Carbon Nanotubes in Cement—A New Approach for Building Composites and Its Influence on Environmental Effect of Material
Abstract
:1. Introduction
2. Results and Discussion
2.1. Superplasticizer Characterization by FT-IR Spectroscopy
- (1)
- Acids (R-COOH),
- (2)
- Salts (R-COO−),
- (3)
- Esters (R-COOR’).
2.2. Raman Spectroscopy of Neat Superplasticizer and with Added MWCNTs
2.3. Theoretical Modeling of Superplasticizer Interaction with Carbon Nanotubes
2.3.1. Performance of BLYP, B3LYPD3BJ and BLYPD3BJ Density Functionals in Predicting Structure, Interaction Energy and Vibrational Parameters of Water Monomer and Dimer
2.3.2. Monomer and Dimer Properties of Formic and Acetic Acids
2.3.3. Performance of BLYP, B3LYPD3BJ and BLYPD3BJ Density Functionals in Predicting Structure, Interaction Energies and Vibrational Frequencies of Formic and Acetic Acid Salts with Na+ and Ca2+
2.3.4. BLYPD3BJ Modeling of Superplasticizer Fragment Structures
- (A)
- Acid (14 atoms),
- (B)
- Salt (a carboxylate anion, 13 atoms),
- (C)
- Ester (24 atoms).
2.3.5. Structure of Model Zigzag (5,0) SWCNT-COOH
2.3.6. Model Zigzag (5,0) SWCNT-COOH Interaction with a Carboxylic Acid
2.4. Biological Tests
3. Experimental
3.1. Materials
3.2. Biological Materials
3.3. Methods
3.3.1. Preparation of Suspensions of MWCNTs in the Superplasticizer
3.3.2. FT-IR Spectroscopy
3.3.3. Raman Spectroscopy
3.4. Computational Details
3.5. Composite Preparation for Biological Studies
3.6. Biological Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastos, G.; Patiño-Barbeito, F.; Patiño-Cambeiro, F.; Armesto, J. Nano-Inclusions Applied in Cement-Matrix Composites: A Review. Materials 2016, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, K.; Flores, I.; Torres-Martinez, L.M.; Valdez, P.L.; Zarazua, E.; Cuellar, E.L. Engineering of SiO2 Nanoparticles for Optimal Performance in Nano Cement-Based Materials; Nanotechnology in Construction 3; Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 139–148. [Google Scholar]
- Kong, D.; Su, Y.; Du, X.; Yang, Y.; Wei, S.; Shah, S.P. Influence of nano-silica agglomeration on fresh properties of cement pastes. Constr. Build. Mater. 2013, 43, 557–562. [Google Scholar] [CrossRef]
- Sikora, P.; Horszczaruk, E.; Cendrowski, K.; Mijowska, E. The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites. Nanoscale Res. Lett. 2016, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Zhou, C.; Li, F.; Hu, J.; Ren, M.; Wei, J.; Yu, Q. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mat. 2017, 134, 336–345. [Google Scholar] [CrossRef]
- Zuo, J.; Yao, W.; Wu, K. Seebeck Effect and Mechanical Properties of Carbon Nanotube-Carbon Fiber/Cement Nanocomposites. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 383–391. [Google Scholar] [CrossRef]
- Metaxa, Z.S.; Seo, J.T.; Konsta-Gdoutos, M.S.; Hersam, M.C.; Shah, S.P. Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cem. Concr. Compos. 2012, 5, 612–617. [Google Scholar] [CrossRef]
- Xu, T.; Yang, J.; Liu, J.; Fu, Q. Surface modification of multi-walled carbon nanotubes by O2 plasma. Appl. Surf. Sci. 2007, 253, 8945–8951. [Google Scholar] [CrossRef]
- Mohamadian, N.; Ramhormozi, M.Z.; Wood, D.A.; Ashena, R. Reinforcement of oil and gas wellbore cements with a methyl methacrylate/carbon-nanotube polymer nanocomposite additive. Cem. Concr. Compos. 2020, 114, 103763. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Xu, X.-C. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4. Appl. Surf. Sci. 2015, 346, 520–527. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Chełmecka, E.; Pasterny, K.; Kupka, T.; Stobiński, L. DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes. J. Mol. Model. 2012, 18, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Chełmecka, E.; Pasterny, K.; Kupka, T.; Stobinski, L. OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory. J. Mol. Model. 2012, 18, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A. Raman spectroscopy of carbon nanotubes in 1997 and 2007. J. Phys. Chem. C 2007, 111, 17887–17893. [Google Scholar] [CrossRef]
- Colthop, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy; Academic Press Inc.: New York, NY, USA; London, UK, 1965. [Google Scholar]
- Vogel, I. Chemistry Including Qualitative Organic Analysis; Longman Group Ltd.: London, UK, 1979. [Google Scholar]
- Alpert, N.L.; Keiser, W.E.; Szymanski, H.A. Infrared Spectroscopy; PWN: Warszawa, Poland, 1974. (In Polish) [Google Scholar]
- Hummel, D.O.; Scholl, F.K. Atlas of Plastics Additives—Analysis by Spectrometric Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2002. [Google Scholar]
- Hummel, D.O.; Scholl, F.K. Atlas of Polymer and Plastics Analysis, Volume 2—Plastics, Fibres, Rubbers, Resins—Spectra and Methods of Identification; Carl Hanser: Munchen, Germany; Weinheim, Germany, 1990. [Google Scholar]
- Hummel, D.O.; Scholl, F.K. Atlas of Polymer and Plastics Analysis, Volume 3—Additives and Processing Aids; Carl Hanser: Munchen, Germany; Weinheim, Germany, 1990. [Google Scholar]
- Hummel, D.O.; Scholl, F.K. Atlas of Polymer and Plastics Analysis. 2. Vol. 1. Polymers: Structures and Spectra; Chemie: Weinheim, Germany; Carl Hanser: München, Germany, 1978; Volume XXXII, 671p. [Google Scholar]
- Bokobza, L.; Zhang, J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. EXPRESS Polym. Lett. 2012, 6, 601–608. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef]
- Ouyang, Y.; Cong, L.M.; Chen, L.; Liu, Q.X.; Fang, Y. Raman study on single-walled carbon nanotubes and multi-walled carbon nanotubes with different laser excitation energies. Phys. E Low Dimens. Syst. Nanostruct. 2008, 40, 2386–2389. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Zdrojek, M.; Gebicki, W.; Jastrzebski, C.; Melin, T.; Huczko, A. Studies of Multiwall Carbon Nanotubes Using Raman Spectroscopy and Atomic Force Microscopy. Solid State Phenom. 2004, 99–100, 265–268. [Google Scholar] [CrossRef]
- Zólyomi, V.; Koltai, J.; Kürti, J. Resonance Raman spectroscopy of graphite and graphene. Phys. Status Solidi B 2011, 248, 2435–2444. [Google Scholar] [CrossRef]
- Heise, H.M.; Kuckuk, R.; Ojha, A.K.; Srivastava, A.; Srivastava, V.; Asthana, B.P. Characterisation of carbonaceous materials using Raman spectroscopy: A comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J. Raman Spectrosc. 2009, 40, 344–353. [Google Scholar] [CrossRef]
- Hodkiewicz, J. Characterizing Carbon Materials with Raman Spectroscopy. Application Note: 51901; Thermo Fisher Scientific: Madison, WI, USA, 2010. [Google Scholar]
- Ouyang, Y.; Fang, Y. Temperature dependence of the raman spectra of carbon nanotubes with 1064 nm excitation. Phys. E 2004, 24, 222–226. [Google Scholar] [CrossRef]
- Titus, E.; Ali, N.; Cabral, G.; Gracio, J.; Ramesh Babu, P.; Jackson, M.J. Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy. J. Mater. Eng. Perform. 2006, 15, 182–186. [Google Scholar] [CrossRef]
- Stobinski, L.; Tomasik, P.; Lii, C.-Y.; Chan, H.-H.; Lin, H.-M.; Liu, H.-L.; Kao, C.-T.; Lu, K.-S. Single-walled carbon nanotube–amylopectin complexes. Carbohydr. Polym. 2003, 51, 311–316. [Google Scholar] [CrossRef]
- Lii, C.-Y.; Stobinski, L.; Tomasik, P.; Liao, C.-D. Single-walled carbon nanotube—Potato amylose complex. Carbohydr. Polym. 2003, 51, 93–98. [Google Scholar] [CrossRef]
- Siddique, R.; Mehta, A. Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 2014, 50, 116–129. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd. 2010, 501, 77–84. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Oliveira, A.M.L.; Machado, M.; Silva, G.A.; Bitoque, D.B.; Tavares Ferreira, J.; Pinto, L.A.; Ferreira, Q. Graphene Oxide Thin Films with Drug Delivery Function. Nanomaterials 2022, 12, 1149. [Google Scholar] [CrossRef]
- Derakhshi, M.; Daemi, S.; Shahini, P.; Habibzadeh, A.; Mostafavi, E.; Ashkarran, A.A. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J. Funct. Biomater. 2022, 13, 27. [Google Scholar] [CrossRef]
- Haynes, A.; Popek, R.; Boles, M.; Paton-Walsh, C.; Robinson, S.A. Roadside Moss Turfs in South East Australia Capture More Particulate Matter Along an Urban Gradient than a Common Native Tree Species. Atmosphere 2019, 10, 224. [Google Scholar] [CrossRef]
- Macedo-Miranda, G.; Avila-Pérez, P.; Gil-Vargas, P.; Zarazúa, G.; Sánchez-Meza, J.C.; Zepeda-Gómez, C.; Tejeda, S. Accumulation of heavy metals in mosses: A biomonitoring study. SpringerPlus 2016, 5, 715. [Google Scholar] [CrossRef]
- Jang, K.; Viles, H. Moisture Interactions Between Mosses and Their Underlying Stone Substrates. Stud. Conserv. 2022, 67, 532–544. [Google Scholar] [CrossRef]
- Gabrych, M.; Kotze, D.J.; Lehvävirta, S. Substrate depth and roof age strongly affect plant abundances on sedum-moss and meadow green roofs in Helsinki, Finland. Ecol. Eng. 2016, 86, 95–104. [Google Scholar] [CrossRef]
- Purre, A.-H.; Ilomets, M.; Truus, L.; Pajula, R.; Sepp, K. The effect of different treatments of moss layer transfer technique on plant functional types’ biomass in revegetated milled peatlands. Restor. Ecol. 2020, 28, 1584–1595. [Google Scholar] [CrossRef]
- Perini, K.; Castellari, P.; Giachetta, A.; Turcato, C.; Roccotiello, E. Experiencing innovative biomaterials for buildings: Potentialities of mosses. Build. Environ. 2020, 172, 106708. [Google Scholar] [CrossRef]
- Pouliot, R.; Hugron, S.; Rochefort, L. Sphagnum farming: A long-term study on producing peat moss biomass sustainably. Ecol. Eng. 2015, 74, 135–147. [Google Scholar] [CrossRef]
- Redfern, P.; Kupka, T.; Curtiss, L.A. Quantum Chemical Studies of Li Ion Hopping Mechanism in Polymer Electrolytes. ECS Trans. 2019, 3, 163–167. [Google Scholar] [CrossRef]
- Janowska-Renkas, E. Budowa Superplastyfikatora a Efektywność jego Wpływu na Właściwości Zaczynu Cementowego (The Structure of a Superplasticizer and the Effectiveness of Its Influence on the Properties of Cement Paste); Studia z Zakresu Inżynierii, KILiW PAN: Warszawa, Poland, 2013; p. 82. [Google Scholar]
- Janowska-Renkas, E. The influence of the chemical structure of polycarboxylic superplasticizers on their effectiveness in cement pastes. Procedia Eng. 2015, 108, 575–583. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Wang, Z.; Jin, C. Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel. Cem. Concr. Res. 2020, 128, 105955. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J.M.; Zhao, Q.; Wagner, H.D. Raman spectroscopy of carbon-nanotube-based composites. Philos. Trans. R. Soc. A 2004, 362, 2407–2424. [Google Scholar]
- Bounos, G.; Andrikopoulos, K.S.; Karachalios, T.K.; Voyiatzis, G.A. Evaluation of multi-walled carbon nanotube concentrations in polymer nanocomposites by Raman spectroscopy. Carbon 2014, 76, 301–309. [Google Scholar] [CrossRef]
- Granados-Martínez, F.G.; Contreras-Navarrete, J.J.; Ambriz-Torres, J.M.; Gutiérrez-García, C.J.; García-Ruiz, D.L.; Guzmán-Fuentes, J.A.; Flores-Ramírez, N.; Cisneros-Magaña, M.R.; García-González, L.; Zamora-Peredo, L.; et al. MWCNTs-polymer composites characterization through spectroscopies: FTIR and Raman. MRS Adv. 2018, 3, 3757–3762. [Google Scholar] [CrossRef]
- Pople, J.A.; Head-Gordon, M.; Raghavachari, K. Quadratic configuration interaction—A general technique for determining electron correlation energies. J. Chem. Phys. 1987, 87, 5968–5975. [Google Scholar] [CrossRef]
- Benedict, W.S.; Gailar, N.; Plyler, E.K. Rotation-Vibration Spectra of Deuterated Water Vapor. J. Chem. Phys. 1956, 24, 1139–1165. [Google Scholar] [CrossRef]
- Feller, D.; Peterson, K.A. High level coupled cluster determination of the structure, frequencies, and heat of formation of water. J. Chem. Phys. 2009, 131, 154306. [Google Scholar] [CrossRef] [PubMed]
- Foresman, J.B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian Inc.: Pittsburg, PA, USA, 1996. [Google Scholar]
- Kjaergaard, H.G.; Garden, A.L.; Chaban, G.M.; Gerber, R.B.; Matthews, D.A.; Stanton, J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches. J. Phys. Chem. A 2008, 112, 4324–4335. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.Y.; Lee, S.; Mhin, B.J.; Kim, K.S. Harmonic vibrational frequencies of the water monomer and dimer: Comparison of various levels of ab initio theory. J. Chem. Phys. 1995, 102, 310–317. [Google Scholar] [CrossRef]
- Yeo, G.A.; Ford, T.A. The combined use of ab initio molecular orbital theory and matrix isolation infrared spectroscopy in the study of molecular interactions. Struct. Chem. 1992, 3, 75–93. [Google Scholar] [CrossRef]
- Liu, B.; McLean, A.D. Accurate calculation of the attractive interaction of two ground state helium atoms. J. Chem. Phys. 1973, 59, 4557–4558. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Lane, J.R. CCSDTQ optimized geometry of water dimer. J. Chem. Theory Comput. 2013, 9, 316–323. [Google Scholar] [CrossRef]
- Howard, J.C.; Gray, J.L.; Hardwick, A.J.; Nguyen, L.T.; Tschumper, G.S. Getting down to the fundamentals of hydrogen bonding: Anharmonic vibrational frequencies of (HF)2 and (H2O)2 from Ab initio electronic structure computations. J. Chem. Theory Comput. 2014, 10, 5426–5435. [Google Scholar] [CrossRef]
- Dunn, M.E.; Evans, T.M.; Kirschner, K.N.; Shields, G.C. Prediction of accurate anharmonic experimental vibrational frequencies for water clusters, (H2O)n, n = 2–5. J. Phys. Chem. A 2006, 110, 303–309. [Google Scholar] [CrossRef]
- Feyereisen, M.W.; Feller, D.; Dixon, D.A. Hydrogen Bond Energy of the Water Dimer. J. Phys. Chem. 1996, 100, 2993–2997. [Google Scholar] [CrossRef]
- Xu, X.; Goddard Iii, W.A. Bonding Properties of the Water Dimer: A Comparative Study of Density Functional Theories. J. Phys. Chem. A 2004, 108, 2305–2313. [Google Scholar] [CrossRef]
- Dyke, T.R.; Muenter, J.S. Microwave spectrum and structure of hydrogen bonded water dimer. J. Chem. Phys. 1974, 60, 2929–2930. [Google Scholar] [CrossRef]
- Buczek, A.; Broda, M.A.; Kupka, T.; Kelterer, A.-M. Anharmonicity modeling in hydrogen bonded solvent dimers. J. Mol. Liq. 2021, 339, 116735. [Google Scholar] [CrossRef]
- Řezáč, J. Non-Covalent Interactions Atlas benchmark data sets 5: London dispersion in an extended chemical space. Phys. Chem. Chem. Phys. 2022, 24, 14780–14793. [Google Scholar] [CrossRef] [PubMed]
- Dyke, T.R.; Mack, K.M.; Muenter, J.S. The structure of water dimer from molecular beam electric resonance spectroscopy. J. Chem. Phys. 1976, 71, 498–510. [Google Scholar] [CrossRef]
- Wuelfert, S.; Herren, D.; Leutwyler, S. Supersonic jet CARS spectra of small water clusters. J. Chem. Phys. 1987, 86, 3751–3753. [Google Scholar] [CrossRef]
- Amos, R.D. Structures, harmonic frequencies and infrared intensities of the dimers of H2O and H2S. Chem. Phys. 1986, 104, 145–151. [Google Scholar] [CrossRef]
- Bentwood, R.M.; Barnes, A.J.; Orville-Thomas, W.J. Studies of intermolecular interactions by matrix isolation vibrational spectroscopy: Self-association of water. J. Mol. Spectrosc. 1980, 84, 391–404. [Google Scholar] [CrossRef]
- Schofield, D.P.; Kjaergaard, H.G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer. Phys. Chem. Chem. Phys. 2003, 5, 3100–3105. [Google Scholar] [CrossRef]
- Scott, A.P.; Radom, L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Moeller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 1996, 100, 16502–16513. [Google Scholar] [CrossRef]
- Karle, J.; Brockway, L.O. An Electron Diffraction Investigation of the Monomers and Dimers of Formic, Acetic and Trifluoroacetic Acids and the Dimer of Deuterium Acetate1. J. Am. Chem. Soc. 1944, 66, 574–584. [Google Scholar] [CrossRef]
- Derissen, J.L. A reinvestigation of the molecular structure of acetic acid monomer and dimer by gas electron diffraction. J. Mol. Struct. 1971, 7, 67–80. [Google Scholar] [CrossRef]
- Jones, R.E.; Templeton, D.H. The Crystal Structure of Acetic Acid. Acta Cryst. 1958, 11, 484–487. [Google Scholar] [CrossRef]
- Kwei, G.H.; Curl, R.F. Microwave Spectrum of O18 Formic Acid and Structure of Formic Acid. J. Chem. Phys. 1960, 32, 1592–1594. [Google Scholar] [CrossRef]
- Miliordos, E.; Xantheas, S.S. On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer. J. Chem. Phys. 2015, 142, 094311. [Google Scholar] [CrossRef]
- Nagy, P.I.; Smith, D.A.; Alagona, G.; Ghio, C. Ab initio studies of free and monohydrated carboxylic acids in the gas phase. J. Phys. Chem. 1994, 98, 486–493. [Google Scholar] [CrossRef]
- Nagy, P.I. The syn–anti equilibrium for the COOH group reinvestigated. Theoretical conformation analysis for acetic acid in the gas phase and in solution. Comput. Theor. Chem. 2013, 1022, 59–69. [Google Scholar] [CrossRef]
- Maçôas, E.M.S.; Lundell, J.; Pettersson, M.; Khriachtchev, L.; Fausto, R.; Räsänen, M. Vibrational spectroscopy of cis- and trans-formic acid in solid argon. J. Mol. Spectrosc. 2003, 219, 70–80. [Google Scholar] [CrossRef]
- Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules; Van Nostrand: New York, NY, USA, 1966. [Google Scholar]
- Käser, S.; Boittier, E.D.; Upadhyay, M.; Meuwly, M. Transfer Learning to CCSD(T): Accurate Anharmonic Frequencies from Machine Learning Models. J. Chem. Theory Comput. 2021, 17, 3687–3699. [Google Scholar] [CrossRef]
- NIST. CCSD(T)/aQZ Harmonic Result. Available online: https://cccbdb.nist.gov/energy3x.asp?method=63&basis=26&charge=0 (accessed on 22 January 2022).
- Socha, O.; Dračínský, M. Dimerization of Acetic Acid in the Gas Phase-NMR Experiments and Quantum-Chemical Calculations. Molecules 2020, 25, 2150. [Google Scholar] [CrossRef]
- Kollipost, F.; Larsen, R.W.; Domanskaya, A.V.; Nörenberg, M.; Suhm, M.A. Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer. J. Chem. Phys. 2012, 136, 151101. [Google Scholar] [CrossRef] [PubMed]
- Kalescky, R.; Kraka, E.; Cremer, D. Local vibrational modes of the formic acid dimer—The strength of the double hydrogen bond. Mol. Phys. 2013, 111, 1497–1510. [Google Scholar] [CrossRef]
- Kalescky, R.; Kraka, E.; Cremer, D. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation. J. Chem. Phys. 2014, 140, 084315. [Google Scholar] [CrossRef]
- Bertie, J.E.; Michaelian, K.H. The Raman spectra of gaseous formic acid -h2 and -d2. J. Chem. Phys. 1982, 76, 886–894. [Google Scholar] [CrossRef]
- Olbert-Majkut, A.; Ahokas, J.; Lundell, J.; Pettersson, M. Raman spectroscopy of formic acid and its dimers isolated in low temperature argon matrices. Chem. Phys. Lett. 2009, 468, 176–183. [Google Scholar] [CrossRef]
- Tew, D.P.; Mizukami, W. Ab Initio Vibrational Spectroscopy of cis- and trans-Formic Acid from a Global Potential Energy Surface. J. Phys. Chem. A 2016, 120, 9815–9828. [Google Scholar] [CrossRef]
- Barone, V.; Biczysko, M.; Bloino, J. Fully anharmonic IR and Raman spectra of medium-size molecular systems: Accuracy and interpretation. Phys. Chem. Chem. Phys. 2014, 16, 1759–1787. [Google Scholar] [CrossRef]
- Farfán, P.; Echeverri, A.; Diaz, E.; Tapia, J.D.; Gómez, S.; Restrepo, A. Dimers of formic acid: Structures, stability, and double proton transfer. J. Chem. Phys. 2017, 147, 044312. [Google Scholar] [CrossRef]
- Marushkevich, K.; Khriachtchev, L.; Lundell, J.; Domanskaya, A.; Räsänen, M. Matrix Isolation and Ab Initio Study of Trans−Trans and Trans−Cis Dimers of Formic Acid. J. Phys. Chem. A 2010, 114, 3495–3502. [Google Scholar] [CrossRef]
- Kelemen, A.K.; Luber, S. On the vibrations of formic acid predicted from first principles. Phys. Chem. Chem. Phys. 2022, 24, 28109–28120. [Google Scholar] [CrossRef]
- Krishnakumar, P.; Maity, D.K. Theoretical studies on dimerization vs. microhydration of carboxylic acids. Comput. Theor. Chem. 2017, 1099, 185–194. [Google Scholar] [CrossRef]
- Almenningen, A.; Bastiansen, O.; Motzfeldt, T. A reinvestigation of the structure of monomer and dimer formic acid by gas electron diffraction technique. Acta Chem. Scand. 1969, 23, 2848–2864. [Google Scholar] [CrossRef]
- Gora, R.W.; Grabowski, S.J.; Leszczynski, J. Dimers of Formic Acid, Acetic Acid, Formamide and Pyrrole-2-carboxylic Acid: an Ab Initio Study. J. Phys. Chem. A 2005, 109, 6397–6405. [Google Scholar] [CrossRef] [PubMed]
- Burns, L.A.; Marshall, M.S.; Sherrill, C.D. Comparing Counterpoise-Corrected, Uncorrected, and Averaged Binding Energies for Benchmarking Noncovalent Interactions. J. Chem. Theory Comput. 2014, 10, 49–57. [Google Scholar] [CrossRef]
- Okrasiński, P.; Latajka, Z.; Hättig, C. Theoretical Study on Noncovalent Interactions in the Carbon Nanotube–Formic Acid Dimer System. J. Phys. Chem. C 2014, 118, 4483–4488. [Google Scholar] [CrossRef]
- NIST. Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101; NIST: Gaithersburg, MD, USA, 2022.
- Maréchal, Y. IR spectra of carboxylic acids in the gas phase: A quantitative reinvestigation. J. Chem. Phys. 1987, 87, 6344–6353. [Google Scholar] [CrossRef]
- Takatani, T.; Hohenstein, E.G.; Malagoli, M.; Marshall, M.S.; Sherrill, C.D. Basis set consistent revision of the S22 test set of noncovalent interaction energies. J. Chem. Phys. 2010, 132, 144104. [Google Scholar] [CrossRef]
- Marshall, M.S.; Burns, L.A.; Sherrill, C.D. Basis set convergence of the coupled-cluster correction, δMP2CCSD(T): Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. J. Chem. Phys. 2011, 135, 194102. [Google Scholar] [CrossRef]
- Marshall, M.S.; Sherrill, C.D. Dispersion-Weighted Explicitly Correlated Coupled-Cluster Theory [DW-CCSD(T**)-F12]. J. Chem. Theory Comput. 2011, 7, 3978–3982. [Google Scholar] [CrossRef]
- Dudev, M.; Wang, J.; Dudev, T.; Lim, C. Factors Governing the Metal Coordination Number in Metal Complexes from Cambridge Structural Database Analyses. J. Phys. Chem. B 2006, 110, 1889–1895. [Google Scholar] [CrossRef]
- Wang, X.; Andrews, L. Infrared Spectra and Electronic Structure Calculations for the Group 2 Metal M(OH)2 Dihydroxide Molecules. J. Phys. Chem. A 2005, 109, 2782–2792. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.B.; Iron, M.A.; Redfern, P.C.; Martin, J.M.L.; Curtiss, L.A.; Radom, L. Heats of Formation of Alkali Metal and Alkaline Earth Metal Oxides and Hydroxides: Surprisingly Demanding Targets for High-Level ab Initio Procedures. J. Phys. Chem. A 2003, 107, 5617–5630. [Google Scholar] [CrossRef]
- Makieieva, N.; Kupka, T.; Stobiński, L.; Małolepszy, A. Modeling hydration of graphene oxide (GO)—Does size matter? J. Mol. Struct. 2024, 1318, 139317. [Google Scholar] [CrossRef]
- Van Gaalen, K.E.; Flanagan, L.B.; Peddle, D.R. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia 2007, 153, 19–28. [Google Scholar] [CrossRef]
- Hyyryläinen, A.; Rautio, P.; Turunen, M.; Huttunen, S. Seasonal and inter-annual variation in the chlorophyll content of three co-existing Sphagnum species exceeds the effect of solar UV reduction in a subarctic peatland. SpringerPlus 2015, 4, 478. [Google Scholar] [CrossRef]
- Proctor, M.C.F. Climatic Responses and Limits of Bryophytes: Comparisons and Contrasts with Vascular Plants. In Bryophyte Ecology and Climate Change; Tuba, Z., Slack, N.G., Stark, L.R., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 35–54. [Google Scholar]
- Nagase, A.; Katagiri, T.; Lundholm, J. Investigation of moss species selection and substrate for extensive green roofs. Ecol. Eng. 2023, 189, 106899. [Google Scholar] [CrossRef]
- Demková, L.; Baranová, B.; Oboňa, J.; Árvay, J.; Lošák, T. Assessment of air pollution by toxic elements on petrol stations using moss and lichen bag technique. Plant Soil Environ. 2017, 63, 355–361. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- ICP Vegetation. Heavy Metals, Nitrogen and Pops in European Mosses: 2020 Survey. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf (accessed on 27 May 2024).
- Jóźwiak, M.A.; Rybiński, P. Assessment of air pollution along express roads and motorways of varied traffic load with the use of bioindicators. Rocz.Świętokrzyski Seria B Nauki Przyr. Kieleckie Tow. Nauk. 2013, 34, 51–63. Available online: https://rocznikswietokrzyski.pl/wp-content/uploads/2015/01/Jozwiak_Rybinski.pdf (accessed on 27 May 2024).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian: Wallingford, CT, USA, 2016. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar]
- Kupka, T.; Buczek, A.; Broda, M.A.; Stachow, M.; Tarnowski, P. DFT studies on the structural and vibrational properties of polyenes. J. Mol. Model. 2016, 22, 101. [Google Scholar] [CrossRef] [PubMed]
- Kupka, T.; Buczek, A.; Broda, M.A.; Szostak, R.; Lin, H.M.; Fan, L.W.; Wrzalik, R.; Stobinski, L. Modeling red coral (Corallium rubrum) and African snail (Helixia aspersa) shell pigments: Raman spectroscopy versus DFT studies. J. Raman Spectrosc. 2016, 47, 908–916. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Benchmark calculations with correlated molecular wave functions. I. Multireference configuration interaction calculations for the second row diatomic hydrides. J. Chem. Phys. 1993, 99, 1914. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Dziurowicz, P.; Fałowska, P.; Waszkiewicz, K.; Wietrzyk-Pełka, P.; Węgrzyn, M. Effect of light stress on maximum photochemical efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi. Ecol. Quest. 2024, 35, 1–29. [Google Scholar] [CrossRef]
- Loriaux, S.D.; Avenson, T.J.; Welles, J.M.; Mcdermitt, D.K.; Eckles, R.D.; Riensche, B.; Genty, B. Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant. Cell. Environ. 2013, 36, 1755–1770. [Google Scholar] [CrossRef] [PubMed]
- Šraj Kržič, N.; Gaberščik, A. Photochemical efficiency of amphibious plants in an intermittent lake. Aquat. Bot. 2005, 83, 281–288. [Google Scholar] [CrossRef]
- Nekhoroshkov, P.; Peshkova, A.; Zinicovscaia, I.; Vergel, K.; Kravtsova, A. Assessment of the Atmospheric Deposition of Heavy Metals and Other Elements in the Mountain Crimea Using Moss Biomonitoring Technique. Atmosphere 2022, 13, 573. [Google Scholar] [CrossRef]
- Chaligava, O.; Shetekauri, S.; Badawy, W.M.; Frontasyeva, M.V.; Zinicovscaia, I.; Shetekauri, T.; Kvlividze, A.; Vergel, K.; Yushin, N. Characterization of Trace Elements in Atmospheric Deposition Studied by Moss Biomonitoring in Georgia. Arch. Environ. Contam. Toxicol. 2021, 80, 350–367. [Google Scholar] [CrossRef]
- Olbert-Majkut, A.; Ahokas, J.; Lundell, J.; Pettersson, M. Raman spectroscopy of acetic acid monomer and dimers isolated in solid argon. J. Raman Spectrosc. 2011, 42, 1670–1681. [Google Scholar] [CrossRef]
- Qu, C.; Bowman, J.M. High-dimensional fitting of sparse datasets of CCSD(T) electronic energies and MP2 dipole moments, illustrated for the formic acid dimer and its complex IR spectrum. J. Chem. Phys. 2018, 148, 241713. [Google Scholar] [CrossRef]
Peak | Wavenumber | Assignment | Structural Fragment |
---|---|---|---|
1 | 3462 | OH str | -OH hydroxyl group |
2 | 2944 | CH2(O) asym str | -CH2(O) methylene group adjacent to oxygen |
3 | 2888 | CH2(O) sym str | -CH2(O) methylene group adjacent to oxygen |
4 | ~2862 | CH2 str | -CH2- methylene group in polymer chain |
5 | ~2806 | CH str | Methine group in polymer chain (near C=O) |
6 | 2741 | 2× CH2 sciss | Overtone of the 1360cm−1 band |
7 | 2692 | 2× CH2 sciss | Overtone of the 1343cm−1 band |
8 | 1728 | C=O str | O=C-OR ester |
9 | 1705 | C=O str | O=C-OH carboxyl (acid) |
10 | 1578 | COO− asym str | -COO− carboxylate (salt) |
11, 12 | 1467, 1455 | CH2, CH def | CH2 and CH aliphatic methylene and methine |
13 | 1412 | COO− sym str | -COO− carboxylate (salt) |
14, 15 | 1360, 1343 | CH2 sciss | -CH2- methylene group in ethylene fragment |
16, 17 | 1280, 1242 | CCO + C-O-C str | O=C-OR ester |
18, 19 | 1149, 1110 | C-O-C asym str | H2C-O-CH2- ether |
20 | 1061 | C-O (H/C) str | C-O(H) C-O(C) bond in alcohols and esters |
21, 22 | 964, 948 | CH2 rock | -CH2CH2- ethylene fragment |
23 | 843 | CCO bend | -CH2CH2-O- oxyethylene fragment |
No | A | B | Assignment | ||
---|---|---|---|---|---|
Position | Intensity | Position | Intensity | ||
1 | 3212 | vw | 2G | ||
2 | 2990 | m | D + G | ||
3 | 2937 | sh | CH2(O) asym str | ||
4 | 2906 | sh | |||
5 | 2884 | vs | CH2(O) sym str | ||
6 | 2851 | sh | CH2 str | ||
7 | 2731 | w | |||
8 | 2693 | w | 2 × CH2 sciss | ||
9 | 2684 | s | G’ (2D) | ||
10 | ~2441 | vw | G* | ||
11 | 1620 | sh | G2 | ||
12 | 1583 | vs | G (Tangential) | ||
13 | 1480 | m | CH2, CH def | ||
14 | 1397 | vw | |||
15 | 1346 | vs | D (Disorder) | ||
16 | 1280 | m | CCO + C-O-C str | ||
17 | 1233 | vw | CCO + C-O-C str | ||
18 | ~1220 | vw | |||
19 | 1142 | m | C-O-C asym str | ||
20 | 1064 | w | C-O(H/C) str | ||
21 | 843 | m | CCO bend | ||
22 | 579 | vw | |||
23 | 534 | vw | |||
24 | 360 | vw | |||
25 | 276 | w |
Method | Interaction Energy | Dispersion | % Dispersion | BSSE |
---|---|---|---|---|
Formic acid dimer | ||||
Optimized and SP calculated with 6-31+G* | ||||
BLYP (raw) | −17.23 | 1.19 | ||
BLYP (CP) | −16.04 | |||
Optimized with 6-31+G*, SP calculated with aug-cc-pVTZ | ||||
BLYP (raw) | −17.41 | 0.23 | ||
BLYP (CP) | −17.18 | |||
Optimized with 6-31+G*, SP calculated with aug-cc-pV5Z | ||||
BLYP (raw) | −17.34 | 0.02 | ||
BLYP (CP) | −17.32 | |||
Optimized and SP calculated with aug-cc-pVTZ | ||||
BLYP (raw) | −17.53 | 0.25 | ||
BLYP (CP) | −17.28 | |||
BLYPD3BJ (raw) | −20.89 | −3.36 | 16.08 | 0.26 |
BLYPD3BJ (CP) | −20.63 | −3.35 | 16.24 | |
B3LYP (raw) | −18.42 | 0.26 | ||
B3LYP (CP) | −18.16 | |||
B3LYPD3BJ (raw) | −21.15 | −2.73 | 12.91 | 0.26 |
B3LYPD3BJ (CP) | −20.89 | 13.07 | ||
CCSD(T)/aTZ a | −19.7 | |||
CCSD(T)/CBS b | −18.61 | |||
Acetic acid dimer | ||||
Optimized and SP calculated with aug-cc-pVTZ | ||||
BLYP (raw) | −18.36 | 0.29 | ||
BLYP (CP) | −18.07 | |||
BLYPD3BJ (raw) | −22.00 | −3.64 | 16.55 | 0.30 |
BLYPD3BJ (CP) | −21.70 | −3.63 | 16.73 | |
B3LYP (raw) | −19.20 | 0.29 | ||
B3LYP (CP) | −18.91 | |||
B3LYPD3BJ (raw) | −22.16 | −2.96 | 13.36 | 0.29 |
B3LYPD3BJ (CP) | −21.87 | 13.53 | ||
CCSD(T)/aTZ a | −20.8 | |||
Lit. b | −14.16 |
Species | Sample | Mean | Median | Min–Max | Geom. Mean | Harmonic Mean | SD | Variance | Range | Skewness | Kurtosis | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pf | Control | 0.614 | 0.670 | 0.147–0.747 | 0.590 | 0.552 | 0.142 | 0.020 | 0.600 | −1.60 | 1.88 | 49.7 |
Cement | 0.695 | 0.724 | 0.218–0.796 | 0.687 | 0.673 | 0.087 | 0.008 | 0.578 | −3.43 | 13.7 | 56.3 | |
MWCNT-Cement | 0.696 | 0.721 | 0.358–0.761 | 0.691 | 0.685 | 0.074 | 0.005 | 0.403 | −2.38 | 5.97 | 56.4 | |
Pp | Control | 0.602 | 0.664 | 0.142–0.740 | 0.564 | 0.499 | 0.162 | 0.026 | 0.598 | −1.81 | 2.44 | 48.7 |
Cement | 0.471 | 0.492 | 0.135–0.746 | 0.417 | 0.353 | 0.200 | 0.040 | 0.611 | −0.365 | −1.20 | 38.2 | |
MWCNT-Cement | 0.554 | 0.621 | 0.130–0.766 | 0.510 | 0.448 | 0.182 | 0.033 | 0.636 | −1.00 | −0.181 | 44.9 |
Data | Sum.Rang | Sum.Rang | U | Z | p | Z Correct. | p |
---|---|---|---|---|---|---|---|
Pf | |||||||
Control vs. cement | 4895 | 8308 | 1574 | −5.71 | *** | −5.72 | *** |
Control vs. MWCNT-cement | 4944 | 8259 | 1623 | −5.55 | *** | −5.55 | *** |
Cement vs. MWCNT-cement | 6643 | 6560 | 3239 | 0.137 | 0.891 | 0.137 | 0.891 |
Pp | |||||||
Control vs. cement | 7918 | 5285 | 1964 | 4.41 | *** | 4.41 | *** |
Control vs. MWCNT-cement | 7100 | 6104 | 2783 | 1.67 | 0.096 | 1.67 | 0.096 |
Cement vs. MWCNT-cement | 5769 | 7434 | 2448 | −2.79 | ** | −2.79 | ** |
Pf vs. Pp | |||||||
Control vs. cement | 6729 | 6474 | 3153 | 0.425 | 0.671 | 0.425 | 0.671 |
Control vs. MWCNT-cement | 9035 | 4168 | 847 | 8.15 | *** | 8.15 | *** |
Cement vs. MWCNT-cement | 8588 | 4615 | 1294 | 6.65 | *** | 6.65 | *** |
Composite | CEM I | Water | MWCNT-SP |
---|---|---|---|
Cement | 250 | 300 | - |
MWCNT-Cement | 250 | 300 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupka, T.; Makieieva, N.; Świsłowski, P.; Rajfur, M.; Małolepszy, A.; Stobiński, L.; Grzeszczyk, S.; Jurowski, K.; Sudoł, A.; Wrzalik, R.; et al. Carbon Nanotubes in Cement—A New Approach for Building Composites and Its Influence on Environmental Effect of Material. Molecules 2024, 29, 5379. https://doi.org/10.3390/molecules29225379
Kupka T, Makieieva N, Świsłowski P, Rajfur M, Małolepszy A, Stobiński L, Grzeszczyk S, Jurowski K, Sudoł A, Wrzalik R, et al. Carbon Nanotubes in Cement—A New Approach for Building Composites and Its Influence on Environmental Effect of Material. Molecules. 2024; 29(22):5379. https://doi.org/10.3390/molecules29225379
Chicago/Turabian StyleKupka, Teobald, Natalina Makieieva, Paweł Świsłowski, Małgorzata Rajfur, Artur Małolepszy, Leszek Stobiński, Stefania Grzeszczyk, Krystian Jurowski, Adam Sudoł, Roman Wrzalik, and et al. 2024. "Carbon Nanotubes in Cement—A New Approach for Building Composites and Its Influence on Environmental Effect of Material" Molecules 29, no. 22: 5379. https://doi.org/10.3390/molecules29225379
APA StyleKupka, T., Makieieva, N., Świsłowski, P., Rajfur, M., Małolepszy, A., Stobiński, L., Grzeszczyk, S., Jurowski, K., Sudoł, A., Wrzalik, R., Rahmonov, O., & Ejsmont, K. (2024). Carbon Nanotubes in Cement—A New Approach for Building Composites and Its Influence on Environmental Effect of Material. Molecules, 29(22), 5379. https://doi.org/10.3390/molecules29225379