A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of MT-ZLSH and MT-ZLSH-Li+
2.2. Effect of pH on Adsorption
2.3. Adsorption Isotherms
2.4. Adsorption Thermodynamics
2.5. Kinetic of Adsorption
2.6. Desorption of Methylene Blue
2.7. Kinetics of Photocatalysis
2.8. Future Directions: Incorporating Lithium Waste into Adsorbent Materials
3. Materials and Methods
3.1. Reagents
3.2. Materials Characterization
3.3. Methylene Blue Adsorption Assays
3.3.1. Adsorption as Function of the pH
3.3.2. Kinetic of Methylene Adsorption
3.3.3. Isotherms of Methylene Blue Adsorption
3.3.4. Thermodynamics of Methylene Blue Adsorption
3.3.5. Desorption of Methylene Blue
3.4. Photocatalytic Degradation of Methylene Blue
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tara, N.; Arslan, M.; Hussain, Z.; Iqbal, M.; Khan, Q.M.; Afzal, M. On-Site Performance of Floating Treatment Wetland Macrocosms Augmented with Dye-Degrading Bacteria for the Remediation of Textile Industry Wastewater. J. Clean. Prod. 2019, 217, 541–548. [Google Scholar] [CrossRef]
- Chung, K.T. Azo Dyes and Human Health: A Review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Khalid, R.; Najeeb, J.; Hussain, Z. Fundamentals and Photocatalysis of Methylene Blue Dye Using Various Nanocatalytic Assemblies—A Critical Review. J. Clean. Prod. 2021, 298, 126567. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Reza Mosayebi, M.; Fulazzaky, M.A.; Eskandari, Z.; Sanayee, R. Combination of TiO2 Microreactor and Electroflotation for Organic Pollutant Removal from Textile Dyeing Industry Wastewater. Alex. Eng. J. 2020, 59, 549–563. [Google Scholar] [CrossRef]
- Arora, C.; Soni, S.; Sahu, S.; Mittal, J.; Kumar, P.; Bajpai, P.K. Iron Based Metal Organic Framework for Efficient Removal of Methylene Blue Dye from Industrial Waste. J. Mol. Liq. 2019, 284, 343–352. [Google Scholar] [CrossRef]
- Vieira, M.M.; Pereira Dornelas, A.S.; Carlos, T.D.; Pallini, A.; Gravato, C.; Pereira, D.H.; Sarmento, R.A.; Cavallini, G.S. When Treatment Increases the Contaminant’s Ecotoxicity: A Study of the Fenton Process in the Degradation of Methylene Blue. Chemosphere 2021, 283, 131117. [Google Scholar] [CrossRef]
- Benjwal, P.; Kumar, M.; Chamoli, P.; Kar, K.K. Enhanced Photocatalytic Degradation of Methylene Blue and Adsorption of Arsenic(Iii) by Reduced Graphene Oxide (RGO)-Metal Oxide (TiO2/Fe3O4) Based Nanocomposites. RSC Adv. 2015, 5, 73249–73260. [Google Scholar] [CrossRef]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on Recent Advances of Carbon Based Adsorbent for Methylene Blue Removal from Waste Water. Mater. Today Chem. 2020, 16, 100233. [Google Scholar] [CrossRef]
- Supelano, G.I.; Gómez Cuaspud, J.A.; Moreno-Aldana, L.C.; Ortiz, C.; Trujillo, C.A.; Palacio, C.A.; Parra Vargas, C.A.; Mejía Gómez, J.A. Synthesis of Magnetic Zeolites from Recycled Fly Ash for Adsorption of Methylene Blue. Fuel 2020, 263, 116800. [Google Scholar] [CrossRef]
- Huang, T.; Yan, M.; He, K.; Huang, Z.; Zeng, G.; Chen, A.; Peng, M.; Li, H.; Yuan, L.; Chen, G. Efficient Removal of Methylene Blue from Aqueous Solutions Using Magnetic Graphene Oxide Modified Zeolite. J. Colloid Interface Sci. 2019, 543, 43–51. [Google Scholar] [CrossRef]
- Mei, S.; Gu, J.; Ma, T.; Li, X.; Hu, Y.; Li, W.; Zhang, J.; Han, Y. N-Doped Activated Carbon from Used Dyeing Wastewater Adsorbent as a Metal-Free Catalyst for Acetylene Hydrochlorination. Chem. Eng. J. 2019, 371, 118–129. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of Chitosan-Based Adsorbents Used in Heavy Metal Adsorption: A Review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Mallapur, V.P.; Oubagaranadin, J.U.K. A Brief Review on the Synthesis of Zeolites from Hazardous Wastes. Trans. Indian Ceram. Soc. 2017, 76, 1–13. [Google Scholar] [CrossRef]
- Król, M. Natural vs. Synthetic Zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Garcia, G.; Cabrera, S.; Hedlund, J.; Mouzon, J. Selective Synthesis of FAU-Type Zeolites. J. Cryst. Growth 2018, 489, 36–41. [Google Scholar] [CrossRef]
- Krstić, V.; Urošević, T.; Pešovski, B. A Review on Adsorbents for Treatment of Water and Wastewaters Containing Copper Ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Arroyave-Manco, J.C.; Arboleda-Echavarría, J.C.; Hoyos-Ayala, D.Á.; Echavarría-Isaza, A.P. LTA and FAU Zeolites from Coal Combustion and Residue By-Products for Chromium Removal Application. DYNA 2018, 85, 150–160. [Google Scholar] [CrossRef]
- Izidoro, J.C.; Kim, M.C.; Bellelli, V.F.; Pane, M.C.; Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. Synthesis of Zeolite A Using the Waste of Iron Mine Tailings Dam and Its Application for Industrial Effluent Treatment. J. Sustain. Min. 2019, 18, 277–286. [Google Scholar] [CrossRef]
- Yoldi, M.; Fuentes-Ordoñez, E.G.; Korili, S.A.; Gil, A. Zeolite Synthesis from Industrial Wastes. Microporous Mesoporous Mater. 2019, 287, 183–191. [Google Scholar] [CrossRef]
- Rożek, P.; Król, M.; Mozgawa, W. Geopolymer-Zeolite Composites: A Review. J. Clean. Prod. 2019, 230, 557–579. [Google Scholar] [CrossRef]
- Li, Z.; Wu, L.; Sun, S.; Gao, J.; Zhang, H.; Zhang, Z.; Wang, Z. Disinfection and Removal Performance for Escherichia coli, Toxic Heavy Metals and Arsenic by Wood Vinegar-Modified Zeolite. Ecotoxicol. Environ. Saf. 2019, 174, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Miao, G.; Xu, G.; Luo, J.; Yang, C.; Xiao, J. Mixed (Ag+, Ca2+)-LTA Zeolite with Suitable Pore Feature for Effective Separation of C3H6/C3H8. Chem. Eng. J. 2022, 450, 137913. [Google Scholar] [CrossRef]
- Lin, H.; Jie, B.; Ye, J.; Zhai, Y.; Luo, Z.; Shao, G.; Chen, R.; Zhang, X.; Yang, Y. Recent Advance of Macroscopic Metal-Organic Frameworks for Water Treatment: A Review. Surf. Interfaces 2023, 36, 102564. [Google Scholar] [CrossRef]
- Campoverde, J.; Guaya, D. From Waste to Added-Value Product: Synthesis of Highly Crystalline LTA Zeolite from Ore Mining Tailings. Nanomaterials 2023, 13, 1295. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, X.; Jin, M.; Akinoglu, E.M.; Zhou, G.; Shui, L. Nitrogen Defects-Rich Porous Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution. J. Colloid. Interface Sci. 2020, 578, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Zheng, M.; Wang, Z.; Liu, S.; Li, X.; Li, X.; Wang, J.; Zhang, T. Catalytic Upgrading of Ethanol to Butanol over a Binary Catalytic System of FeNiOx and LiOH. Chin. J. Catal. 2020, 41, 672–678. [Google Scholar] [CrossRef]
- De Luna, M.D.G.; Doliente, L.M.T.; Ido, A.L.; Chung, T.W. In Situ Transesterification of Chlorella sp. Microalgae Using LiOH-Pumice Catalyst. J. Environ. Chem. Eng. 2017, 5, 2830–2835. [Google Scholar] [CrossRef]
- Lamb, K.; Hla, S.S.; Dolan, M. Ammonia Decomposition Kinetics over LiOH-Promoted, A-Al2O3-Supported Ru Catalyst. Int. J. Hydrogen Energy 2019, 44, 3726–3736. [Google Scholar] [CrossRef]
- Sun, B.; Chen, W.; Zheng, W.; Zhang, H.; Liu, T.X.; Elmarakbi, A.; Fu, Y. In-Situ Controlled Growth of Ultrafine CeO2 Nanoparticles on Reduced Graphene Oxides for Efficient Photocatalytic Degradation. J. Catal. 2023, 424, 106–120. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, L.; Wu, M.; Wang, F. Order-of-Magnitude Increase in Rate of Methane Dry Reforming over Ni/CeO2-SiC Catalysts by Microwave Catalysis. Appl. Catal. B 2023, 337, 122927. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, J.; Cai, W.; Yang, Y.; Yi, M.; Xiang, L. Effects of Temperature on Conversion of Li2CO3 to LiOH in Ca(OH)2 Suspension. Particuology 2017, 34, 97–102. [Google Scholar] [CrossRef]
- Joo, S.; Shim, H.-W.; Choi, J.-J.; Lee, C.; Kim, D.-G. A Method of Synthesizing Lithium Hydroxide Nanoparticles Using Lithium Sulfate from Spent Batteries by 2-Step Precipitation Method. Korean J. Met. Mater. 2020, 58, 286–291. [Google Scholar] [CrossRef]
- Dickson, M.S.; Shumway, S.G.; Neilsen, G.; Navrotsky, A.; Woodfield, B.F. Structural and Thermodynamic Effects of Hydration in Na-Zeolite A (LTA) from Low-Temperature Heat Capacity. J. Chem. Thermodyn. 2023, 181, 107023. [Google Scholar] [CrossRef]
- Madhu, J.; Madurai Ramakrishnan, V.; Santhanam, A.; Natarajan, M.; Palanisamy, B.; Velauthapillai, D.; Lan Chi, N.T.; Pugazhendhi, A. Comparison of Three Different Structures of Zeolites Prepared by Template-Free Hydrothermal Method and Its CO2 Adsorption Properties. Environ. Res. 2022, 214, 113949. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Luo, Y.; Geng, J.; Cui, R.; Qu, Y.; Sun, L.; Dou, Q.; Fu, H. Adsorption Behavior of Iodide Ion by Silver-Doped Zeolite 4A in LiCl-KCl Molten Salt. Adv. Powder Technol. 2022, 33, 103415. [Google Scholar] [CrossRef]
- Tahraoui, Z.; Nouali, H.; Marichal, C.; Forler, P.; Klein, J.; Daou, T.J. Influence of the Compensating Cation Nature on the Water Adsorption Properties of Zeolites. Molecules 2020, 25, 944. [Google Scholar] [CrossRef] [PubMed]
- International Zeolite Association Database of Zeolites Structure. Available online: https://asia.iza-structure.org/IZA-SC/ftc_table.php (accessed on 28 April 2022).
- Zhao, H.; Wang, Z.; Li, Q.; Wu, T.; Zhang, M.; Shi, Q. Water Sorption on Composite Material “Zeolite 13X Modified by LiCl and CaCl2”. Microporous Mesoporous Mater. 2020, 299, 110109. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Huang, H.; Li, J.; Kobayashi, N.; Kubota, M. Effect of Carbon Nanoadditives on Lithium Hydroxide Monohydrate-Based Composite Materials for Low Temperature Chemical Heat Storage. Energies 2017, 10, 644. [Google Scholar] [CrossRef]
- Gadikota, G. Connecting the Morphological and Crystal Structural Changes during the Conversion of Lithium Hydroxide Monohydrate to Lithium Carbonate Using Multi-Scale X-Ray Scattering Measurements. Minerals 2017, 7, 169. [Google Scholar] [CrossRef]
- Esaifan, M.; Warr, L.N.; Grathoff, G.; Meyer, T.; Schafmeister, M.-T.; Kruth, A.; Testrich, H. Synthesis of Hydroxy-Sodalite/Cancrinite Zeolites from Calcite-Bearing Kaolin for the Removal of Heavy Metal Ions in Aqueous Media. Minerals 2019, 9, 484. [Google Scholar] [CrossRef]
- Asrori, M.R.; Santoso, A.; Sumari, S. Initial Defect Product on Immiscible Mixture of Palm Oil: Ethanol by Amphiphilic Chitosan/Zeolite LTA as Optimization of Microemulsion Fuel. Ind. Crop. Prod. 2022, 180, 114727. [Google Scholar] [CrossRef]
- Cao, Z.; Song, Q.; Yu, G.; Liu, Z.; Cong, S.; Tan, Z.; Deng, Y. Novel 3-Benzylidene/Benzylphthalide Mannich Base Derivatives as Potential Multifunctional Agents for the Treatment of Alzheimer’s Disease. Bioorg Med. Chem. 2021, 35, 116074. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, S.; Zhao, J.; Wang, X.; Huang, H.; Wang, Y.; Deng, L. Development of Lithium Hydroxide-Metal Organic Framework-Derived Porous Carbon Composite Materials for Efficient Low Temperature Thermal Energy Storage. Microporous Mesoporous Mater. 2021, 328, 111455. [Google Scholar] [CrossRef]
- Noroozi, R.; Al-Musawi, T.J.; Kazemian, H.; Kalhori, E.M.; Zarrabi, M. Removal of Cyanide Using Surface-Modified Linde Type-A Zeolite Nanoparticles as an Efficient and Eco-Friendly Material. J. Water Process Eng. 2018, 21, 44–51. [Google Scholar] [CrossRef]
- Miao, J.L.; Ren, J.Q.; Li, H.J.; Wu, D.G.; Wu, Y.C. Mesoporous Crosslinked Chitosan-Activated Clinoptilolite Biocomposite for the Removal of Anionic and Cationic Dyes. Colloids Surf. B Biointerfaces 2022, 216, 112579. [Google Scholar] [CrossRef] [PubMed]
- Sousa, B.B.; Rego, J.A.R.; Brasil, D.S.B.; Martelli, M.C. Synthesis and Characterization of Sodalite-Type Zeolite Obtained from Kaolin Waste. Ceramica 2020, 66, 404–412. [Google Scholar] [CrossRef]
- Kayiran, S.B.; Darkrim, F.L. Synthesis and Ionic Exchanges of Zeolites for Gas Adsorption. Surf. Interface Anal. 2002, 34, 100–104. [Google Scholar] [CrossRef]
- Tehubijuluw, H.; Subagyo, R.; Yulita, M.F.; Nugraha, R.E.; Kusumawati, Y.; Bahruji, H.; Jalil, A.A.; Hartati, H.; Prasetyoko, D. Utilization of Red Mud Waste into Mesoporous ZSM-5 for Methylene Blue Adsorption-Desorption Studies. Environ. Sci. Pollut. Res. 2021, 28, 37354–37370. [Google Scholar] [CrossRef]
- Malonda Shabani, J.; Babajide, O.; Oyekola, O.; Petrik, L. Synthesis of Hydroxy Sodalite from Coal Fly Ash for Biodiesel Production from Waste-Derived Maggot Oil. Catalysts 2019, 9, 1052. [Google Scholar] [CrossRef]
- Rida, K.; Bouraoui, S.; Hadnine, S. Adsorption of Methylene Blue from Aqueous Solution by Kaolin and Zeolite. Appl. Clay Sci. 2013, 83–84, 99–105. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, Y.; Marthala, V.R.R.; Thomas, B.; Romanova, E.; Hunger, M. Characterization and Acidic Properties of Aluminum-Exchanged Zeolites X and Y. J. Phys. Chem. C 2008, 112, 3811–3818. [Google Scholar] [CrossRef]
- Batool, S.R.; Sushkevich, V.L.; van Bokhoven, J.A. Correlating Lewis Acid Activity to Extra-Framework Aluminum Species in Zeolite Y Introduced by Ion-Exchange. J. Catal. 2022, 408, 24–35. [Google Scholar] [CrossRef]
- Vayssilov, G.N.; Aleksandrov, H.A.; Dib, E.; Costa, I.M.; Nesterenko, N.; Mintova, S. Superacidity and Spectral Signatures of Hydroxyl Groups in Zeolites. Microporous Mesoporous Mater. 2022, 343, 112144. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, D.; Zhang, G.; Cai, C.; Zhang, C.; Qiu, G.; Zheng, K.; Wu, Z. Adsorption of Methylene Blue from Aqueous Solution onto Multiporous Palygorskite Modified by Ion Beam Bombardment: Effect of Contact Time, Temperature, pH and Ionic Strength. Appl. Clay Sci. 2013, 83–84, 137–143. [Google Scholar] [CrossRef]
- Le, T.P.; Luong, H.V.T.; Nguyen, H.N.; Pham, T.K.T.; Trinh Le, T.L.; Tran, T.B.Q.; Ngo, T.N.M. Insight into Adsorption-Desorption of Methylene Blue in Water Using Zeolite NaY: Kinetic, Isotherm and Thermodynamic Approaches. Results Surf. Interfaces 2024, 16, 100281. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Reghioua, A.; Yaseen, Z.M. Zwitterion Composite Chitosan-Epichlorohydrin/Zeolite for Adsorption of Methylene Blue and Reactive Red 120 Dyes. Int. J. Biol. Macromol. 2020, 163, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z.; He, D.; Yang, H.; Jin, D.; Qu, J.; Zhang, Y. Comparative Study on the Adsorption Capacities of the Three Black Phosphorus-Based Materials for Methylene Blue in Water. Sustainability 2020, 12, 8335. [Google Scholar] [CrossRef]
- Aysan, H.; Edebali, S.; Ozdemir, C.; Celik Karakaya, M.; Karakaya, N. Use of Chabazite, a Naturally Abundant Zeolite, for the Investigation of the Adsorption Kinetics and Mechanism of Methylene Blue Dye. Microporous Mesoporous Mater. 2016, 235, 78–86. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Hor, K.Y.; Chee, J.M.C.; Chong, M.N.; Jin, B.; Saint, C.; Poh, P.E.; Aryal, R. Evaluation of Physicochemical Methods in Enhancing the Adsorption Performance of Natural Zeolite as Low-Cost Adsorbent of Methylene Blue Dye from Wastewater. J. Clean. Prod. 2016, 118, 197–209. [Google Scholar] [CrossRef]
- Ismail, B.; Hussain, S.T.; Akram, S. Adsorption of Methylene Blue onto Spinel Magnesium Aluminate Nanoparticles: Adsorption Isotherms, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2013, 219, 395–402. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, F.; Wei, W.; Gao, H.; Zhang, K.; Zhang, G.; Xu, Y.; Zhang, P. Efficient and Fast Adsorption of Methylene Blue Dye onto a Nanosheet MFI Zeolite. J. Solid State Chem. 2021, 295, 121917. [Google Scholar] [CrossRef]
- Tran, H.N.; Lima, E.C.; Juang, R.-S.; Bollinger, J.-C.; Chao, H.-P. Thermodynamic Parameters of Liquid–Phase Adsorption Process Calculated from Different Equilibrium Constants Related to Adsorption Isotherms: A Comparison Study. J. Environ. Chem. Eng. 2021, 9, 106674. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Lazaridis, N.K.; Mitropoulos, A.C. Removal of Dyes from Aqueous Solutions with Untreated Coffee Residues as Potential Low-Cost Adsorbents: Equilibrium, Reuse and Thermodynamic Approach. Chem. Eng. J. 2012, 189–190, 148–159. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Abdelrahman, E.A. Hydrothermal Tuning of the Morphology and Crystallite Size of Zeolite Nanostructures for Simultaneous Adsorption and Photocatalytic Degradation of Methylene Blue Dye. J. Mol. Liq. 2017, 242, 364–374. [Google Scholar] [CrossRef]
- Almeida, C.A.; Oliveira AF, d.e.; Pacheco, A.A.; Lopes, R.P.; Neves, A.A.; Lopes Ribeiro de Queiroz, M.E. Characterization and Evaluation of Sorption Potential of the Iron Mine Waste after Samarco Dam Disaster in Doce River Basin—Brazil. Chemosphere 2018, 209, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.L.; Nascimento, R.M.; Pergher, S.B. Structural Characterisation of Zeolites Derived from Lithium Extraction: Insights into Channel- and Cage-Type Frameworks. Minerals 2024, 14, 526. [Google Scholar] [CrossRef]
- Huang, A.; Wang, N.; Caro, J. Synthesis of Multi-Layer Zeolite LTA Membranes with Enhanced Gas Separation Performance by Using 3-Aminopropyltriethoxysilane as Interlayer. Microporous Mesoporous Mater. 2012, 164, 294–301. [Google Scholar] [CrossRef]
- Farghali, M.A.; Abo-Aly, M.M.; Salaheldin, T.A. Modified Mesoporous Zeolite-A/Reduced Graphene Oxide Nanocomposite for Dual Removal of Methylene Blue and Pb2+ Ions from Wastewater. Inorg. Chem. Commun. 2021, 126, 108487. [Google Scholar] [CrossRef]
- Xia, Y.; Yao, Q.; Zhang, W.; Zhang, Y.; Zhao, M. Comparative Adsorption of Methylene Blue by Magnetic Baker’s Yeast and EDTAD-Modified Magnetic Baker’s Yeast: Equilibrium and Kinetic Study. Arab. J. Chem. 2019, 12, 2448–2456. [Google Scholar] [CrossRef]
- Sapawe, N.; Jalil, A.A.; Triwahyono, S.; Shah, M.I.A.; Jusoh, R.; Salleh, N.F.M.; Hameed, B.H.; Karim, A.H. Cost-Effective Microwave Rapid Synthesis of Zeolite NaA for Removal of Methylene Blue. Chem. Eng. J. 2013, 229, 388–398. [Google Scholar] [CrossRef]
- EL-Mekkawi, D.M.; Ibrahim, F.A.; Selim, M.M. Removal of Methylene Blue from Water Using Zeolites Prepared from Egyptian Kaolins Collected from Different Sources. J. Environ. Chem. Eng. 2016, 4, 1417–1422. [Google Scholar] [CrossRef]
- Kulawong, S.; Chanlek, N.; Osakoo, N. Facile Synthesis of Hierarchical Structure of NaY Zeolite Using. Silica from Cogon Grass for Acid. Blue 185 Removal from Water. J. Environ. Chem. Eng. 2020, 8, 104114. [Google Scholar] [CrossRef]
- Kazemi, J.; Javanbakht, V. Alginate Beads Impregnated with Magnetic Chitosan@Zeolite Nanocomposite for Cationic Methylene Blue Dye Removal from Aqueous Solution. Int. J. Biol. Macromol. 2020, 154, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Li, S.; Zhong, W.; Wei, W. Enhanced Methylene Blue Adsorption onto Activated Reed-Derived Biochar by Tannic Acid. J. Mol. Liq. 2018, 268, 658–666. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Siong, V.L.E.; Lee, K.M.; Juan, J.C.; Lai, C.W.; Tai, X.H.; Khe, C.S. Removal of Methylene Blue Dye by Solvothermally Reduced Graphene Oxide: A Metal-Free Adsorption and Photodegradation Method. RSC Adv. 2019, 9, 37686–37695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Z.; Zhao, S.; Xiang, S.; Gao, W.; Wang, L.; Xu, J.; Wang, Y. The Promoting Effect of Alkali Metal and H2O on Mn-MOF Derivatives for Toluene Oxidation: A Combined Experimental and Theoretical Investigation. J. Catal. 2022, 415, 218–235. [Google Scholar] [CrossRef]
- Ayoub, M.; Abdullah, A.Z.; Ahmad, M.; Sultana, S. Performance of Lithium Modified Zeolite Y Catalyst in Solvent-Free Conversion of Glycerol to Polyglycerols. J. Taibah Univ. Sci. 2014, 8, 231–235. [Google Scholar] [CrossRef]
- Alenad, A.M.; Waheed, M.S.; Aman, S.; Ahmad, N.; Khan, A.R.; Khosa, R.Y.; Ansari, M.Z.; Khan, S.A.; Farid, H.M.T.; Taha, T.A.M. Visible Light Driven Ni Doped Hematite for Photocatalytic Reduction of Noxious Methylene Blue. Mater. Res. Bull. 2023, 165, 112306. [Google Scholar] [CrossRef]
- González-Crisostomo, J.C.; López-Juárez, R.; Yocupicio-Gaxiola, R.I.; Villanueva, E.; Zavala-Flores, E.; Petranovskii, V. Chabazite Synthesis and Its Exchange with Ti, Zn, Cu, Ag and Au for Efficient Photocatalytic Degradation of Methylene Blue Dye. Int. J. Mol. Sci. 2022, 23, 1730. [Google Scholar] [CrossRef]
- Mahamud, M.; Taddesse, A.M.; Bogale, Y.; Bezu, Z. Zeolite Supported CdS/TiO2/CeO2 Composite: Synthesis, Characterization and Photocatalytic Activity for Methylene Blue Dye Degradation. Mater. Res. Bull. 2023, 161, 112176. [Google Scholar] [CrossRef]
- Dharamalingam, K.; Ramasundaram, S.; Ponnusamy, V.K.; Bhuvaneswari, K.; Ramalingam, G.; Balasankar, A.; Jeyaram, S.; Pazhanivel, T.; Florence, S.S.; Thangavel, E.; et al. Facile Synthesis of Polymer-Based Magnesium Hydroxide Nanocomposites for Photocatalytic Degradation for Methylene Blue Dye and Antibacterial Application. Biomass Convers. Biorefinery 2023, 13, 13539–13552. [Google Scholar] [CrossRef]
- Guaya, D.; Maza, L.; Angamarca, A.; Mendoza, E.; García, L.; Valderrama, C.; Cortina, J.L. Fe3+/Mn2+ (Oxy)Hydroxide Nanoparticles Loaded onto Muscovite/Zeolite Composites (Powder, Pellets and Monoliths): Phosphate Carriers from Urban Wastewater to Soil. Nanomaterials 2022, 12, 3848. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm Models for Adsorption of Heavy Metals from Water—A Review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Comparison of Linearization Methods for Modeling the Langmuir Adsorption Isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Xu, L.; Chen, C.; Huo, J.-B.; Chen, X.; Yang, J.-C.E.; Fu, M.-L. Iron Hydroxyphosphate Composites Derived from Waste Lithium-Ion Batteries for Lead Adsorption and Fenton-like Catalytic Degradation of Methylene Blue. Environ. Technol. Innov. 2019, 16, 100504. [Google Scholar] [CrossRef]
Major Elements * | |||||||||
ID | Al2O3 (%) | SiO2 (%) | P2O5 (%) | S (%) | K2O (%) | CaO (%) | Fe2O3 (%) | ZnO (%) | BaO (%) |
MT-ZLSH | 18.1 | 26.1 | ND | 0.3 | 0.1 | 1.7 | 2.5 | 0.2 | <lq 1 |
MT-ZLSH-Li+ | 21.2 | 28.4 | <lq | 0.2 | 0.0 | 1.9 | 2.7 | 0.2 | 1.3 |
Trace Elements * | |||||||||
ID | Co3O4 ppm | CuO ppm | ZnO ppm | As2O3 ppm | Ba ppm | PbO ppm | MnO ppm | ||
MT-ZLSH | 0.06 | 0.05 | 0.06 | 0.02 | 0.07 | 0.02 | 0.11 | ||
MT-ZLSH-Li+ | 0.06 | 0.05 | 0.06 | 0.02 | 0.07 | 0.02 | 0.11 |
Temperature K | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
(mg·g−1) | (L·mg−1) | R2 | 1/n | (mg·g−1) | R2 | |
293.7 | 23.4 | 0.24 | 1.00 | 0.50 | 3.07 | 0.78 |
299.1 | 24.8 | 0.24 | 1.00 | 0.50 | 3.45 | 0.73 |
304.2 | 28.8 | 0.20 | 0.99 | 0.49 | 3.97 | 0.72 |
Temperature (K) | R2 | ΔG0 (kJ·mol−1) | ΔS0 (kJ·mol−1·K−1) | ΔH0 (kJ·mol−1) |
---|---|---|---|---|
293.7 | 0.93 | −27.4 | 0.06 | −10.6 |
299.1 | −28.0 | |||
304.2 | −28.0 |
Model | Kinetic Parameters | MT-ZLSH-Li+ |
---|---|---|
Pseudo-first order | qe (mg·g−1) | 22.61 |
k1 (h−1) | 0.18 | |
R2 | 0.85 | |
Pseudo-second order | qe (mg·g−1) | 37.26 |
k2 (g·mg−1·h−1) | 0.001 | |
R2 | 0.98 | |
Intraparticle diffusion | kt1 (mg·g−1.s−1/2) | 361.05 |
R2 | 0.95 | |
kt2 (mg·g−1·s−1/2) | 114.13 | |
R2 | 0.72 | |
kt3 (mg·g−1·s−1/2) | 1.64 | |
R2 | 0.95 | |
kt4 (mg·g−1·s−1/2) | 2.93 | |
R2 | 0.94 | |
HPDF film diffusion | Df (m2·s−1) | 1.72 × 10−8 |
R2 | 0.85 | |
HPDM particle diffusion | Dp (m2·s−1) | 1.75 × 10−13 |
R2 | 0.89 |
# | Solution | pH | 1st cycle (mg·g−1) | (mg·g−1) | 2nd cycle (mg·g−1) |
---|---|---|---|---|---|
1 | NaOH | 11 | 29.3 ± 0.1 | 1.1 ± 5.7 | 6.1 ± 1 |
2 | HCl | 3 | 29.1 ± 0.3 | 10.7 ± 0.0 | 25.5 ± 1 |
Zeolite | R2 | Kobs (min−1) |
---|---|---|
MT-ZLSH-Li+ | 0.97 | 0.003 |
Catalyst | Degradation | Kobs (min−1) | Reference |
---|---|---|---|
Lithium exchanged zeolite obtained from mining tailing MT-ZLSH-Li+ | 77%/180 min | 0.003 | This study |
Zeolite synthesized using aluminium isopropoxide | 24.85%/150 min | 0.012 | [67] |
Zeolite synthesized using sodium aluminate | 83.28%/60 min | 0.013 | |
Zeolite supported CdS/TiO2/CeO2 composite | 99.9%/120 min | ~0.0201 | [84] |
Reduced graphene oxide (rGO)–metal oxide (TiO2/Fe3O4) based nanocomposites | 100%/5 min | 0.56 | [7] |
Chabazite exchanged Ag AgCHA | 71.37%/120 min | 0.0066 | [83] |
Chabazite exchanged Cu CuCHA | 98.92%/120 min | 0.0266 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guaya, D.; Debut, A.; Campoverde, J. A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites. Molecules 2024, 29, 4643. https://doi.org/10.3390/molecules29194643
Guaya D, Debut A, Campoverde J. A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites. Molecules. 2024; 29(19):4643. https://doi.org/10.3390/molecules29194643
Chicago/Turabian StyleGuaya, Diana, Alexis Debut, and Jhuliana Campoverde. 2024. "A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites" Molecules 29, no. 19: 4643. https://doi.org/10.3390/molecules29194643
APA StyleGuaya, D., Debut, A., & Campoverde, J. (2024). A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites. Molecules, 29(19), 4643. https://doi.org/10.3390/molecules29194643