Molecular Interactions Governing the Rat Aryl Hydrocarbon Receptor Activities of Polycyclic Aromatic Compounds and Predictive Model Development
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking and MD Simulation Results
2.2. QSAR Models of IEQ for PAHs and Derivatives without Halogen
2.3. QSAR Models of Log%-TCDD-Max for Cl-PAHs and Br-PAHs
3. Material and Methods
3.1. Dataset
3.2. Homology Modeling, Molecular Docking, and MD Simulations
3.3. QSAR Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darryl, P.A.; David, J.S.; Daniel, C.M. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: A review. Ecotoxicol. Environ. Saf. 1996, 33, 1–24. [Google Scholar] [CrossRef]
- Davie-Martin, C.L.; Stratton, K.G.; Teeguarden, J.G.; Waters, K.M.; Simonich, S.L.M. Implications of bioremediation of polycyclic aromatic hydrocarbon-contaminated soils for human health and cancer risk. Environ. Sci. Technol. 2017, 51, 9458–9468. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Ma, X.; Wang, Y.; Gao, W.; Liao, C.; Gong, Y.; Jiang, G. Land-ocean exchange mechanism of chlorinated paraffins and polycyclic aromatic hydrocarbons with diverse sources in a coastal zone boundary area, North China: The role of regional atmospheric transmission. Environ. Sci. Technol. 2022, 56, 12852–12862. [Google Scholar] [CrossRef]
- Krzyszczak, A.; Czech, B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Sci. Total Environ. 2021, 788, 147738. [Google Scholar] [CrossRef]
- Lundstedt, S.; Bandowe, B.A.M.; Wilcke, W.; Boll, E.; Christensen, J.H.; Vila, J.; Grifoll, M.; Faure, P.; Biache, C.; Lorgeoux, C.; et al. First intercomparison study on the analysis of oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) in contaminated soil. TrAC Trends Anal. Chem. 2014, 57, 83–92. [Google Scholar] [CrossRef]
- Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumié, M.; Courcot, D.; Garçon, G. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: Sources, analysis and toxicity. Environ. Chem. Lett. 2018, 16, 439–475. [Google Scholar] [CrossRef]
- Idowu, O.; Semple, K.T.; Ramadass, K.; O’connor, W.; Hansbro, P.; Thavamani, P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. Int. 2019, 123, 543–557. [Google Scholar] [CrossRef]
- Marvin, C.H.; Tomy, G.T.; Thomas, P.J.; Holloway, A.C.; Sandau, C.D.; Idowu, I.; Xia, Z. Considerations for prioritization of polycyclic aromatic compounds as environmental contaminants. Environ. Sci. Technol. 2020, 54, 14787–14789. [Google Scholar] [CrossRef]
- Hirano, M.; Hwang, J.H.; Park, H.J.; Bak, S.M.; Iwata, H.; Kim, E.Y. In silico analysis of the interaction of avian aryl hydrocarbon receptors and dioxins to decipher isoform-, ligand-, and species-specific activations. Environ. Sci. Technol. 2015, 49, 3795–3804. [Google Scholar] [CrossRef]
- Nuti, R.; Gargaro, M.; Matino, D.; Dolciami, D.; Grohmann, U.; Puccetti, P.; Fallarino, F.; Macchiarulo, A. Ligand binding and functional selectivity of L-tryptophan metabolites at the mouse aryl hydrocarbon receptor (mAhR). J. Chem. Inf. Model. 2014, 54, 3373–3383. [Google Scholar] [CrossRef]
- Misaki, K.; Kawami, H.; Tanaka, T.; Handa, H.; Nakamura, M.; Matsui, S.; Matsuda, T. Aryl hydrocarbon receptor ligand activity of polycyclic aromatic ketones and polycyclic aromatic quinones. Environ. Toxicol. Chem. 2007, 27, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.Q.; Suzuki, G.; Michinaka, C.; Tue, N.M.; Tuyen, L.H.; Tu, M.B.; Takahashi, S. Characterization of unsubstituted and methylated polycyclic aromatic hydrocarbons in settled dust: Combination of instrumental analysis and in vitro reporter gene assays and implications for cancer risk assessment. Sci. Total Environ. 2021, 788, 147821. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.; Bulow, R.; Engwall, M.; Giesy, J.P.; Larsson, M. Methylated PACs are more potent than their parent compounds: A study of aryl hydrocarbon receptor-mediated activity, degradability, and mixture interactions in the H4IIE-luc assay. Environ. Toxicol. Chem. 2018, 37, 1409–1419. [Google Scholar] [CrossRef]
- Larsson, M.; Hagberg, J.; Giesy, J.P.; Engwall, M. Time-dependent relative potency factors for polycyclic aromatic hydrocarbons and their derivatives in the H4IIE-luc bioassay. Environ. Toxicol. Chem. 2014, 33, 943–953. [Google Scholar] [CrossRef]
- Kanae, B.; Hidetaka, T.; Go, S.; Ning, T.; Kazuichi, H. Evaluation of toxic activities of polycyclic aromatic hydrocarbon derivatives using in vitro bioassays. J. Health Sci. 2009, 55, 601–610. [Google Scholar] [CrossRef]
- Larsson, M.; Giesy, J.P.; Engwall, M. AhR-mediated activities of polycyclic aromatic compound (PAC) mixtures are predictable by the concept of concentration addition. Environ. Int. 2014, 73, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Lubcke-Von Varel, U.; Machala, M.; Ciganek, M.; Neca, J.; Pencikova, K.; Palkova, L.; Vondracek, J.; Loffler, I.; Streck, G.; Reifferscheid, G.; et al. Polar compounds dominate in vitro effects of sediment extracts. Environ. Sci. Technol. 2011, 45, 2384–2390. [Google Scholar] [CrossRef]
- Sonneveld, E.; Jonas, A.; Meijer, O.C.; Brouwer, A.; Van Der Burg, B. Glucocorticoid-enhanced expression of dioxin target genes through regulation of the rat aryl hydrocarbon receptor. Toxicol. Sci. 2007, 99, 455–469. [Google Scholar] [CrossRef]
- Brown, M.R.; Garside, H.; Thompson, E.; Atwal, S.; Bean, C.; Goodall, T.; Sullivan, M.; Graham, M.J. From the cover: Development and application of a dual rat and human ahr activation assay. Toxicol. Sci. 2017, 160, 408–419. [Google Scholar] [CrossRef]
- Ohura, T.; Morita, M.; Makino, M.; Amagai, T.; Shimoi, K. Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 2007, 20, 1237–1241. [Google Scholar] [CrossRef]
- Chai, L.; Zhang, H.; Song, R.; Yang, H.; Yu, H.; Paneth, P.; Kepp, K.P.; Akamatsu, M.; Ji, L. Precision biotransformation of emerging pollutants by human cytochrome p450 using computational-experimental synergy: A case study of tris(1,3-dichloro-2-propyl) phosphate. Environ. Sci. Technol. 2021, 55, 14037–14050. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Yu, H.; Han, C.; Jia, Y.; Wei, X.; Wang, Z. Binding and metabolism of brominated flame retardant beta-1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in human microsomal P450 enzymes: Insights from computational studies. Chem. Res. Toxicol. 2020, 33, 1487–1496. [Google Scholar] [CrossRef]
- Morris, C.J.; Corte, D.D. Using molecular docking and molecular dynamics to investigate protein-ligand interactions. Mod. Phys. Lett. B 2021, 35, 2130002. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef]
- Ng, C.A.; Hungerbuehler, K. Exploring the use of molecular docking to identify bioaccumulative perfluorinated alkyl acids (PFAAs). Environ. Sci. Technol. 2015, 49, 12306–12314. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Zhu, L.; Yan, L.; Lu, D.; Zhang, Q.; Zhao, M.; Li, Z. Never deem lightly the “less harmful” low-molecular-weight PAH, NPAH, and OPAH-disturbance of the immune response at real environmental levels. Chemosphere 2017, 168, 568–577. [Google Scholar] [CrossRef]
- Chlebowski, A.C.; Garcia, G.R.; La Du, J.K.; Bisson, W.H.; Truong, L.; Massey Simonich, S.L.; Tanguay, R.L. Mechanistic investigations into the developmental toxicity of nitrated and heterocyclic PAHs. Toxicol. Sci. 2017, 157, 246–259. [Google Scholar] [CrossRef]
- EPA. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD Environment Health and Safety Publications Series on Testing and Assessment, 2007. In Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; OECD: Paris, France, 2014. [Google Scholar]
- Wang, Y.; Yang, X.; Zhang, S.; Guo, T.L.; Zhao, B.; Du, Q.; Chen, J. Polarizability and aromaticity index govern AhR-mediated potencies of PAHs: A QSAR with consideration of freely dissolved concentrations. Chemosphere 2021, 268, 129343. [Google Scholar] [CrossRef]
- Fei, L.; Huifeng, W.; Lianzhen, L.; Xuehua, L.; Jianmin, Z.; Peijnenburg, W.J.G.M. Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. Ecotoxicol. Environ. Saf. 2012, 80, 273–279. [Google Scholar] [CrossRef]
- Miyagi, S.; Sawamura, S.; Yoshikawa, E.; Dedachi, K.; Itoh, S.; Ishihara-Sugano, M.; Kurita, N. Ab initio fragment molecular orbital calculations on specific interactions between aryl hydrocarbon receptor and dioxin. Int. J. Quantum Chem. 2012, 112, 289–299. [Google Scholar] [CrossRef]
- Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76. [Google Scholar] [CrossRef]
- Lee, E.C.; Kim, D.; Jurečka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K.S. Understanding of assembly phenomena by aromatic-aromatic interactions-benzene dimer and the substituted systems. J. Phys. Chem. A 2007, 111, 3446–3457. [Google Scholar] [CrossRef]
- Borges De Melo, E.; Ataide Martins, J.P.; Marinho Jorge, T.C.; Friozi, M.C.; Castro Ferreira, M.M. Multivariate QSAR study on the antimutagenic activity of flavonoids against 3-NFA on Salmonella typhimurium TA98. Eur. J. Med. Chem. 2010, 45, 4562–4569. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Luo, J.; Lai, T.; Guo, T.; Chen, F.; Zhang, L.; Ding, W.; Zhang, Y. Synthesis and acaricidal activities of scopoletin phenolic ether derivatives: QSAR, molecular docking study and in silico adme predictions. Molecules 2018, 23, 995. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.N.; Pandey, A. Molecular modeling studies on 2,4-disubstituted imidazopyridines as anti-malarials: Atom-based 3D-QSAR, molecular docking, virtual screening, in-silico admet and theoretical analysis. J. Comput. Biophys. Chem. 2021, 20, 267–282. [Google Scholar] [CrossRef]
- Lowell, H.H.; Brian, M.; Lemont, B.K. The Electrotopological State An Atom Index for QSAR. Quant. Struct.-Act. Relat. 1991, 10, 43–51. [Google Scholar] [CrossRef]
- Lowell, H.H. Electrotopological state indices for atom types a novel combination of electronic topological, and valence state information. J. Chem. Inf. Model. 1995, 35, 1039–1045. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C. A new equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity. Comput. Theor. Chem. 2015, 1052, 42–46. [Google Scholar] [CrossRef]
- Cruz-Monteagudo, M.; Borges, F.; Perez Gonzalez, M.; Cordeiro, M.N. Computational modeling tools for the design of potent antimalarial bisbenzamidines: Overcoming the antimalarial potential of pentamidine. Bioorg. Med. Chem. 2007, 15, 5322–5339. [Google Scholar] [CrossRef]
- Comelli, N.C.; Duchowicz, P.R.; Castro, E.A. QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1. J. Pharm. Sci. 2014, 62, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, J.; Xi, L.; Liu, H.; Yao, X.; Liu, M. Validated quantitative structure-activity relationship analysis of a series of 2-aminothiazole based p56Lck inhibitors. Anal. Chim. Acta 2009, 631, 29–39. [Google Scholar] [CrossRef]
- González, M.P.; Terán, C.; Teijeira, M.; González-Moa, M.J. GETAWAY descriptors to predicting A2A adenosine receptors agonists. J. Med. Chem. 2005, 40, 1080–1086. [Google Scholar] [CrossRef]
- Wei, X.; Yang, M.; Zhu, Q.; Wagner, E.D.; Plewa, M.J. Comparative quantitative toxicology and QSAR modeling of the haloacetonitriles: Forcing agents of water disinfection byproduct toxicity. Environ. Sci. Technol. 2020, 54, 8909–8918. [Google Scholar] [CrossRef]
- Marcin, G.; Szewczyk-Golec, K.; Pluskota, R.; Koba, M.; Mądra-Gackowska, K.; Woźniak, A. Application of multivariate adaptive regression splines (MARSplines) for predicting antitumor activity of anthrapyrazole derivatives. Int. J. Mol. Sci. 2022, 23, 5132. [Google Scholar] [CrossRef]
- Bultinck, P.; Vanholme, R.; Popelier PL, A.; De Proft, F.; Geerlings, P. High-speed calculation of AIM charges through the electronegativity equalization method. J. Phys. Chem. A 2004, 108, 10359–10366. [Google Scholar] [CrossRef]
- Huziel, E.S.; Valentin, V.-G.; Stefan, C.; Klaus-Robert, M.; Alexandre, T. Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature. Nat. Commun. 2021, 12, 442. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Liu, X.; Zhang, L.; You, L.; Zhao, J.; Wu, H. Noncovalent interactions between hydroxylated polycyclic aromatic hydrocarbon and DNA: Molecular docking and QSAR study. Environ. Toxicol. Pharmacol. 2011, 32, 373–381. [Google Scholar] [CrossRef]
- Li, T.; Su, W.; Zhong, L.; Liang, W.; Feng, X.; Zhu, B.; Ruan, T.; Jiang, G. An integrated workflow assisted by in silico predictions to expand the list of priority polycyclic aromatic compounds. Environ. Sci. Technol. 2023, 57, 20854–20863. [Google Scholar] [CrossRef]
- Pálková, L.; Vondráček, J.; Trilecová, L.; Ciganek, M.; Pěnčíková, K.; Neča, J.; Milcová, A.; Topinka, J.; Machala, M. The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells. Toxicol. In Vitro 2015, 29, 438–448. [Google Scholar] [CrossRef]
- Yuichi, H.; Jong Seong, K.; Eric, B.H.; John, P.G.; Takeshi, O.; Kurunthachalam, K. Relative potencies of individual chlorinated and brominated polycyclic aromatic hydrocarbons for induction of aryl hydrocarbon receptor-mediated responses. Environ. Sci. Technol. 2009, 43, 2159–2165. [Google Scholar] [CrossRef]
- Seeliger, D.; De Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided. Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Junmei, W.; Romain, M.W.; James, W.C.; Peter, A.K.; David, A.C. Development and testing of a general amber force field. J. Chem. Theory Comput. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Nielsen, J.E.; Mccammon, J.A.; Baker, N.A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004, 32, W665–W667. [Google Scholar] [CrossRef] [PubMed]
- Badry, D.B.; Maxim, T.; Ruben, A.; Charles, L.B. Comparative study of several algorithms for flexible ligand docking. J. Comput. Aid. Mol. Des. 2003, 17, 755–763. [Google Scholar] [CrossRef]
- Lei, H.; Wu, C.; Liu, H.; Duan, Y. Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 2007, 104, 4925–4930. [Google Scholar] [CrossRef]
- Xu, L.; Sun, H.; Li, Y.; Wang, J.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J. Phys. Chem. B 2013, 117, 8408–8421. [Google Scholar] [CrossRef]
- Wei, X.; Yuan, Q.; Serge, B.; Xu, T.; Ma, G.; Yu, H. In silico investigation of gas/particle partitioning equilibrium of polybrominated diphenyl ethers (PBDEs). Chemosphere 2017, 188, 110–118. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, J.; Li, X.; Wang, Y.; Yu, H. Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds. Chemosphere 2016, 148, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jin, L.; Yu, H.; Lv, L.; Chen, C.E.; Ying, G.G. Understanding and predicting the diffusivity of organic chemicals for diffusive gradients in thin-films using a QSPR model. Sci. Total Environ. 2020, 706, 135691. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathi, R.; Dhawan, A. In silico approaches for predictive toxicology. In Vitro Toxicol; Elsevier: Amsterdam, The Netherlands, 2018; pp. 91–109. [Google Scholar]
- Hashemianzadeh, M.; Safarpour, M.A.; Gholamjani-Moghaddam, K.; Mehdipour, A.R. DFT-based QSAR study of valproic acid and its derivatives. QSAR Comb. Sci. 2008, 27, 469–474. [Google Scholar] [CrossRef]
- Andra´ s, F.; Andrej, S.a. Modeller-generation and refinement of homology-based protein structure models. Methods Enzymol. 2003, 374, 461–491. [Google Scholar] [CrossRef]
- Chirico, N.; Gramatica, P. Real external predictivity of qsar models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J. Chem. Inf. Model. 2012, 52, 2044–2058. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Estimation Programs Interface Suite[TM] for Microsoft Windows; United States Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- Erbel, P.J.; Card, P.B.; Karakuzu, O.; Bruick, R.K.; Gardner, K.H. Structural basis for PAS domain heterodimerization in the basic helix-loop-helix-PAS transcription factor hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA 2003, 100, 15504–15509. [Google Scholar] [CrossRef]
- Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003, 111, 1361–1375. [Google Scholar] [CrossRef]
- Faber, S.C.; Giani Tagliabue, S.; Bonati, L.; Denison, M.S. The cellular and molecular determinants of naphthoquinone-dependent activation of the aryl hydrocarbon receptor. Int. J. Mol. Sci. 2020, 21, 4111. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A. 1; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Mark, H.; Eibe, F.; Geoffrey, H.; Bernhard, P.; Peter, R.; Ian, H.W. The Weka data mining software: An update. SIGKDD Explor. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Medicine, N.L.O. UniProtKB/Swiss-Prot, United States Government. Available online: https://www.expasy.org/resources/uniprotkb-swiss-prot (accessed on 10 September 2024).
- Mohaddeseh, B.; Ibrahim, T.; Mehrdad, M.; Gholamreza, A.; Andrew, J.E. Comparative modeling of CCRL1, a key protein in masked immune diseases and virtual screening for finding inhibitor of this protein. Bioinformation 2012, 8, 336–340. [Google Scholar] [CrossRef]
- Motto, I.; Bordogna, A.; Soshilov, A.A.; Denison, M.S.; Bonati, L. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. J. Chem. Inf. Model. 2011, 51, 2868–2881. [Google Scholar] [CrossRef] [PubMed]
- Taklete, S. Dragon for Windows (Software for Molecular Descriptor Calculations), Version 6. Available online: http://www.talete.mi.it/products/dragon_description.htm (accessed on 10 September 2024).
- Saavedra, L.M.; Duchowicz, P.R. Predicting zebrafish (Danio rerio) embryo developmental toxicity through a non-conformational QSAR approach. Sci. Total Environ. 2021, 796, 148820. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, R.; Ballabio, D.; Grisoni, F. Beware of unreliable Q2! A comparative study of regression metrics for predictivity assessment of QSAR models. J. Chem. Inf. Model. 2016, 56, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements two new functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
Descriptor | Physical-Chemical Meanings |
---|---|
SpMin2Bh(m) | Smallest eigenvalue n.2 of Burden matrix weighted by mass Burden eigenvalues |
HATS5p | Leverage-weighted autocorrelation of lag 5 weighted by polarizability GETAWAY descriptors |
σ | Softness |
MATS5s | Moran autocorrelation of lag 5 weighted by I-state 2D autocorrelations |
H6e | H autocorrelation of lag 6 weighted by Sanderson electronegativity GETAWAY descriptors |
E2v | The 2nd component accessibility directional WHIM index weighted by van der Waals volume WHIM descriptor |
SpMax8Bh(i) | Largest eigenvalue n. 8 of Burden matrix weighted by ionization potential Burden eigenvalues |
N | R2 | Q2 | RMSE | BIAS | MAE | MPE | MNE | |
---|---|---|---|---|---|---|---|---|
Model (1) | 62 | 0.80 | 0.80 | 0.53 | 0.00 | 0.40 | 1.55 | −1.14 |
Training set | 43 | 0.80 | 0.80 | 0.53 | 0.00 | 0.40 | 1.40 | −1.09 |
Test set | 19 | 0.79 | 0.79 | 0.57 | −0.03 | 0.46 | 1.02 | −1.08 |
Descriptor | Physical–Chemical Meanings |
---|---|
HGM | Geometric mean on the leverage magnitude GETAWAY descriptors |
EHOMO | The energy of the highest occupied molecular orbital |
ATSC1e | Centred Broto–Moreau autocorrelation of lag 1 weighted by Sanderson electronegativity 2D autocorrelations |
N | R2 | Q2 | RMSE | BIAS | MAE | MPE | MNE | |
---|---|---|---|---|---|---|---|---|
Model (2) | 21 | 0.89 | 0.89 | 0.21 | −0.00 | 0.16 | 0.37 | −0.44 |
Training set | 15 | 0.88 | 0.88 | 0.23 | −0.00 | 0.18 | 0.36 | −0.44 |
Test set | 6 | 0.93 | 0.92 | 0.19 | 0.02 | 0.15 | 0.27 | −0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Chen, B.; Ma, G.; Wei, X.; Yu, H. Molecular Interactions Governing the Rat Aryl Hydrocarbon Receptor Activities of Polycyclic Aromatic Compounds and Predictive Model Development. Molecules 2024, 29, 4619. https://doi.org/10.3390/molecules29194619
Jin L, Chen B, Ma G, Wei X, Yu H. Molecular Interactions Governing the Rat Aryl Hydrocarbon Receptor Activities of Polycyclic Aromatic Compounds and Predictive Model Development. Molecules. 2024; 29(19):4619. https://doi.org/10.3390/molecules29194619
Chicago/Turabian StyleJin, Lingmin, Bangyu Chen, Guangcai Ma, Xiaoxuan Wei, and Haiying Yu. 2024. "Molecular Interactions Governing the Rat Aryl Hydrocarbon Receptor Activities of Polycyclic Aromatic Compounds and Predictive Model Development" Molecules 29, no. 19: 4619. https://doi.org/10.3390/molecules29194619
APA StyleJin, L., Chen, B., Ma, G., Wei, X., & Yu, H. (2024). Molecular Interactions Governing the Rat Aryl Hydrocarbon Receptor Activities of Polycyclic Aromatic Compounds and Predictive Model Development. Molecules, 29(19), 4619. https://doi.org/10.3390/molecules29194619