The Impact of Support and Reduction Temperature on the Catalytic Activity of Bimetallic Nickel-Zirconium Catalysts in the Hydrocracking Reaction of Algal Oil from Spirulina Platensis
Abstract
:1. Introduction
2. Results
2.1. Textural and Structural Characterization
2.2. Reduction Behavior of Prepared Bimetallic Catalytic Systems—TPR and XRD Results
2.3. The Impact of the Reduction Temperature of Bimetallic Ni-Zr Catalysts on Their Acidity—TPD-NH3 Results
2.4. Catalytic Activity of Prepared Bimetallic Nickel-Zirconium Catalysts
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Characterization of the Physicochemical Properties of Prepared Catalysts
4.3. Catalytic Activity Performance and Chromatographic Analysis of Products of Hydrocracking of Alagal Oil
Chromatographic Analysis of Obtained Products and Defining of Oil Conversion
5. Conclusions
- ⮚
- The acidity of the studied catalysts decreased in the following order:
- ⮚
- The worst reducibility and the stronger metal-support interaction were observed for 5%Ni-5%Zr/Al2O3 catalyst;
- ⮚
- The highest conversion and selectivity towards the gasoil fraction were noted for 5%Ni-5%ZrBEA zeolite catalyst;
- ⮚
- The highest selectivity towards the gasoline and kerosene fractions was found for 5%Ni-5%Zr/Al2O3 catalysts;
- ⮚
- The catalytic activity suggests that the specific surface area, pore volume, average pore radius, reduction behavior and acidity are the key factors influencing the course of the hydrocracking of algal oil process. The application of different porous materials as the support for catalysts for this reaction can allow controlling the kind of product formation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saravanan, A.; Senthil Kumar, P.; Badawi, M.; Mohanakrishna, G.; Aminabhavi, T.M. Valorization of micro-algae biomass for the development of green biorefinery: Perspectives on techno-economic analysis and the way towards sustainability. Chem. Eng. J. 2023, 453, 139754. [Google Scholar] [CrossRef]
- Galadima, A.; Masudi, A.; Muraza, O. Towards sustainable catalysts in hydrodeoxygenation of algae-derived oils: A critical review. Mol. Catal. 2022, 523, 112131. [Google Scholar] [CrossRef]
- Al Alwan, B.; Salley, S.O.; Ng, K.Y.S. Hydrocracking of DDGS corn oil over transition metal carbides supported on Al-SBA-15: Effect of fractional sum of metal electronegativities. Appl. Catal. A Gen. 2014, 485, 58–66. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Zhuang, S.; Li, R.; Hu, L. Acid-etched Pt/Al-MCM-41 catalysts for fuel production by one-step hydrotreatment of Jatropha oil. GCB Bioenergy 2021, 13, 679–690. [Google Scholar] [CrossRef]
- Al-Muttaqii, M.; Kurniawansyah, F.; Prajitno, D.H.; Roesyadi, A. Hydrocracking of Coconut Oil over Ni-Fe/HZSM-5 Catalyst to Produce Hydrocarbon Biofuel. Indones. J. Chem. 2019, 19, 319–327. [Google Scholar] [CrossRef]
- Burimsitthigul, T.; Yoosuk, B.; Ngamcharussrivichai, C.; Prasassarakich, P. Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts. Renew. Energy 2021, 163, 1648–1659. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Trisunaryanti, W.; Triyono, T. Nickel Supported Parangtritis Beach Sand (PP) Catalyst for Hydrocracking of Palm and Malapari Oil into Biofuel. Bull. Chem. React. Eng. Catal. 2022, 17, 638–649. [Google Scholar] [CrossRef]
- Aslam, M.; Konwar, L.J.; Sarma, A.K.; Kothiyal, N.C. An investigation of catalytic hydrocracking of high FFA vegetable oils to liquid hydrocarbons using biomass derived heterogeneous catalysts. J. Anal. Appl. Pyrolysis 2015, 115, 401–409. [Google Scholar] [CrossRef]
- Murata, K.; Liu, Y.; Watanabe, M.M.; Inaba, M.; Takahara, I. Hydrocracking of Algae Oil into Aviation Fuel-Range Hydrocarbons Using a Pt–Re Catalyst. Energy Fuels 2014, 28, 6999–7006. [Google Scholar] [CrossRef]
- Beal, C.M.; Hebner, R.E.; Webber, M.E.; Ruoff, R.S.; Seibert, A.F. The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility. BioEnergy Res. 2012, 5, 341–362. [Google Scholar] [CrossRef]
- Kam, Y.L.; Agutaya, J.K.C.N.; Quitain, A.T.; Ogasawara, Y.; Sasaki, M.; Lam, M.K.; Yusup, S.; Assabumrungrat, S.; Kida, T. In-situ transesterification of microalgae using carbon-based catalyst under pulsed microwave irradiation. Biomass Bioenergy 2023, 168, 106662. [Google Scholar] [CrossRef]
- Liang, S.; Wei, L.; Passero, M.L.; Feris, K.; McDonald, A.G. Hydrothermal liquefaction of laboratory cultivated and commercial algal biomass into crude bio-oil. Environ. Prog. Sustain. Energy 2017, 36, 781–787. [Google Scholar] [CrossRef]
- Adeniyi, O.M.; Azimov, U.; Burluka, A. Algae biofuel: Current status and future applications. Renew. Sustain. Energy Rev. 2018, 90, 316–335. [Google Scholar] [CrossRef]
- González-Gálvez, O.D.; Nava Bravo, I.; Cuevas-García, R.; Velásquez-Orta, S.B.; Harvey, A.P.; Cedeño Caero, L.; Orta Ledesma, M.T. Bio-oil production by catalytic solvent liquefaction from a wild microalgae consortium. Biomass Convers. Biorefinery 2021, 11, 2627–2639. [Google Scholar] [CrossRef]
- Shi, Z.; Zhao, B.; Tang, S.; Yang, X. Hydrotreating lipids for aviation biofuels derived from extraction of wet and dry algae. J. Clean. Prod. 2018, 204, 906–915. [Google Scholar] [CrossRef]
- Kandasamy, S.; Zhang, B.; He, Z.; Bhuvanendran, N.; El-Seesy, A.I.; Wang, Q.; Narayanan, M.; Thangavel, P.; Dar, M.A. Microalgae as a multipotential role in commercial applications: Current scenario and future perspectives. Fuel 2022, 308, 122053. [Google Scholar] [CrossRef]
- Bezergianni, S.; Kalogianni, A. Hydrocracking of used cooking oil for biofuels production. Bioresour. Technol. 2009, 100, 3927–3932. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Zhou, G.; Tian, W.; Rong, L. A cleaner process for hydrocracking of jatropha oil into green diesel. J. Taiwan Inst. Chem. Eng. 2013, 44, 221–227. [Google Scholar] [CrossRef]
- Napolitano, P.; Guido, C.; Beatrice, C.; Pellegrini, L. Impact of hydrocracked diesel fuel and Hydrotreated Vegetable Oil blends on the fuel consumption of automotive diesel engines. Fuel 2018, 222, 718–732. [Google Scholar] [CrossRef]
- Vlasova, E.N.; Porsin, A.A.; Aleksandrov, P.V.; Nuzhdin, A.L.; Bukhtiyarova, G.A. Co-processing of rapeseed oil—Straight run gas oil mixture: Comparative study of sulfide CoMo/Al2O3-SAPO-11 and NiMo/Al2O3-SAPO-11 catalysts. Catal. Today 2021, 378, 119–125. [Google Scholar] [CrossRef]
- Dujjanutat, P.; Kaewkannetra, P. Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils. Renew. Energy 2020, 147, 464–472. [Google Scholar] [CrossRef]
- Wang, H.; Yan, S.; Salley, S.O.; Ng, K.Y.S. Hydrocarbon Fuels Production from Hydrocracking of Soybean Oil Using Transition Metal Carbides and Nitrides Supported on ZSM-5. Ind. Eng. Chem. Res. 2012, 51, 10066–10073. [Google Scholar] [CrossRef]
- Ramanda, G.D.; Allwar, A.; Tamyiz, M.; Fatimah, I.; Doong, R.-A. Nickel/Biochar from Palm Leaves Waste as Selective Catalyst for Producing Green Diesel by Hydrodeoxygenation of Vegetable Oil. Bull. Chem. React. Eng. Catal. 2023, 18, 25–36. [Google Scholar] [CrossRef]
- Malins, K. Synthesis of renewable hydrocarbons from vegetable oil feedstock by hydrotreatment over selective sulfur-free SiO2-Al2O3 supported monometallic Pd, Pt, Ru, Ni, Mo and bimetallic NiMo catalysts. Fuel 2021, 285, 119129. [Google Scholar] [CrossRef]
- Cimenler, U.; Joseph, B.; Kuhn, J.N. Molecular-size selective H-β zeolite-encapsulated Ce-Zr/Ni-Mg catalysts for steam reforming. Appl. Catal. A Gen. 2015, 505, 494–500. [Google Scholar] [CrossRef]
- Amoo, C.C.; Xing, C.; Tsubaki, N.; Sun, J. Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion. ACS Cent. Sci. 2022, 8, 1047–1062. [Google Scholar] [CrossRef]
- Hendriks, F.C.; Schmidt, J.E.; Rombouts, J.A.; Lammertsma, K.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules. Chem.—Eur. J. 2017, 23, 6305–6314. [Google Scholar] [CrossRef]
- Cui, Y.; Li, J.; Liu, Z.; Yu, H.; Ding, D.; Wang, J. Alkali etching-free synthesis of hierarchical Zr-BEA zeolite as a robust catalyst for the efficient production of lactic acid from carbohydrates. Microporous Mesoporous Mater. 2023, 360, 112737. [Google Scholar] [CrossRef]
- Gao, Z.; Xiang, M.; He, M.; Zhou, W.; Chen, J.; Lu, J.; Wu, Z.; Su, Y. Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst. Molecules 2023, 28, 2272. [Google Scholar] [CrossRef]
- Dada, T.K.; Sheehan, M.; Murugavelh, S.; Antunes, E. A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Convers. Biorefinery 2023, 13, 2595–2614. [Google Scholar] [CrossRef]
- Beutel, T.W.; Willard, A.M.; Lee, C.; Martinez, M.S.; Dugan, R. Probing External Brønsted Acid Sites in Large Pore Zeolites with Infrared Spectroscopy of Adsorbed 2,4,6-Tri-tert-butylpyridine. J. Phys. Chem. C 2021, 125, 8518–8532. [Google Scholar] [CrossRef]
- Ghazimoradi, M.; Safari, N.; Soltanali, S.; Ghassabzadeh, H. Effect of simultaneous dealumination and metal incorporation of zeolite ZSM-5 on the catalytic performance in HTO process. Microporous Mesoporous Mater. 2023, 351, 112486. [Google Scholar] [CrossRef]
- Shi, Y.; Xing, E.; Wu, K.; Wang, J.; Yang, M.; Wu, Y. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catal. Sci. Technol. 2017, 7, 2385–2415. [Google Scholar] [CrossRef]
- Jazie, A.A.; Haydary, J.; Abed, S.A.; Al-Dawody, M.F. Hydrothermal liquefaction of Fucus vesiculosus algae catalyzed by Hβ zeolite catalyst for Biocrude oil production. Algal Res. 2022, 61, 102596. [Google Scholar] [CrossRef]
- Ochoa-Hernandez, C.; Coronado, J.M.; Serrano, D.P. Hydrotreatin of Methyl Esters to Produce Green Diesel over Co- and Ni-containig Zr-SBA-15 Catalysts. Catalysts 2020, 10, 186. [Google Scholar] [CrossRef]
- Nie, Y.; Chuah, G.-K.; Jaenicke, S. Domino-cyclisation and hydrogenation of citronellal to menthol over bifunctional Ni/Zr-Beta and Zr-beta/Ni-MCM-41 catalysts. Chem. Commun. 2006, 790–792. [Google Scholar] [CrossRef]
- Nie, Y.; Niah, W.; Jaenicke, S.; Chuah, G.-K. A tandem cyclization and hydrogenation of (±)-citronellal to menthol over bifunctional Ni/Zr-beta and mixed Zr-beta and Ni/MCM-41. J. Catal. 2007, 248, 1–10. [Google Scholar] [CrossRef]
- Kant, A.; He, Y.; Jawad, A.; Li, X.; Rezaei, F.; Smith, J.D.; Rownaghi, A.A. Hydrogenolysis of glycerol over Ni, Cu, Zn, and Zr supported on H-beta. Chem. Eng. J. 2017, 317, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Wu, P.; Li, X.; Pang, J.; Zhai, S.; Zhang, T.; Zheng, M. Catalytic hydrogenation of maleic anhydride to γ-butyrolactone over a high-performance hierarchical Ni-Zr-MFI catalyst. J. Catal. 2022, 410, 69–83. [Google Scholar] [CrossRef]
- He, F.; Zhuang, J.; Lu, B.; Liu, X.; Zhang, J.; Gu, F.; Zhu, M.; Xu, J.; Zhong, Z.; Xu, G.; et al. Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation. Appl. Catal. B Environ. 2021, 293, 120218. [Google Scholar] [CrossRef]
- Sahle-Demessie, E.; Devulapelli, V.G.; Hassan, A.A. Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst. Catalysts 2012, 2, 85–100. [Google Scholar] [CrossRef]
- da Costa-Serra, J.F.; Cerdá-Moreno, C.; Chica, A. Zeolite-Supported Ni Catalysts for CO2 Methanation: Effect of Zeolite Structure and Si/Al Ratio. Appl. Sci. 2020, 10, 5131. [Google Scholar] [CrossRef]
- Taghavi, S.; Mäki-Arvela, P.; Vajglová, Z.; Peurla, M.; Angervo, I.; Eränen, K.; Ghedini, E.; Menegazzo, F.; Zendehdel, M.; Signoretto, M.; et al. One-Pot Transformation of Citronellal to Menthol Over H-Beta Zeolite Supported Ni Catalyst: Effect of Catalyst Support Acidity and Ni Loading. Catal. Lett. 2023, 153, 2674–2692. [Google Scholar] [CrossRef]
- Lim, Z.-Y.; Ma, X.; Chen, B. Enhanced porosity of Ni@HSZ for dry reforming of methane. New J. Chem. 2020, 44, 1707–1710. [Google Scholar] [CrossRef]
- Chin, K.C.; Leong, L.K.; Lu, S.; Tsai, D.; Sethupathi, S. Preparation of Metal Organic Framework (MOF) Derived Bimetallic Catalyst for Dry Reforming of Methane. Int. J. Technol. 2019, 10, 291–319. [Google Scholar] [CrossRef]
- Nabgan, W.; Tuan Abdullah, T.A.; Mat, R.; Nabgan, B.; Gambo, Y.; Johari, A. Evaluation of Reaction Parameters of the Phenol Steam Reforming over Ni/Co on ZrO2 Using the Full Factorial Experimental Design. Appl. Sci. 2016, 6, 223. [Google Scholar] [CrossRef]
- Rajkumar, T.; Sápi, A.; Ábel, M.; Farkas, F.; Gómez-Pérez, J.F.; Kukovecz, Á.; Kónya, Z. Ni–Zn–Al-Based Oxide/Spinel Nanostructures for High Performance, Methane-Selective CO2 Hydrogenation Reactions. Catal. Lett. 2020, 150, 1527–1536. [Google Scholar] [CrossRef]
- Khandan, N.; Kazemeini, M.; Aghaziarati, M. Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether. Appl. Catal. A Gen. 2008, 349, 6–12. [Google Scholar] [CrossRef]
- Al-Muttaqii, M.; Kurniawansyah, F.; Prajitno, D.H.; Roesyadi, A. Bio-kerosene and Bio-gasoil from Coconut Oils via Hydrocracking Process over Ni-Fe/HZSM-5 Catalyst. Bull. Chem. React. Eng. Catal. 2019, 14, 309–319. [Google Scholar] [CrossRef]
Catalyst | Specific Surface Area (BET) | Micropore Area | External Surface | Total Pore Volume (BJH) | Micropore Volume | Average Pore Radius (BJH) |
---|---|---|---|---|---|---|
(m2/g) | (m2/g) | (m2/g) | (cm3/g) | (cm3/g) | (nm) | |
HBEA (Si/Al = 23) | 526 | 331 | 195 | 0.74 | 0.17 | 7.1 |
5%Ni-5%ZrBEA (red. 500 °C) | 449 | 281 | 167 | 0.63 | 0.13 | 7.2 |
5%Ni-5%ZrBEA (red. 600 °C) | 449 | 272 | 177 | 0.62 | 0.14 | 6.7 |
5%Ni-5%ZrBEA (red. 700 °C) | 445 | 266 | 179 | 0.63 | 0.14 | 6.7 |
HZSM-5 (Si/Al = 25) | 281 | 257 | 24 | 0.11 | 0.13 | 2.4 |
5%Ni-5%ZrZSM-5 (red. 500 °C) | 277 | 212 | 65 | 0.06 | 0.11 | 2.1 |
5%Ni-5%ZrZSM-5 (red. 600 °C) | 271 | 208 | 64 | 0.07 | 0.11 | 2.4 |
5%Ni-5%ZrZSM-5 (red. 700 °C) | 269 | 208 | 62 | 0.07 | 0.11 | 2.4 |
5%Ni-5%Zr/Al2O3 (red. 500 °C) | 115 | - | - | 0.21 | - | 2.5 |
5%Ni-5%Zr/Al2O3 (red. 600 °C) | 112 | - | - | 0.21 | - | 2.6 |
5%Ni-5%Zr/Al2O3 (red. 700 °C) | 111 | - | - | 0.21 | - | 2.6 |
Catalytic Systems | Total Acidity (mmol/g) 100–600 °C | Distribution of Acid Sites | ||
---|---|---|---|---|
Weak (mmol/g) 100–300 °C | Moderate (mmol/g) 300–500 °C | Strong (mmol/g) 500–600 °C | ||
5%Ni-5%Zr/BEA (red. 500 °C) | 2.15 | 1.08 | 0.74 | 0.32 |
5%Ni-5%Zr/BEA (red. 600 °C) | 2.58 | 0.97 | 1.06 | 0.56 |
5%Ni-5%Zr/BEA (red. 700 °C) | 2.71 | 0.87 | 1.13 | 0.72 |
5%Ni-5%Zr/ZSM-5 (red. 500 °C) | 3.06 | 1.14 | 1.19 | 0.73 |
5%Ni-5%Zr/ZSM-5 (red. 600 °C) | 2.89 | 1.10 | 0.91 | 0.88 |
5%Ni-5%Zr/ZSM-5 (red. 700 °C) | 2.26 | 0.66 | 1.11 | 0.49 |
5%Ni-5%Zr/Al2O3 (red. 500 °C) | 1.34 | 0.46 | 0.54 | 0.34 |
5%Ni-5%Zr/Al2O3 (red. 600 °C) | 1.57 | 0.77 | 0.49 | 0.30 |
5%Ni-5%Zr/Al2O3 (red. 700 °C) | 1.66 | 0.40 | 0.66 | 0.60 |
Sample | Red. 500 °C | Red. 600 °C | Red. 700 °C |
---|---|---|---|
Conversion of oil (%) | |||
5%Ni-5%ZrBEA | 98 | 94 | 86 |
5%Ni-5%ZrZSM-5 | 82 | 86 | 73 |
5%Ni-5%ZrAl2O3 | 57 | 68 | 51 |
Gasoline (<C10) (%) | |||
5%Ni-5%ZrBEA | 0.09 | 0.33 | 0.39 |
5%Ni-5%ZrZSM-5 | 4.73 | 7.10 | 2.05 |
5%Ni-5%ZrAl2O3 | 7.70 | 7.63 | 7.50 |
Kerosene (C10–C13) (%) | |||
5%Ni-5%ZrBEA | 6.35 | 8.83 | 9.82 |
5%Ni-5%ZrZSM-5 | 6.55 | 16.27 | 12.36 |
5%Ni-5%ZrAl2O3 | 20.31 | 22.54 | 11.95 |
Gasoil (C14–C22) (%) | |||
5%Ni-5%ZrBEA | 76.79 | 89.71 | 78.16 |
5%Ni-5%ZrZSM-5 | 81.73 | 71.04 | 79.46 |
5%Ni-5%ZrAl2O3 | 60.28 | 66.90 | 71.08 |
Residue (C > 22) (%) | |||
5%Ni-5%ZrBEA | 16.77 | 1.13 | 11.73 |
5%Ni-5%ZrZSM-5 | 7.00 | 5.60 | 6.14 |
5%Ni-5%ZrAl2O3 | 11.71 | 2.93 | 9.48 |
The crystallite sizes of Ni particles and ZrO2 calculated from the XRD data using the Scherrer equation | |||
500 °C Ni/ZrO2 (nm) | 600 °C Ni/ZrO2 (nm) | 700 °C Ni/ZrO2 (nm) | |
5%Ni-5%ZrBEA | 6/5 | 8/5 | 13/6 |
5%Ni-5%ZrZSM-5 | 13/9 | 14/10 | 19/11 |
5%Ni-5%ZrAl2O3 | - | - | 9/5 |
Mobile Phase Gradient | Flow Rate (mL/min) | ||
---|---|---|---|
Time (min) | Solvent A (%) | Solvent B (%) | |
0 | 100 | 0 | 0.9 |
20 | 100 | 0 | 0.9 |
45 | 0 | 100 | 0.9 |
70 | 0 | 100 | 0.9 |
75 | 100 | 0 | 0.9 |
Column Oven Temperature | 35.0 °C |
Injection Temperature | 320.00 °C |
Injection Mode | Split |
Injection Volume | 1.00 μL |
Flow Control Mode | Linear Velocity |
Pressure | 22.9 kPa |
Total Flow | 10.7 mL/min |
Column Flow | 0.70 mL/min |
Linear Velocity | 30.0 cm/s |
Purge Flow | 3.0 mL/min |
Split Ratio | 10.0 |
Rate (°C/min) | Temperature (°C) | Hold Time (min) |
---|---|---|
- | 35.0 | 5.00 |
15.00 | 320.0 | 6.00 |
Ion Source Temperature | 220.00 °C |
Interface Temperature | 280.00 °C |
Solvent Cut Time | 2.50 min |
Detector Gain Mode | Relative to the Tuning Result |
Detector Gain | 0.74 kV + 0.00 kV |
Threshold | 0 |
Start Time | 2.70 min |
End Time | 30.00 min |
ACQ Mode | Scan |
Event Time | 0.30 s |
Scan Speed | 1666 |
Start m/z | 35.00 |
End m/z | 500.00 |
Sample Inlet Unit | GC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szkudlarek, L.; Chalupka-Spiewak, K.A.; Zimon, A.; Binczarski, M.; Maniukiewicz, W.; Mierczynski, P.; Szynkowska-Jozwik, M.I. The Impact of Support and Reduction Temperature on the Catalytic Activity of Bimetallic Nickel-Zirconium Catalysts in the Hydrocracking Reaction of Algal Oil from Spirulina Platensis. Molecules 2024, 29, 5380. https://doi.org/10.3390/molecules29225380
Szkudlarek L, Chalupka-Spiewak KA, Zimon A, Binczarski M, Maniukiewicz W, Mierczynski P, Szynkowska-Jozwik MI. The Impact of Support and Reduction Temperature on the Catalytic Activity of Bimetallic Nickel-Zirconium Catalysts in the Hydrocracking Reaction of Algal Oil from Spirulina Platensis. Molecules. 2024; 29(22):5380. https://doi.org/10.3390/molecules29225380
Chicago/Turabian StyleSzkudlarek, Lukasz, Karolina A. Chalupka-Spiewak, Aleksandra Zimon, Michal Binczarski, Waldemar Maniukiewicz, Pawel Mierczynski, and Malgorzata Iwona Szynkowska-Jozwik. 2024. "The Impact of Support and Reduction Temperature on the Catalytic Activity of Bimetallic Nickel-Zirconium Catalysts in the Hydrocracking Reaction of Algal Oil from Spirulina Platensis" Molecules 29, no. 22: 5380. https://doi.org/10.3390/molecules29225380
APA StyleSzkudlarek, L., Chalupka-Spiewak, K. A., Zimon, A., Binczarski, M., Maniukiewicz, W., Mierczynski, P., & Szynkowska-Jozwik, M. I. (2024). The Impact of Support and Reduction Temperature on the Catalytic Activity of Bimetallic Nickel-Zirconium Catalysts in the Hydrocracking Reaction of Algal Oil from Spirulina Platensis. Molecules, 29(22), 5380. https://doi.org/10.3390/molecules29225380