- Kosakowska, O.; Czupa, W. Morphological and chemical variability of common oregano (Origanum vulgare L. subsp. vulgare) occurring in eastern Poland. Herba Pol. 2018, 64, 11–21. [Google Scholar] [CrossRef]
- Baricevic, D.; Bartol, T. The biological/pharmacological activity of the Origanum genus. In Medicinal and Aromatic Plants Industrial Profiles; Kintzios, S., Ed.; Taylor and Francis: London, UK, 2002; pp. 176–213. [Google Scholar]
- Proposal for a Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending Regulation (EU) 2021/2115. 2022. Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0305 (accessed on 16 January 2024).
- Xin, X.-F.; Kvitko, B.; He, S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018, 16, 316–328. [Google Scholar] [CrossRef]
- Arnold, D.L.; Preston, G.M. Pseudomonas syringae: Enterprising epiphyte and stealthy parasite. Microbiology 2019, 165, 251–253. [Google Scholar] [CrossRef]
- Kokoskova, B.; Pouvova, D.; Pavela, R. Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. J. Plant Pathol. 2011, 93, 133–139. [Google Scholar]
- Oliva, M.d.l.M.; Carezzano, M.E.; Giuliano, M.; Daghero, J.; Zygadlo, J.; Bogino, P.; Giordano, W.; Demo, M. Antimicrobial activity of essential oils of Thymus vulgaris and Origanum vulgare on phytopathogenic strains isolated from soybean. Plant Biol. J. 2015, 17, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Carezzano, M.E.; Sotelo, J.P.; Primo, E.; Reinoso, E.B.; Paletti Rovey, M.F.; Demo, M.S.; Giordano, W.F.; Oliva, D.L.M. Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains. Plant Biol. 2017, 19, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Della Pepa, T.; Elshafie, H.S.; Capasso, R.; De Feo, V.; Camele, I.; Nazzaro, F.; Scognamiglio, M.R.; Caputo, L. Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules 2019, 24, 2576. [Google Scholar] [CrossRef]
- Sotelo, J.P.; Oddino, C.; Giordano, D.F.; Carezzano, M.E.; de las M. Oliva, M. Effect of Thymus vulgaris essential oil on soybeans seeds infected with Pseudomonas syringae. Physiol. Mol. Plant Pathol. 2021, 116, 101735. [Google Scholar] [CrossRef]
- Hajian-Maleki, H.; Baghaee-Ravari, S.; Moghaddam, M. Efficiency of essential oils against Pectobacterium carotovorum subsp. carotovorum causing potato soft rot and their possible application as coatings in storage. Postharvest Biol. Technol. 2019, 156, 110928. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Wang, J.; Ma, J.; Liu, L.; Islam, R.; Qi, Y.; Li, J.; Shen, T. Inhibitory effect and possible mechanism of oregano and clove essential oils against Pectobacterium carotovorum subsp. carotovorum as onion soft rot in storage. Postharvest Biol. Technol. 2023, 196, 112164. [Google Scholar] [CrossRef]
- Jílková, B.; Víchová, J.; Holková, L.; Pluháčková, H.; Michutová, M.; Kmoch, M. Laboratory efficacy of essential oils against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum causing soft rot of potato tubers. Potato Res. 2023. [Google Scholar] [CrossRef]
- Kotan, R.; Cakir, A.; Dadasoglu, F.; Aydin, T.; Cakmakci, R.; Ozer, H.; Kordali, S.; Mete, E.; Dikbas, N. Antibacterial activities of essential oils and extracts of Turkish Achillea, Satureja and Thymus species against plant pathogenic bacteria. J. Sci. Food Agric. 2010, 90, 145–160. [Google Scholar] [CrossRef]
- Kotan, R.; Dadasoğlu, F.; Karagoz, K.; Cakir, A.; Ozer, H.; Kordali, S.; Cakmakci, R.; Dikbas, N. Antibacterial activity of the essential oil and extracts of Satureja hortensis against plant pathogenic bacteria and their potential use as seed disinfectants. Sci. Hortic. 2013, 153, 34–41. [Google Scholar] [CrossRef]
- Hakalová, E.; Čechová, J.; Tekielska, D.A.; Eichmeier, A.; Pothier, J.F. Combined effect of thyme and clove phenolic compounds on Xanthomonas campestris pv. campestris and biocontrol of black rot disease on cabbage seeds. Front. Microbiol. 2022, 13, 1007988. [Google Scholar] [CrossRef]
- Dwivedy, A.K.; Kedia, A.; Kumar, M.; Dubey, N.K. Essential oils of traditionally used aromatic plants as green shelf-life enhancers for herbal raw materials from microbial contamination and oxidative deterioration. Curr. Sci. 2016, 110, 143–145. [Google Scholar]
- Tian, F.; Woo, S.Y.; Lee, S.Y.; Chun, H.S. p-Cymene and its derivatives exhibit antiaflatoxigenic activities against Aspergillus flavus through multiple modes of action. Appl. Biol. Chem. 2018, 61, 489–497. [Google Scholar] [CrossRef]
- Wang, L.; Hu, W.; Deng, J.; Liu, X.; Zhou, J.; Li, X. Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Adv. 2019, 9, 28987–28995. [Google Scholar] [CrossRef]
- Samara, R.; Qubbaj, T.; Ian Scott, I.; Mcdowell, T. Effect of plant essential oils on the growth of Botrytis cinerea pers.: Fr., Penicillium italicum Wehmer, and P. Digitatum (pers.) Sacc., diseases. J. Plant Prot. Res. 2021, 61, 324–336. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.H.; Ye, M.; Wang, K.B.; Fan, L.M.; Su, F.W. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea. Food Chem. 2021, 365, 130506. [Google Scholar] [CrossRef]
- Ben Ghnaya, A.; Hanana, M.; Amri, I.; Balti, H.; Gargouri, S.; Jamoussi, B.; Hamrouni, L. Chemical composition of Eucalyptus erythrocorys essential oils and evaluation of their herbicidal and antifungal activities. J. Pest Sci. 2013, 86, 571–577. [Google Scholar] [CrossRef]
- Montenegro, I.; Said, B.; Godoy, P.; Besoain, X.; Parra, C.; Díaz, K.; Madrid, A. Antifungal Activity of Essential Oil and Main Components from Mentha pulegium Growing Wild on the Chilean Central Coast. Agronomy 2020, 10, 254. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Nowosad, J.; Bosiacka, B.; Camacho, I.; Pashley, C.; Belmonte, J.; Linares De, C.; Ianovici, N.; Manzano, J.M.M.; Sadyś, M.; et al. Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Sci. Total Environ. 2019, 25, 938–946. [Google Scholar] [CrossRef]
- Ghuffar, S.; Irshad, G.; Naz, F.; Khan, M.A.; Ahmed, M.Z.; Gleason, M.L. Efficacy of plant essential oils against Alternaria alternata causing bunch rot of grapes in Pakistan. J. Anim. Plant Sci. 2022, 32, 150–162. [Google Scholar] [CrossRef]
- Aslam, M.F.; Irshad, G.; Naz, F.; Khan, M.A. Evaluation of the antifungal activity of essential oils against Alternaria alternata causing fruit rot of Eriobotrya japonica. Turk. J. Biochem. 2022, 47, 511–521. [Google Scholar] [CrossRef]
- Perina, F.J.; Amaral, D.C.; Fernandes, R.S.; Labory, C.R.; Teixeira, G.A.; Alves, E. Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. Pest. Manag. Sci. 2015, 71, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Affes, G.T.; Chenenaoui, S.; Zemni, H.; Hammami, M.; Bachkouel, S.; Aidi Wannes, W.; Nasraoui, B.; Saidani Tounsi, M.; Lasram, S. Biological control of citrus brown spot pathogen, Alternaria alternate by different essential oils. Int. J. Environ. Health Res. 2022, 33, 823–836. [Google Scholar] [CrossRef]
- Walker, C.; Muniz, M.F.B.; Rolim, J.M.; Martins, R.R.O.; Rosenthal, V.C.; Maciel, C.G.; Mezzomo, R.; Reiniger, L.R.S. Morphological and molecular characterization of Cladosporium cladosporioides species complex causing pecan tree leaf spot. Genet. Mol. Res. 2016, 15, 15038714. [Google Scholar] [CrossRef]
- Wróblewska-Łuczka, P. Isobolographic in vitro interactions of fluconazole with citrus essential oils against Cladosporium cladosporioides. J. Pre-Clin. Clin. Res. 2021, 15, 15–19. [Google Scholar] [CrossRef]
- Gleń-Karolczyk, K.; Boligłowa, E. Fungicidal activity of juniper essential oil (Juniperus comunis L.) against the fungi infecting horseradish seedlings. J. Res. Appl. Agric. Eng. 2016, 61, 119–125. [Google Scholar]
- Kochman, J.; Jakubczyk, K.P.; Antoniewicz, J.; Janda, K. Ochratoksyna A, deoksyniwalenol, toksyny T-2 i HT-2—Występowanie w żywności i ich wpływ na organizm człowieka. Med. Og. Nauk. Zdr. 2021, 27, 117–120. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L119, 103–157. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 12 January 2024).
- Chaudhari, A.K.; Dwivedy, A.K.; Singh, V.K.; Das, S.; Singh, A.; Dubey, N.K. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ. Sci. Pollut. Res. 2019, 26, 25414–25431. [Google Scholar] [CrossRef]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar] [CrossRef]
- Zimowska, B.; Król, E.D. Effect of selected preparations on growth and development Boeremia strasseri, the causal agent of black stem and rhizomes rot of peppermint (Mentha piperita). Acta Sci. Pol. Hortorum Cultus 2018, 17, 3–12. [Google Scholar] [CrossRef]
- Zimowska, B. Phoma on Medicinal and Aromatic Plants. In Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology; Rai, M., Zimowska, B., Kövics, G.J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Deb, D.; Khan, A.; Dey, N. Phoma diseases: Epidemiology and control. Plant Pathol. 2020, 69, 1203–1217. [Google Scholar] [CrossRef]
- Zimowska, B. Pathogenicity and ultrastructural studies of the mode of penetration by Phoma strasseri in peppermint stems and rhizomes. Pol. J. Microbiol. 2012, 61, 273–279. [Google Scholar] [CrossRef]
- Paiva, G.F.; Malanski Barbieri, T.P.; Melo, B.D.; Gonçalves, F.J.; Donegá, M.A. Effect of essential oils on the mycelial growth of Phytium sp. causal agent of damping off in lettuce. Braz. J. Agric. Rev. Agric. 2021, 96, 439–445. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Islam, R.; Islam, R.; Jamal, A.H.M.; Parvin, T.; Rahman, A. Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd. Arab. J. Chem. 2013, 10, 2170–2174. [Google Scholar] [CrossRef]
- Kotan, R.; Cakir, A.; Ozer, H.; Kordali, S.; Cakmakci, R.; Dadasoglu, F.; Dikbas, N.; Aydin, T.; Kazaz, C. Antibacterial effects of Origanum onites against phytopathogenic bacteria: Possible use of the extracts from protection of disease caused by some phytopathogenic bacteria. Sci. Hortic. 2014, 172, 210–220. [Google Scholar] [CrossRef]
- Ranjbar, A.; Ramezanian, A.; Shekarforoush, S.; Niakousari, M.; Eshghi, S. Antifungal activity of thymol against the main fungi causing pomegranate fruit rot by suppressing the activity of cell wall degrading enzymes. LWT—Food Sci. Technol. 2022, 161, 113303. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Carvajal-Morenoa, M.; Correab, B.; Rojo-Callejasc, F. Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus. Food Chem. 2020, 315, 126096. [Google Scholar] [CrossRef]
- Stević, T.; Berić, T.; Savikin, K.; Soković, M.; Godżevac, D.; Dimkić, I.; Stanković, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crop. Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Brilhante, R.S.N.; Caetano, E.P.; Chaves de Lima, R.A.; de Farias Marques, F.J.; Castelo-Branco, M.; de Melo, C.V.S.; de Melo Guedes, G.M.; de Oliveira, J.S.; de Camargo, Z.P.; Moreira, J.L.B.; et al. Terpinen-4-ol, tyrosol, and -lapachone as potential antifungals against dimorphic fungi. Braz. J. Microbiol. 2016, 47, 917–924. [Google Scholar] [CrossRef]
- Liu, R.; Huang, L.; Feng, X.; Wang, D.; Gunarathne, R.; Kong, Q.; Lu, J.; Ren, X. Unraveling the effective inhibition of α-terpinol and terpene-4-ol against Aspergillus carbonarius: Antifungal mechanism, ochratoxin A biosynthesis inhibition and degradation perspectives. Food Res. Int. 2024, 194, 114915. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Kuźma, P.; Ejdys, M.; Obiedziński, M.; Węglarz, Z. Intraspecific variability of yarrow (Achillea millefolium L. s.l.) in respect of developmental and chemical traits. Herba Pol. 2015, 61, 37–52. [Google Scholar] [CrossRef]
Common Thyme | Greek Oregano | Common Oregano | |
---|---|---|---|
Fresh mass of herb | 175.8 ± 40.6 | 482.1 ± 117.0 | 534.3 ± 110.2 |
Dry weight of herb | 58.7 ± 14.5 | 226.2 ± 58.8 | 190.7 ± 55.1 |
Essential oil content | 1.7 ± 0.1 | 3.2 ± 0.5 | 0.6 ± 0.01 |
No. | Compound | RI 1 | Common Thyme | Greek Oregano | Common Oregano |
---|---|---|---|---|---|
1 | α-pinene | 1029 | 2.33 | 3.39 | 0.08 |
2 | camphene | 1074 | 0.79 | 0.68 | 0.56 |
3 | β-pinene | 1112 | 0.38 | 4.08 | 0.13 |
4 | 3-carene | 1147 | 0.16 | 0.27 | 0.12 |
5 | α-terpinene | 1185 | 2.70 | 4.48 | 0.39 |
6 | D-limonene | 1204 | 2.26 | 0.58 | 0.59 |
7 | a phellandrene | 1212 | 0.70 | 0.04 | 3.53 |
8 | 1.8-cineole | 1214 | 1.18 | 0.00 | 1.79 |
9 | (E)-2-hexenal | 1216 | 0.00 | 0.06 | 0.03 |
10 | trans β-ocimene | 1236 | 0.04 | 0.14 | 0.57 |
11 | γ-terpinene | 1250 | 11.67 | 13.76 | 1.98 |
12 | p-cymene | 1275 | 18.20 | 17.01 | 4.02 |
13 | m-cymene | 1281 | 0.00 | 0.00 | 0.47 |
14 | terpinolene | 1284 | 0.17 | 0.46 | 0.30 |
15 | anisole | 1357 | 1.56 | 1.30 | 1.82 |
16 | 3-octanol | 1391 | 0.16 | 0.04 | 0.27 |
17 | α-tujone | 1425 | 0.00 | 0.00 | 0.11 |
18 | p-cymenene | 1440 | 0.08 | 0.00 | 0.00 |
19 | β-tujone | 1448 | 0.00 | 0.40 | 0.13 |
20 | 1-octen-3-ol | 1446 | 1.17 | 1.06 | 1.12 |
21 | linalool oxide | 1452 | 0.03 | 0.00 | 0.00 |
22 | trans-2-caren-4-ol | 1460 | 0.05 | 0.00 | 0.00 |
23 | trans-p-menthone | 1464 | 0.00 | 0.00 | 0.13 |
24 | camphore | 1518 | 0.48 | 0.00 | 0.05 |
25 | β-bourbonene | 1530 | 0.05 | 0.20 | 2.80 |
26 | β-cubebene | 1539 | 0.05 | 0.16 | 5.51 |
27 | linalool | 1542 | 3.22 | 0.26 | 2.44 |
28 | bornyl acetate | 1575 | 0.19 | 0.11 | 0.05 |
29 | β-copaene | 1581 | 0.04 | 0.06 | 0.00 |
30 | trans-p-mentha-2-en-1-ol | 1583 | 0.08 | 0.12 | 0.79 |
31 | β-caryophyllene | 1594 | 2.20 | 3.34 | 5.64 |
32 | terpinen-4-ol | 1597 | 1.12 | 2.45 | 5.08 |
33 | sabina ketone | 1610 | 0.00 | 0.00 | 0.84 |
34 | cis-p-mentha-2-en-1-ol | 1618 | 0.05 | 0.06 | 0.35 |
35 | cis-terpineol | 1621 | 1.08 | 0.64 | 0.60 |
36 | dihydrocarvone | 1630 | 0.04 | 0.15 | 0.00 |
37 | γ-elemene | 1641 | 0.00 | 0.08 | 0.00 |
38 | α-humulene | 1658 | 0.07 | 0.38 | 0.67 |
39 | viridiflorene | 1670 | 0.00 | 0.07 | 0.00 |
40 | trans-terpineol | 1674 | 0.39 | 0.60 | 0.45 |
41 | borneol | 1684 | 2.08 | 1.73 | 0.00 |
42 | p-menth-6-en-2-one | - | 2.77 | 0.13 | 0.25 |
43 | trans-piperitol | 1725 | 0.00 | 0.00 | 0.13 |
44 | carvone | 1740 | 0.00 | 0.00 | 4.47 |
45 | β-bisabolene | 1743 | 0.14 | 1.25 | 0.76 |
46 | α-farnesen | 1749 | 0.00 | 0.00 | 1.89 |
47 | δ-cadinene | 1760 | 0.29 | 0.26 | 0.91 |
48 | geranyl acetate | 1763 | 0.00 | 0.00 | 0.16 |
49 | α-cadinene | 1770 | 0.24 | 0.08 | 0.13 |
50 | cuminal | 1786 | 0.00 | 0.00 | 0.39 |
51 | trans-calamene | 1827 | 0.00 | 0.00 | 0.46 |
52 | geraniol | 1845 | 0.19 | 0.00 | 0.00 |
53 | p-cymenol | 1851 | 0.04 | 0.00 | 0.20 |
54 | thymol acetate | 1896 | 0.07 | 0.27 | 0.00 |
55 | caryophyllene oxide | 1976 | 0.43 | 0.35 | 18.89 |
56 | germacrene-D-4-ol | 2027 | 0.00 | 0.00 | 0.36 |
57 | humulene epoxide II | 2041 | 0.00 | 0.00 | 2.12 |
58 | cubenol | 2073 | 0.04 | 0.00 | 0.22 |
59 | trans-longipinocarveol | 2091 | 0.00 | 0.00 | 1.63 |
60 | globulol | 2097 | 0.00 | 0.00 | 0.67 |
61 | (−)-spathulenol | 2125 | 0.05 | 0.95 | 5.38 |
62 | tau-cadinol | 2141 | 0.32 | 0.00 | 0.32 |
63 | thymol | 2166 | 27.28 | 0.99 | 2.91 |
64 | α-muurolol | 2193 | 0.00 | 0.00 | 0.24 |
65 | carvacrol | 2213 | 6.61 | 35.79 | 3.97 |
66 | α-cadinol | 2215 | 0.00 | 0.00 | 1.75 |
67 | aromadendrene oxide-(2) | 2232 | 0.00 | 0.00 | 2.95 |
68 | eudesma-7.11-dien-4-ol | 2254 | 0.00 | 0.00 | 1.27 |
Total identified | 93.24 | 98.23 | 95.84 | ||
Monoterpene hydrocarbons | 39.48 | 44.89 | 12.74 | ||
Oxygenated monoterpenes | 12.99 | 6.65 | 18.41 | ||
Phenolic monoterpenes | 33.96 | 37.05 | 6.88 | ||
Sesquiterpene hydrocarbons | 3.08 | 5.88 | 18.77 | ||
Oxygenated sesquiterpenes | 0.84 | 1.30 | 35.80 | ||
Other compounds | 2.89 | 2.46 | 3.24 |
Species | Common Thyme | Greek Oregano | Common Oregano |
---|---|---|---|
Bacteria | |||
Pseudomonas syringae | 0.125 (0.125) | 0.125 (0.250) | 4 (4) |
Xanthomonas hortorum | 0.250 (0.250) | 0.125 (0.250) | 2 (2) |
Erwinia carotovora | 0.250 (0.250) | 0.250 (0.250) | 4 (8) |
Fungi | |||
Fusarium culmorum | 0.062 (0.125) | 0.032 (0.250) | 1 (1) |
Alternaria alternata | 0.062 (0.125) | 0.062 (0.062) | 1 (8) |
Botrytis cinerea | 0.062 0.250) | 0.062 (0.500) | 0.062 (8) |
Epicoccum purpurascens | 0.016 (0.125) | 0.016 (0.032) | 2 (8) |
Cladosporium cladosporioides | 0.016 (0.062) | 0.016 (0.500) | 0.125 (8) |
Phoma strasseri | 0.016 (0.062) | 0.016 (0.032) | 0.016 (0.25) |
Pythium debaryanum | 0.062 (0.125) | 0.016 (0.032) | 1 (1) |
A (%) * | |||
---|---|---|---|
MIC (µL/mL) | Common Thyme | Greek Oregano | Common Oregano |
0.016 | 30 | 40 | 10 |
0.032 | 30 | 50 | 10 |
0.062 | 70 | 70 | 20 |
0.125 | 80 | 90 | 30 |
0.25 | 100 | 100 | 30 |
0.5 | 100 | 100 | 30 |
1 | 100 | 100 | 70 |
2 | 100 | 100 | 80 |
4 | 100 | 100 | 100 |
8 | 100 | 100 | 100 |
16 | 100 | 100 | 100 |
32 | 100 | 100 | 100 |
64 | 100 | 100 | 100 |
Month | Year | Min. Temperature (°C) | Max. Temperature (°C) | Rainfall (mm) | Sun Days |
---|---|---|---|---|---|
January | 2017 | −7 | −2 | 22.2 | 19 |
2018 | −2 | 2 | 40.1 | 18 | |
February | 2017 | −4 | 1 | 35.9 | 17 |
2018 | −4 | −1 | 11.8 | 25 | |
March | 2017 | 2 | 9 | 54.0 | 21 |
2018 | −3 | 4 | 23.2 | 25 | |
April | 2017 | 3 | 11 | 70.7 | 20 |
2018 | 8 | 19 | 19.3 | 25 | |
May | 2017 | 8 | 19 | 73.5 | 24 |
2018 | 12 | 23 | 52.1 | 23 | |
June | 2017 | 13 | 23 | 86.9 | 20 |
2018 | 13 | 24 | 43.6 | 22 | |
July | 2017 | 14 | 24 | 78.5 | 18 |
2018 | 16 | 26 | 120.2 | 15 | |
August | 2017 | 15 | 25 | 64.1 | 22 |
2018 | 16 | 27 | 48.5 | 22 | |
September | 2017 | 11 | 18 | 143.3 | 20 |
2018 | 12 | 22 | 58.8 | 27 | |
October | 2017 | 7 | 13 | 95.6 | 18 |
2018 | 8 | 16 | 53.8 | 24 | |
November | 2017 | 3 | 7 | 53.3 | 21 |
2018 | 3 | 8 | 14.3 | 27 | |
December | 2017 | 0 | 4 | 46.9 | 19 |
2018 | −1 | 3 | 66.4 | 20 |
pH | NO3− (mg/L) | NH4+ (mg/L) | P2O5 (mg/100 g) | K2O (mg/100 g) | Mg (mg/100 g) | Organic Matter (%) |
---|---|---|---|---|---|---|
6.25 | 73 | 25 | 23.9 | 98.0 | 21.3 | 2.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosakowska, O.; Węglarz, Z.; Styczyńska, S.; Synowiec, A.; Gniewosz, M.; Bączek, K. Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. hirtum), and Common Oregano (Origanum vulgare L. ssp. vulgare) Essential Oils against Selected Phytopathogens. Molecules 2024, 29, 4617. https://doi.org/10.3390/molecules29194617
Kosakowska O, Węglarz Z, Styczyńska S, Synowiec A, Gniewosz M, Bączek K. Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. hirtum), and Common Oregano (Origanum vulgare L. ssp. vulgare) Essential Oils against Selected Phytopathogens. Molecules. 2024; 29(19):4617. https://doi.org/10.3390/molecules29194617
Chicago/Turabian StyleKosakowska, Olga, Zenon Węglarz, Sylwia Styczyńska, Alicja Synowiec, Małgorzata Gniewosz, and Katarzyna Bączek. 2024. "Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. hirtum), and Common Oregano (Origanum vulgare L. ssp. vulgare) Essential Oils against Selected Phytopathogens" Molecules 29, no. 19: 4617. https://doi.org/10.3390/molecules29194617
APA StyleKosakowska, O., Węglarz, Z., Styczyńska, S., Synowiec, A., Gniewosz, M., & Bączek, K. (2024). Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. hirtum), and Common Oregano (Origanum vulgare L. ssp. vulgare) Essential Oils against Selected Phytopathogens. Molecules, 29(19), 4617. https://doi.org/10.3390/molecules29194617