Overview of Liquid Sample Preparation Techniques for Analysis, Using Metal-Organic Frameworks as Sorbents
Abstract
:1. Introduction
2. Metal-Organic Frameworks
3. Application of MOFs as Sorbents in Selected Techniques of Preparing Liquid Samples for Analysis
3.1. Solid-Phase Extraction (SPE)
3.2. Solid-Phase Microextraction (SPME)
3.3. Dispersive Solid-Phase Extraction (D-SPE) and Micro–Solid-Phase Extraction (μ-SPE)
3.4. Magnetic Solid-Phase Extraction (MSPE)
3.5. Pipette-Tip Solid-Phase Extraction (PT-SPE)
3.6. Matrix Solid-Phase Dispersion (MSPD)
3.7. Stir-Bar Sorptive Extraction (SBSE)
4. Limitations in the Application of MOFs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, L.; Yang, J.; Su, R.; Zhou, W.; Zhang, Y.; Zhong, Y.; Huang, S.; Chen, Y.; Li, G. Recent progress in fast sample preparation techniques. Anal. Chem. 2020, 92, 34–48. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Z.; Wang, X.; Qiu, C. Sample preparation. J. Chromatogr. A 2008, 1184, 191–219. [Google Scholar] [CrossRef]
- Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38. [Google Scholar] [CrossRef]
- Zhang, C.; Xing, H.; Yang, L.; Fei, P.; Liu, H. Development trend and prospect of solid phase extraction technology. Chin. J. Chem. Eng. 2022, 42, 245–255. [Google Scholar] [CrossRef]
- Treviño, M.J.S.; Zarazúa, S.; Płotka-Wasylka, J. Nanosorbents as Materials for Extraction Processes of Environmental Contaminants and Others. Molecules 2022, 27, 1067. [Google Scholar] [CrossRef]
- Butova, V.V.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metal-organic frameworks: Structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016, 85, 280–307. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Termopoli, V. Metal–Organic Frameworks in Solid-Phase Extraction Procedures for Environmental and Food Analyses. Chromatographia. 2019, 82, 1191–1205. [Google Scholar] [CrossRef]
- Bazargan, M.; Ghaemi, F.; Amiri, A.; Mirzaei, M. Metal–organic framework-based sorbents in analytical sample preparation. Coord. Chem. Rev. 2021, 445, 214107. [Google Scholar] [CrossRef]
- Magri, A.; Petriccione, M.; Gutiérrez, T.J. Metal-organic frameworks for food applications: A review. Food Chem. 2021, 354, 129533. [Google Scholar] [CrossRef]
- Jeong, C.; Ansari, M.Z.; Anwer, A.H.; Kim, S.-H.; Nasar, A.; Shoeb, M.; Mashkoor, F. A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep. Purif. Technol. 2023, 305, 122416. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Kalmutzki, M.J.; Diercks, C.S. Introduction to Reticular Chemistry; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2019. [Google Scholar]
- Yaghi, O.; Li, H. Hydrothermal synthesis of a Metal-Organic Framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4′-bpy)3(NO3)4]xH2O}n (M = Co, Ni, Zn). Angew. Chemie (Int. Ed. Engl.) 1997, 36, 1725–1727. [Google Scholar] [CrossRef]
- Eddaoudi, H.; Li, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar]
- Nabipour, H.; Mozafari, M.; Hu, Y. Chapter 1—Nomenclature of MOFs. In Metal-Organic Frameworks for Biomedical Applications; Mozafari, M., Ed.; Elsevier Woodhead Publishing: London, UK, 2020; pp. 1–9. [Google Scholar]
- Liu, Y.; Howarth, A.J.; Vermeulen, N.A.; Moon, S.Y.; Hupp, J.T.; Farha, O.K. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coord. Chem. Rev. 2016, 346, 101–111. [Google Scholar] [CrossRef]
- Lawrance, G.A. Introduction to Coordination Chemistry; John Wiley & Sons Ltd.: Chichester, UK, 2010. [Google Scholar]
- De Heer, W.A. The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611–676. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Qian, J. Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coord. Chem. Rev. 2023, 484, 215101. [Google Scholar] [CrossRef]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef]
- Öhrström, L. Let’s talk about MOFs—Topology and terminology of metal-organic frameworks and why we need them. Crystals 2015, 5, 154–162. [Google Scholar] [CrossRef]
- García-Atienza, P.; Martínez-Pérez-Cejuela, H.; Herrero-Martínez, J.M.; Armenta, S. Current trends in the sorbent-based extraction of illegal drugs from biofluids: Solid sorbents and configurations. TrAC Trends Anal. Chem. 2024, 172, 117599. [Google Scholar] [CrossRef]
- Samanidou, E.D.V. Metal Organic Frameworks, Synthesis and Application; MDPI: Basel, Switzerland, 2020; ISBN 978-3-03928-487-0. [Google Scholar]
- García, H.; Navalón, S. Metal-Organic Frameworks, Application in Spearations and Catalysis; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Uflyand, I.E.; Zhinzhilo, V.A.; Nikolaevskaya, V.O.; Kharisov, B.I.; González, C.M.O.; Kharissova, O.V. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem. J. 2021, 168, 106387. [Google Scholar] [CrossRef]
- Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Kulandaisamy, A.J.; Babu, K.J.; Das, A.; Balaguru Rayappan, J.B. Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Ind. Eng. Chem. Res. 2021, 60, 4218–4239. [Google Scholar] [CrossRef]
- Berrueta, L.A.; Gallo, B.; Vicente, F. A review of solid phase extraction: Basic principles and new developments. Chromatographia. 1995, 40, 474–483. [Google Scholar] [CrossRef]
- Hennion, M.-C. Solid-phase extraction: Method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A 1999, 856, 3–54. [Google Scholar] [CrossRef]
- Chormey, D.S.; Bakirdere, S. Principles and Recent Advancements in Microextraction Techniques. Compr. Anal. Chem. 2018, 81, 257–294. [Google Scholar]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Q.; Han, Q.; Wan, W.; Ding, M. Metal–organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 2016, 141, 4219–4226. [Google Scholar] [CrossRef]
- Dai, X.; Jia, X.; Zhao, P.; Wang, T.; Wang, J.; Huang, P.; He, L.; Hou, X. A combined experimental/computational study on metal-organic framework MIL-101(Cr) as a SPE sorbent for the determination of sulphonamides in environmental water samples coupling with UPLC-MS/MS. Talanta 2016, 154, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Frizzarin, R.M.; Palomino Cabello, C.; Bauzà, M.D.M.; Portugal, L.A.; Maya, F.; Cerdà, V.; Estela, J.M.; Turnes Palomino, G. Submicrometric Magnetic Nanoporous Carbons Derived from Metal-Organic Frameworks Enabling Automated Electromagnet-Assisted Online Solid-Phase Extraction. Anal. Chem. 2016, 88, 6990–6995. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wang, Y.; Yan, M.; Wang, Q.; Xu, H.; Wang, X.; Zhou, H.; Hao, Y.; Wang, M. Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples. J. Chromatogr. A 2020, 1615, 460766. [Google Scholar] [CrossRef] [PubMed]
- Nurerk, P.; Llompart, M.; Donkhampa, P.; Bunkoed, O.; Dagnac, T. Solid-phase extraction based on MIL-101 adsorbent followed by gas chromatography-tandem mass spectrometry for the analysis of multiclass organic UV filters in water. J. Chromatogr. A 2020, 1610, 460564. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.; Font Picó, M.F.; Salehinia, S.; Palomino Cabello, C.; Maya, F.; Berlier, G.; Saraji, M.; Cerdà, V.; Turnes Palomino, G. Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. J. Chromatogr. A 2017, 1488, 1–9. [Google Scholar] [CrossRef]
- Asiabi, M.; Mehdinia, A.; Jabbari, A. Spider-web-like chitosan/MIL-68(Al) composite nanofibers for high-efficient solid phase extraction of Pb(II) and Cd(II). Microchim. Acta 2017, 184, 4495–4501. [Google Scholar] [CrossRef]
- Wang, S.; Niu, H.; Zeng, T.; Zhang, X.; Cao, D.; Cai, Y. Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Microporous Mesoporous Mater. 2017, 239, 390–395. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Huang, Z.; Li, H.; Zhang, Y.; Wang, H.; Rui, C.; Li, Y.; You, L.; Li, K. An amino-functionalized zirconium-based metal-organic framework of type UiO-66-NH2 covered with a molecularly imprinted polymer as a sorbent for the extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from grain. Microchim. Acta 2020, 187, 32. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, N.; Chen, T.; Ma, Y.; Li, Q. A green cyclodextrin metal-organic framework as solid-phase extraction medium for enrichment of sulfonamides before their HPLC determination. Microchem. J. 2018, 138, 401–407. [Google Scholar] [CrossRef]
- Asiabi, M.; Mehdinia, A.; Jabbari, A. Preparation of water stable methyl-modified metal-organic framework-5/polyacrylonitrile composite nanofibers via electrospinning and their application for solid-phase extraction of two estrogenic drugs in urine samples. J. Chromatogr. A 2015, 1426, 24–32. [Google Scholar] [CrossRef]
- Yang, S.; Chen, C.; Yan, Z.; Cai, Q.; Yao, S. Evaluation of metal-organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters. J. Sep. Sci. 2013, 36, 1283–1290. [Google Scholar] [CrossRef]
- Huang, L.; Huang, W.; Shen, R.; Shuai, Q. Chitosan/thiol functionalized metal–organic framework composite for the simultaneous determination of lead and cadmium ions in food samples. Food Chem. 2020, 330, 127212. [Google Scholar] [CrossRef]
- Tahmasebi, E.; Masoomi, M.Y.; Yamini, Y.; Morsali, A. Application of a Zn(ii) based metal-organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds. RSC Adv. 2016, 6, 40211–40218. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y.; Li, X.; Ouyang, G.; Cui, J.; Zhang, L.; Yu, A.; Zhang, S.; Cui, Y. Morphology-maintaining synthesis of copper hydroxy phosphate@metal–organic framework composite for extraction and determination of trace mercury in rice. Food Chem. 2021, 343, 128508. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Ghaemi, F. Solid-phase extraction of non-steroidal anti-inflammatory drugs in human plasma and water samples using sol–gel-based metal-organic framework coating. J. Chromatogr. A 2021, 1648, 462168. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Ouyang, G.; Jiang, R. (Eds.) Solid-Phase Microextraction: Recent Developments and Applications; Springer-Verlag GmbH: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Schmidt, K.; Podmore, I. Solid Phase Microextraction (SPME) Method Development in Analysis of Volatile Organic Compounds (VOCS) as Potential Biomarkers of Cancer. J. Mol. Biomark. Diagn. 2015, 6, 1000253. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, X.; Li, T.; Pang, T.; Dong, Y.; Zhuo, R.; Wang, Q.; Cao, Y.; Gan, N. A solid phase microextraction Arrow with zirconium metal–organic framework/molybdenum disulfide coating coupled with gas chromatography–mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples. J. Chromatogr. A 2019, 1592, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Lin, W.; Xu, J.; Wang, Y.; Liu, S.; Zhu, F.; Liu, Y.; Ouyang, G. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples. Anal. Chim. Acta 2017, 971, 48–54. [Google Scholar] [CrossRef]
- Wei, F.; He, Y.; Qu, X.; Xu, Z.; Zheng, S.; Zhu, D.; Fu, H. In situ fabricated porous carbon coating derived from metal-organic frameworks for highly selective solid-phase microextraction. Anal. Chim. Acta 2019, 1078, 70–77. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Q.; Li, Z.; Wang, W.; Zang, X.; Wang, C.; Wang, Z. Solid phase microextraction of phthalic acid esters from vegetablezosta oils using iron (III)-based metal-organic framework/graphene oxide coating. Food Chem. 2018, 263, 258–264. [Google Scholar] [CrossRef]
- Zhang, S.; Du, Z.; Li, G. Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 2013, 115, 32–39. [Google Scholar] [CrossRef]
- Ghaedrahmati, L.; Ghiasvand, A.; Heidari, N. Headspace solid-phase microextraction sampling of endogenous aldehydes in biological fluids using a magnetic metal-organic framework/polyaniline nanocomposite. J. Sep. Sci. 2021, 44, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-L.; Li, N.; Wang, X.; Wei, X.-Y.; Zhao, R.-S.; Lin, J.-M. A zirconium-based metal-organic framework material for solid-phase microextraction of trace polybrominated diphenyl ethers from milk. Food Chem. 2020, 317, 126436. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, R.; Kardani, F.; Ramezani, Z. Fabrication of UMCM-1 based monolithic and hollow fiber — Metal-organic framework deep eutectic solvents/molecularly imprinted polymers and their use in solid phase microextraction of phthalate esters in yogurt, water and edible oil by GC-FID. Food Chem. 2020, 314, 126179. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Liao, Y.; Huang, X.; Ye, Z.; Yuan, D. Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples. Talanta 2019, 199, 499–506. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, P.; Pacheco-Fernández, I.; Bernardo, F.; Homem, V.; Pasán, J.; Ayala, J.H.; Ratola, N.; Pino, V. Headspace solid-phase microextraction based on the metal-organic framework CIM-80(Al) coating to determine volatile methylsiloxanes and musk fragrances in water samples using gas chromatography and mass spectrometry. Talanta 2021, 232, 122440. [Google Scholar] [CrossRef]
- Chen, X.-F.; Zang, H.; Wang, X.; Cheng, J.-G.; Zhao, R.-S.; Cheng, C.-G.; Lu, X.-Q. Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry. Analyst 2012, 137, 5411–5419. [Google Scholar] [CrossRef]
- Zang, X.; Zhang, X.; Chang, Q.; Li, S.; Wang, C.; Wang, Z. Metal–organic framework UiO-67-coated fiber for the solid-phase microextraction of nitrobenzene compounds from water. J. Sep. Sci. 2016, 39, 2770–2776. [Google Scholar] [CrossRef]
- Xie, L.; Liu, S.; Han, Z.; Jiang, R.; Liu, H.; Zhu, F.; Zeng, F.; Su, C.; Ouyang, G. Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal. Chim. Acta 2015, 853, 303–310. [Google Scholar] [CrossRef]
- Shang, H.-B.; Yang, C.-X.; Yan, X.-P. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J. Chromatogr. A 2014, 1357, 165–171. [Google Scholar] [CrossRef]
- Hamidi, S.; Taghvimi, A.; Mazouchi, N. Micro Solid Phase Extraction Using Novel Adsorbents. Crit. Rev. Anal. Chem. 2021, 51, 103–114. [Google Scholar] [CrossRef]
- Naing, N.N.; Tan, S.C.; Lee, H.K. 16—Micro-solid-phase extraction, In: Solid-Phase Extraction; Poole, C.F., Ed.; Elsevier Inc: Amsterdam, The Netherlands, 2020; pp. 443–471. [Google Scholar] [CrossRef]
- Sajid, M. Porous membrane protected micro-solid-phase extraction: A review of features, advancements and applications. Anal. Chim. Acta 2017, 965, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhao, Y.; Zhao, M.; Wang, Z.; Chen, X.; Wang, M. Core–shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons. J. Chromatogr. A 2018, 1551, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Yang, C.; Pang, Y.; Xie, W.; Shen, X. Dispersive solid-phase extraction using the metal-organic framework MIL-101(Cr) for determination of benzo(a)pyrene in edible oil. Anal. Methods 2019, 11, 3467–3473. [Google Scholar] [CrossRef]
- Pang, Y.-H.; Lv, Z.-Y.; Sun, J.-C.; Yang, C.; Shen, X.-F. Collaborative compounding of metal–organic frameworks for dispersive solid-phase extraction HPLC–MS/MS determination of tetracyclines in honey. Food Chem. 2021, 355, 129411. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jia, M.; Guo, H.; Hou, X. Development and application of metal organic framework/chitosan foams based on ultrasound-assisted solid-phase extraction coupling to UPLC-MS/MS for the determination of five parabens in water. Anal. Bioanal. Chem. 2018, 410, 6619–6632. [Google Scholar] [CrossRef]
- Gao, G.; Xing, Y.; Liu, T.; Wang, J.; Hou, X. UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: The application of experimental and molecular simulation method. Microchem. J. 2019, 146, 126–133. [Google Scholar] [CrossRef]
- Xia, L.; Dou, Y.; Gao, J.; Gao, Y.; Fan, W.; Li, G.; You, J. Adsorption behavior of a metal-organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples. J. Chromatogr. A 2020, 1619, 460949. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Yang, Y.; Yang, Y.; Yang, L.; Wang, Z. Rapid and sensitive analysis of progesterone by solid-phase extraction with amino-functionalized metal-organic frameworks coupled to direct analysis in real-time mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 2939–2947. [Google Scholar] [CrossRef]
- Motakef-Kazemi, N. A novel sorbent based on metal–organic framework for mercury separation from human serum samples by ultrasound assisted-ionic liquid-solid phase microextraction. Anal. Methods Environ. Chem. J. 2019, 2, 67–78. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Cui, J.; Li, S.; Yuan, M.; Wang, T.; Hu, Q.; Hou, X. Fabrication and characterization of metal organic frameworks/polyvinyl alcohol cryogel and their application in extraction of non-steroidal anti-inflammatory drugs in water samples. Anal. Chim. Acta 2018, 1022, 45–52. [Google Scholar] [CrossRef]
- Tan, S.C.; Lee, H.K. A metal-organic framework of type MIL-101(Cr) for emulsification-assisted micro-solid-phase extraction prior to UHPLC-MS/MS analysis of polar estrogens. Microchim. Acta 2019, 186, 165. [Google Scholar] [CrossRef]
- Xia, L.; Liu, L.; Xu, X.; Zhu, F.; Wang, X.; Zhang, K.; Yang, X.; You, J. Determination of chlorophenoxy acid herbicides by using a zirconium-based metal-organic framework as special sorbent for dispersive micro-solid-phase extraction and high-performance liquid chromatography. New J. Chem. 2017, 41, 2241–2248. [Google Scholar] [CrossRef]
- Jalilian, N.; Ebrahimzadeh, H.; Asgharinezhad, A.A. A nanosized magnetic metal-organic framework of type MIL-53(Fe) as an efficient sorbent for coextraction of phenols and anilines prior to their quantitation by HPLC. Microchim. Acta 2019, 186, 597. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Martínez-Benito, C.; Pino, V.; Pasán, J.; Ayala, J.H.; Ruiz-Pérez, C.; Afonso, A.M. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 2015, 139, 13–20. [Google Scholar] [CrossRef]
- Nasrollahpour, A.; Moradi, S.E.; Baniamerian, M.J. Vortex-Assisted Dispersive Solid-Phase Microextraction Using Ionic Liquid-Modified Metal-Organic Frameworks of PAHs from Environmental Water, Vegetable, and Fruit Juice Samples. Food Anal. Methods 2017, 10, 2815–2826. [Google Scholar] [CrossRef]
- Lu, N.; Wang, T.; Zhao, P.; Zhang, L.; Lun, X.; Zhang, X.; Hou, X. Experimental and molecular docking investigation on metal-organic framework MIL-101(Cr) as a sorbent for vortex assisted dispersive micro-solid-phase extraction of trace 5-nitroimidazole residues in environmental water samples prior to UPLC-MS/MS analysis. Anal. Bioanal. Chem. 2016, 408, 8515–8528. [Google Scholar] [CrossRef]
- Li, N.; Wu, L.; Nian, L.; Song, Y.; Lei, L.; Yang, X.; Wang, K.; Wang, Z.; Zhang, L.; Zhang, H.; et al. Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans. Talanta 2015, 142, 43–50. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, X.; He, X.; Chen, L.; Hou, X. MIL-101(Cr)@GO for dispersive micro-solid-phase extraction of pharmaceutical residue in chicken breast used in microwave-assisted coupling with HPLC–MS/MS detection. J. Pharm. Biomed. Anal. 2017, 145, 440–446. [Google Scholar] [CrossRef]
- Pourbahman, F.; Zeeb, M.; Monzavi, A.; Homami, S.S. Simultaneous trace monitoring of prokinetic drugs in human plasma using magnetic dispersive micro-solid phase extraction based on a new graphene oxide/metal–organic framework-74/Fe3O4/polytyramine nanoporous composite in combination with HPLC. Chem. Pap. 2019, 73, 3135–3150. [Google Scholar] [CrossRef]
- Ge, D.; Lee, H.K. Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A 2011, 1218, 8490–8495. [Google Scholar] [CrossRef]
- Huang, Z.; Kee, H. Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. J. Chromatogr. A 2015, 1401, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, J.; Zhang, C.; Yang, Z.; Dai, X.; Cheng, M.; Hou, X. Metal-organic framework MIL-101(Cr) as sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: A combination of experimental and computational study. Analyst 2015, 140, 5308–5316. [Google Scholar] [CrossRef] [PubMed]
- Zang, H.; Yuan, J.-P.; Chen, X.-F.; Liu, C.-A.; Cheng, C.-G.; Zhao, R.-S. Hollow fiber-protected metal-organic framework materials as micro-solid-phase extraction adsorbents for the determination of polychlorinated biphenyls in water samples by gas chromatography-tandem mass spectrometry. Anal. Methods 2013, 5, 4875–4882. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, W.; Ying, J.; Zhao, H. Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from the air-water environment. J. Chromatogr. A 2016, 1452, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Y.; Pan, M.; Xie, X.; Liu, K.; Hong, L.; Wang, S. Synthesis of magnetic metal-organic frame material and its application in food sample preparation. Foods 2020, 9, 1610. [Google Scholar] [CrossRef] [PubMed]
- Maya, F.; Palomino Cabello, C.; Frizzarin, R.M.; Estela, J.M.; Turnes Palomino, G.; Cerdà, V. Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC Trends Anal. Chem. 2017, 90, 142–152. [Google Scholar] [CrossRef]
- Riani, P.; Lucchini, M.A.; Thea, S.; Alloisio, M.; Bertoni, G.; Canepa, F. New approach for the step by step control of magnetic nanostructure functionalization. Inorg. Chem. 2014, 53, 9166–9173. [Google Scholar] [CrossRef]
- Villa, S.; Riani, P.; Locardi, F.; Canepa, F. Functionalization of Fe3O4 NPs by silanization: Use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization. Materials 2016, 9, 826. [Google Scholar] [CrossRef]
- Huo, S.-H.; Yan, X.-P. Facile magnetization of metal-organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Analyst 2012, 137, 3445–3451. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Liu, H.; Liu, G.; Xu, X.; Li, L.; Lv, J.; Gao, H.; Xu, D. Magnetic solid-phase extraction of pyrethroid insecticides from tea infusions using ionic liquid-modified magnetic zeolitic imidazolate framework-8 as an adsorbent. RSC Adv. 2019, 9, 39272–39281. [Google Scholar] [CrossRef]
- Moradi, Z.; Alipanahpour Dil, E.; Asfaram, A. Dispersive micro-solid phase extraction based on Fe3O4@SiO2@Ti-MOF as a magnetic nanocomposite sorbent for the trace analysis of caffeic acid in the medical extracts of plants and water samples prior to HPLC-UV analysis. Analyst 2019, 144, 4351–4361. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wang, X.; Sun, Y.; Ma, P.; Li, X.; Piao, H.; Jiang, Y.; Song, D. Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework MIL-101(Cr) functionalized magnetic particles. Talanta 2018, 179, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Senosy, I.A.; Guo, H.-M.; Ouyang, M.-N.; Lu, Z.-H.; Yang, Z.-H.; Li, J.-H. Magnetic solid-phase extraction based on nano-zeolite imidazolate framework-8-functionalized magnetic graphene oxide for the quantification of residual fungicides in water, honey and fruit juices. Food Chem. 2020, 325, 126944. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, G.; Li, S.; Tan, W.; Wang, X.; Li, J.; Chen, L. Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J. Chromatogr. A 2018, 1553, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, S.; Yang, W.; Gu, F.; Xu, H.; Wang, T.; Sun, D.; Hou, X. Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs. Talanta 2019, 194, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.; Zhang, X.; Hao, J.; Lv, J.; Wang, X.; Zhu, B.; Lou, D. Magnetic solid-phase extraction of fluoroquinolones from water samples using titanium-based metal-organic framework functionalized magnetic microspheres. J. Chromatogr. A 2018, 1579, 1–8. [Google Scholar] [CrossRef]
- Shakourian, M.; Yamini, Y.; Safari, M. Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta 2020, 218, 121139. [Google Scholar] [CrossRef]
- Wang, G.-H.; Lei, Y.-Q.; Song, H.-C. Evaluation of Fe3O4@SiO2-MOF-177 as an advantageous adsorbent for magnetic solid-phase extraction of phenols in environmental water samples. Anal. Methods 2014, 6, 7842–7847. [Google Scholar] [CrossRef]
- He, X.; Yu, Y.; Li, Y. Facile synthesis of boronic acid-functionalized magnetic metal-organic frameworks for selective extraction and quantification of catecholamines in rat plasma. RSC Adv. 2018, 8, 41976–41985. [Google Scholar] [CrossRef]
- Bagheri, N.; Al Lawati, H.A.J.; Al Sharji, N.A.; Hassanzadeh, J. Magnetic zinc based 2D-metal organic framework as an efficient adsorbent for simultaneous determination of fluoroquinolones using 3D printed microchip and liquid chromatography tandem mass spectrometry. Talanta 2021, 224, 121796. [Google Scholar] [CrossRef]
- Maya, F.; Palomino Cabello, C.; Estela, J.M.; Cerdà, V.; Turnes Palomino, G. Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal-Organic Frameworks. Anal. Chem. 2015, 87, 7545–7549. [Google Scholar] [CrossRef] [PubMed]
- Kaykhaii, M.; Yavari, E.; Sargazi, G.; Ebrahimi, A.K. Highly Sensitive Determination of Bisphenol A in Bottled Water Samples by HPLC after Its Extraction by a Novel Th-MOF Pipette-Tip Micro-SPE. J. Chromatogr. Sci. 2020, 58, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Wu, M.; Hu, B.; Yao, M.; Zhang, L.; Lu, Q.; Pang, J. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. J. Chromatogr. A 2018, 1542, 19–27. [Google Scholar] [CrossRef]
- Amini, S.; Ebrahimzadeh, H.; Seidi, S.; Jalilian, N. Polyacrylonitrile/MIL-53(Fe) electrospun nanofiber for pipette-tip micro solid phase extraction of nitrazepam and oxazepam followed by HPLC analysis. Microchim. Acta 2020, 187, 152. [Google Scholar] [CrossRef] [PubMed]
- Salas, C. Chapter 4—Solution electrospinning of nanofibers. In Electrospun Nanofibers; Afshari, M., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 73–108. [Google Scholar]
- Su, Y.; Wang, S.; Zhang, N.; Cui, P.; Gao, Y.; Bao, T. Zr-MOF modified cotton fiber for pipette tip solid-phase extraction of four phenoxy herbicides in complex samples. Ecotoxicol. Environ. Saf. 2020, 201, 110764. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, C.; Xi, J.; Tang, S.; Bao, T.; Zhang, J. A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. Microchim. Acta 2019, 186, 393. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Zhang, Q.; Wang, T.; Hou, X. Macro-microporous zeolitic imidazole framework-8/cellulose aerogel for semi-automated pipette tip solid phase extraction of fluoroquinolones in water. Anal. Chim. Acta 2021, 1184, 338984. [Google Scholar] [CrossRef]
- Abbaszadehbezi, M.; Kahkha, M.R.R.; Khammar, A.; Rabouri, M.M. Application of pipette-tip solid-phase extraction technique for fast determination of levofloxacin from wastewater sample using cobalt metal-organic framework. Anal. Methods Environ. Chem. J. 2022, 5, 51–59. [Google Scholar] [CrossRef]
- Rezaei Kahkha, M.R.; Oveisi, A.R.; Kaykhaii, M.; Rezaei Kahkha, B. Determination of carbamazepine in urine and water samples using amino-functionalized metal–organic framework as sorbent. Chem. Cent. J. 2018, 12, 77. [Google Scholar] [CrossRef]
- Rezaei Kahkha, M.R.; Daliran, S.; Oveisi, A.R.; Kaykhaii, M.; Sepehri, Z. The Mesoporous Porphyrinic Zirconium Metal-Organic Framework for Pipette-Tip Solid-Phase Extraction of Mercury from Fish Samples Followed by Cold Vapor Atomic Absorption Spectrometric Determination. Food Anal. Methods 2017, 10, 2175–2184. [Google Scholar] [CrossRef]
- Hashemi, S.H.; Kaykhaii, M.; Keikha, A.J.; Mirmoradzehi, E.; Sargazi, G. Application of response surface methodology for optimization of metal-organic framework based pipette-tip solid phase extraction of organic dyes from seawater and their determination with HPLC. BMC Chem. 2019, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Kahkha, M.R.R.; Kaykhaii, M.; Miri, A.; Saravani, H. Fast determination of Bisphenol A in spiked juice and drinking water samples by Pipette Tip Solid-Phase Extraction using Cobalt Metal-Organic Framework as sorbent. Bull. Chem. Soc. Ethiop. 2018, 32, 595–602. [Google Scholar] [CrossRef]
- Barker, S.A.; Long, A.R.; Short, C.R. Isolation of drugs residues from tissues by solid phase dispersion. J. Chromatogr. A 1989, 475, 353–361. [Google Scholar] [CrossRef]
- Pérez, R.A.; Albero, B.; Tadeo, J.L. 19-Matrix solid phase dispersion. In Solid-Phase Extraction (Handbooks in Separation Science); Elsevier: Amsterdam, The Netherlands, 2019; pp. 531–549. [Google Scholar] [CrossRef]
- Wen, Y. Recent advances in solid-phase extraction techniques with nanomaterials. In Handbook of Nanomaterials in Analytical Chemistry; Hussain, C.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 57–73. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC—Trends Anal. Chem. 2014, 59, 26–41. [Google Scholar] [CrossRef]
- Zgoła-Grześkowiak, A.; Grześkowiak, T.; Ligor, M.; Frankowski, R. Achievements and challenges of matrix solid-phase dispersion usage in the extraction of plants and food samples. Processes 2024, 12, 1146. [Google Scholar] [CrossRef]
- Hoff, R.B.; Pizzolato, T.M. Combining extraction and purification steps in sample preparation for environmental matrices: A review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications. TrAC Trends Anal. Chem. 2018, 109, 83–96. [Google Scholar] [CrossRef]
- Pérez-Lemus, N.; López-Serna, R.; Pérez-Elvira, S.I.; Barrado, E. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Anal. Chim. Acta 2019, 1083, 19–40. [Google Scholar] [CrossRef]
- Madej, K.; Kalenik, T.K.; Piekoszewski, W. Sample preparation and determination of pesticides in fat-containing foods. Food Chem. 2018, 269, 527–541. [Google Scholar] [CrossRef]
- Liang, T.; Wang, S.; Chen, L.; Niu, N. Metal Organic Framework-Molecularly Imprinted Polymer as Adsorbent in Matrix Solid Phase Dispersion for Pyrethroids Residue Extraction from Wheat. Food Anal. Methods 2019, 12, 217–228. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, C.; Chen, L. Analysis of tetracyclines from milk powder by molecularly imprinted solid-phase dispersion based on a metal–organic framework followed by ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 2604–2612. [Google Scholar] [CrossRef]
- Santos Barreto, A.; de Cássia da Silva Andrade, P.; Meira Farias, J.; Menezes Filho, A.; Fernandes de Sá, G.; Alves Júnior, S. Characterization and application of a lanthanide-based metal–organic framework in the development and validation of a matrix solid-phase dispersion procedure for pesticide extraction on peppers (Capsicum annuum L.) with gas chromatography–mass spectrometr. J. Sep. Sci. 2018, 41, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramos, R.; Socas-Rodríguez, B.; Santana-Mayor, Á.; Rodríguez-Delgado, M.Á. Nanomaterials as alternative dispersants for the multiresidue analysis of phthalates in soil samples using matrix solid phase dispersion prior to ultra-high performance liquid chromatography tandem mass spectrometry. Chemosphere 2019, 236, 124377. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, N.; Wang, Y.; Liu, X.; Wang, S.; Cao, J. Metal–organic framework assisted matrix solid-phase dispersion microextraction of saponins using response surface methodology. Electrophoresis 2020, 41, 1354–1363. [Google Scholar] [CrossRef]
- Souza, M.R.R.; Jesus, R.A.; Costa, J.A.S.; Barreto, A.S.; Navickiene, S.; Mesquita, M.E. Applicability of metal–organic framework materials in the evaluation of pesticide residues in egg samples of chicken (Gallus gallus domesticus). J. Verbraucherschutz Lebensmittelsicherh. 2021, 16, 83–91. [Google Scholar] [CrossRef]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999, 11, 737–747. [Google Scholar] [CrossRef]
- Hasan, C.K.; Ghiasvand, A.; Lewis, T.W.; Nesterenko, P.N.; Paull, B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal. Chim. Acta 2020, 1139, 222–240. [Google Scholar]
- Manousi, N.; Zachariadis, G.A. Recent advances in the extraction of polycyclic aromatic hydrocarbons from environmental samples. Molecules 2020, 25, 2182. [Google Scholar] [CrossRef] [PubMed]
- Rodas, M.; Fikarová, K.; Pasanen, F.; Horstkotte, B.; Maya, F. Zeolitic imidazolate frameworks in analytical sample preparation. J. Sep. Sci. 2021, 44, 1203–1219. [Google Scholar] [CrossRef]
- Khoobi, A.; Salavati-Niasari, M.; Ghani, M.; Ghoreishi, S.M.; Gholami, A. Multivariate optimization methods for in-situ growth of LDH/ZIF-8 nanocrystals on anodized aluminium substrate as a nanosorbent for stir bar sorptive extraction in biological and food samples. Food Chem. 2019, 288, 39–46. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.; Xu, X.; Bao, T.; Wang, S. Hydrophilic carboxyl supported immobilization of UiO-66 for novel bar sorptive extraction of non-steroidal antiinflammatory drugs in food samples. Food Chem. 2021, 355, 129623. [Google Scholar] [CrossRef]
- Zatrochová, S.; Martínez-Pérez-Cejuela, H.; Catalá-Icardo, M.; Simó-Alfonso, E.F.; Lhotská, I.; Šatínský, D.; Herrero-Martínez, J.M. Development of hybrid monoliths incorporating metal–organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples. Microchim. Acta 2022, 189, 92. [Google Scholar] [CrossRef] [PubMed]
- Heidarbeigi, M.; Saraji, M.; Jafari, M.T. In situ growth of copper-based metal-organic framework on a helical shape copper wire as a sorbent in stir-bar sorptive extraction of fenthion followed by corona discharge ion mobility spectrometry. J. Chromatogr. A 2021, 1651, 462279. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, Y.; Zhang, N.; Xie, Y.; Xu, X.; Guo, H.; Bao, T.; Sun, M.; Wang, S. Stir-bar sorptive extraction based on hydroxyl-functionalized zirconium-metal-organic framework for the detection of three quinolones in actual samples. J. Sep. Sci. 2023, 46, 2200833. [Google Scholar] [CrossRef]
- Mumtaz, N.; Javaid, A.; Imran, M.; Latif, S.; Hussain, N.; Nawaz, S.; Bilal, M. Nanoengineered metal-organic framework for adsorptive and photocatalytic mitigation of pharmaceuticals and pesticide from wastewater. Environ. Pollut. 2022, 308, 119690. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, Y.; Xiong, T.; Yu, P.; Jiang, W.; Mao, L. Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal-Organic Frameworks. Anal. Chem. 2022, 94, 4328–4334. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Li, T.; Zhang, Y.; Xu, H.; Sun, Y.; Gu, X.; Gu, C.; Luo, J.; Gao, B. MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. J. Hazard. Mater. 2022, 429, 128271. [Google Scholar] [CrossRef] [PubMed]
- Gebremariam, S.K.; Dumée, L.F.; Llewellyn, P.L.; AlWahedi, Y.F.; Karanikolos, G.N. Metal-organic framework hybrid adsorbents for carbon capture—A review. J. Environ. Chem. Eng. 2023, 11, 109291. [Google Scholar] [CrossRef]
- Bukowski, B.C.; Son, F.A.; Chen, Y.; Robison, L.; Isamoglu, T.; Snurr, R.Q.; Farha, O.K. Insights into Mass Transfer Barriers in Metal–Organic Frameworks. Chem. Mater. 2022, 34, 4134–4141. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Vagena, I.-A.; Lagopati, N.; Pippa, N.; Gazouli, M.; Pavlatou, E.A. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. Nanomaterials 2023, 13, 2224. [Google Scholar] [CrossRef]
- An, Y.; Lv, X.; Jiang, W.; Wang, L.; Shi, Y.; Hang, X.; Pang, H. The stability of MOFs in aqueous solutions—Research progress and prospects. Green Chem. Eng. 2024, 5, 187–204. [Google Scholar] [CrossRef]
- Ma, J.; Li, S.; Wu, G.; Arabi, M.; Tan, F.; Guan, Y.; Li, J.; Chen, L. Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments. J. Ind. Eng. Chem. 2020, 90, 178–189. [Google Scholar] [CrossRef]
- Jung, K.W.; Kim, J.H.; Choi, J.W. Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochlo. Compos. Part B Eng. 2020, 187, 107867. [Google Scholar] [CrossRef]
MOF | Analytes | Matrix/Sample | Analytical Technique | LOD | LOQ | Linearity Range | R2 | Recovery | RSD | Source |
---|---|---|---|---|---|---|---|---|---|---|
MIL-101(Cr) @ Graphene hybrid aerogel | 5 non-steroidal anti-inflammatory drugs (NSAIDs) | Deionized water, Tap water | HPLC-UV-Vis | 0.01–0.10 ng/mL | – | – | >0.9973 | 89.2–100.7% | 3.7–8.5% | [33] |
MIL-101(Cr) and MIL-100 (Fe) | 4 sulphonamides | Environmental water | UPLC-MS/MS | 0.03–0.08 μg/L | 0.11–0.27 μg/L | 0.2~40 or 0.5~100 μg/L | >0.996 | 83.5–107.3% | 0.2–8.0% | [34] |
μMNCs derived from ZIF-67 | Anionic surfactants | Environmental water (natural water, groundwater, wastewater) | CCD spectrophotometer | 100 μg/L | – | 50–1000 μg/L | 0.998 | 93–110% | 2.7% | [35] |
MIL-101 | 11 UV filters compounds | Environmental water | GC-MS/MS | 1.0–11.7 ng/L | – | 0.5–100 μg/L | ≥0.9973 | 82–105% | <10% | [37] |
UiO-66 and UiO-66-NH2 | 7 substituted phenols | Groundwater | HPLC-UV-Vis | 0.1–0.2 μg/L | – | 0.5–200 μg/L | 0.990–0.999 | 90–98% | 4.7–5.7% | [38] |
Chitosan/MIL-68(Al) | Pb2+, Cd2+ | Gastropods | ICP-OES | 0.16 μg/L | 0.5 μg/L | 0.5–50 μg/L | 0.9984–0.9976 | 95.0–97.5% | 3.8–4.3% | [39] |
MOF-5, MOF-235, UiO-66(Zr)-2 OH | PFCs and PFOS | Water samples | MALDI-TOF-MS | 0.64–0.94 ng/mL | – | 5–1000 ng/mL | 0.996–0.999 | 92.8–103% | 0.34–12% | [40] |
UiO-66-NH2@MIP | 4 aflatoxins AFB1, AFB@, AFG1, AFG2 | Grain | HPLC-MS | 60–130 ng/kg | 240–450 ng/kg | 0.20–45 μg/kg | 0.9986–0.994 | 74.3–98.6% | 1.0–5.9% | [41] |
CD-MOF | 5 sulfonamides (SAs) | Meat samples (Chicken, pork, liver, and fish) | HPLC-UV | 0.32–2.0 ng/mL | – | 10–1000 ng/mL | 0.9907–0.9995 | 76–102% | 2.4–6.5% | [42] |
CH3MOF-5/PAN | 2 estrogenic drugs (levonorgestrel, megestrol acetate) | Urine samples | HPLC-UV-Vis | 0.02 μg/L | 0.07 μg/L | 0.05–100 μg/L | >0.999 | 82.8–94.8% | 2.8–4.1% and 2.5–4.2% | [43] |
MOF-5 | PAHs | Environmental water | HPLC-FLD | 0.4–4.0 ng/L | – | 0.004–20 μg/L | >0.996 | 80.2–120.2% | 0.5–11.7% | [44] |
CS/MOF-SH | Pb2+, Cd2+ | Food samples | GF-AAS | 0.033 μg/L and 0.008 μg/L | – | 0.1–100 μg/L and 0.01–10 μg/L | 0.996 and 0.998 | – | 3.9–4.1% | [45] |
TMU-6 | 3 Plasticizer (DBP, DEHP, DOA) | Bottled water | GC-FID | 0.2–0.7 μg/L | – | 0.5–100 μg/L | >0.994 | 88–110% | ≤6.3% | [46] |
DMP@HKUST-1 | Hg2+ | Rice | AFS | 0.0125 ng/mL | – | – | – | 98.8–109% | <6% | [47] |
MOF-199(Cu) | Non-steroidal anti-inflammatory drugs (NSAIDs) | Human plasma and water samples | HPLC-UV | 0.01–0.02 and 0.03–0.1 ng/mL | – | 0.03–300 ng/mL and 0.1–200 ng/mL | 0.9938–0.9989 | 93.6–99.6% | 3.5–5.1% | [48] |
MOF | Analytes | Matrix/Sample | Analytical Technique | LOD | LOQ | Linearity Range | R2 | Recovery | RSD | Source |
---|---|---|---|---|---|---|---|---|---|---|
UIO-66/MoS2 | Polycyclic Aromatic Hydrocarbons (PAHs) | Fish samples | GC-MS | 0.11–1.4 ng/kg | 0.36–4.61 ng/kg | 0.5–10,000 ng/kg | 0.988-0.997 | 80.2–101% | <6% | [52] |
Cu-BDC//polyimide composite | Polycyclic Aromatic Hydrocarbons (PAHs) | Water samples | GC-MS | 0.11–2.10 ng/L | 0.36–6.99 ng/L | 20–5000 ng/L | 0.9957-0.9976 | 81.7–116% | 4.2–12.7% | [53] |
MOF-74 derived porous carbon | Odorous organic contaminants | Tap water, freshwater, and wastewater effluent | GC-MS | 0.00001–0.1 μg/L | 0.00003–0.3 μg/L | 0.005–100 μg/L | 0.993-0.999 | 83.6–115.5% | <9.4% | [54] |
MIL-88(Fe)/GO | Phthalic acid esters (PAEs) | Vegetable oils | GC-FID | 0.5–2.0 ng/g | 1.7–6.7 ng/g | 1.7–500 ng/g | >0.994 | 83.1–104.1% | <10.5% | [55] |
MOF-199/GO | 8 organochlorine pesticides (OCPs) | River water, soil, water convolvulus, and longan | GC-ECD | 2.3–6.9 ng/L | – | 0.01–1.0 μg/L | 0.9948–0.9993 | 72.2–104.4% | 5.3–8.8% | [56] |
Fe3O4@MIL-101(Cr)/PANI nanocomposite | Endogenous aldehydes (hexanal and heptanal) | Human plasma and urine samples | GC-FID | 0.001 and 0.01 μg/L | – | 0.01–1 and 0.1–1 μg/L | – | 98.5–113.5% and 95.2–122.1% | 3.5–7.1% and 10.4–15.7% | [57] |
UiO-66-OH | Polybrominated diphenyl ethers (PBDEs) | Milk | GC-MS/MS | 0.15–0.35 ng/L | – | 1.0–500 ng/ | >0.9994 | 74.7–118.0% | 7.58–9.48% | [58] |
UMCM-1, MOF-DES/MIPs | Phthalate esters | Yogurt, water, and soybean oil | GC-FID | 0.008–0.03 μg/L | 0.028–0.12 μg/L | 0.01–1000 μg/L | 0.996–0.998 | 95.5–100.0% | 2.4–4.7% | [59] |
ZIF-8-monolith composite | Fluoroquinolones (FQs) | Environmental waters and honey samples | HPLC-FLD | 0.14–1.1 ng/L | 0.48–3.87 ng/L | 0.001–10 μg/L | 0.9983–0.9999 | 80.1–119% | <10% | [60] |
CIM-80(Al) | 6 volatile methylsiloxanes and 7 musk fragrances | Environmental water samples | GC-MS | 0.2–0.5 μg/L | – | 0.2–200 μg/L | >.996 | 61.4–145% | <17% | [61] |
MIL-53(Al, Cr, Fe) | 16 Polycyclic aromatic hydrocarbons (PAHs) | Water samples | GC-MS/MS | 0.10–0.73 ng/L | – | 1–500 ng/L | >0.98 | 70–125% | <12.5% | [62] |
MIL-88B | Polychlorinated biphenyls (PCBs) | Water and soil samples | GC-MS | 0.45–1.32 ng/L | – | 5–200 ng/L | 0.990–0.999 | 79.7–103.2% | 4.2–8.7% | [63] |
UiO-67 | Nitrobenzene compounds | Water | GC-MS | 5.0–10.0 ng/L | – | 0.015–12 μg/L | 0.9945–0.9987 | 74.0–102.0% | <11.9% | [63] |
MIL-101(Cr) | BTEX and PAHs | Water samples | GC-MS | 0.32–1.7 and 0.12–2.1 ng/L | – | 10–20,000 and 10–500 ng/L | 0.9914–0.9996 | 80.0–113 and 84.8–106% | <7.7% | [64] |
UiO-66 | Phenols | Water samples | GC-FID | 0.11––1.23 μg/L | – | 1–1000 μg/L | 0.993–0.999 | 80–115% | 2.8–6.2% | [65] |
Sample Preparation Technique | MOF | Analytes | Matrix/Sample | Analytical Technique | LOD | LOQ | Linearity Range | R2 | Recovery | RSD | Source |
---|---|---|---|---|---|---|---|---|---|---|---|
D-SPE | Core-shell indium (III) sulfide@MIL-125(Ti) | 16 Nitro-PAHs | Water samples | GC-MS/MS, NCI | 2.9–83.0 ng/L | 9.80–120 ng/L | 10–1000 ng/L | >0.99 | 71.3–112.2% | <10% | [69] |
D-SPE | MIL-101(Cr) | Benzo(a)pyrene (BaP) | Edible oil | HPLC-FLD | 0.19 ng/mL | 0.434 μg/L | 1–30 ng/mL | 0.9958 | 88.8–118.8% | 1.07–8.14% | [70] |
D-SPE | MIL-100(Cr), MIL-100(Fe) and MIL-53(Al) 7:1:2 | Tetracyclines (TCs) | Honey | HPLC-MS/MS | 0.073 to 0.435 ng/g | 0.239–1.449 ng/g | 0.25–500 ng/g | 0.9965–0.9990 | 88.1–126.2% | 4.3–9.4% | [71] |
UA-SPE | Chitosan/MIL-53(Al) foam | 5 Parabens | Environmental water and drinking water | UPLC-MS/MS | 0.09–0.45 μg/L | – | 0.5–200 μg/L | 0.9948–0.9983 | 78.75–102.1% | <7.4% | [72] |
μ-SPE | UiO-66(Zr) | 4 Androgens and Progestogens | Environmental water | LC-MS/MS | 2.0–10.0 ng/L | 7.0–20.0 ng/L | 7.624–2032 ng/L | 0.9990–0.9997 | 80.5–102.4% | <10.0% | [73] |
D-SPE | UiO-67 | Sulfonamides (SAs) | Meat samples (chicken, lamb, beef) | HPLC-DAD | 0.7–6.5 ng/g | – | 14.6–250 ng/g | ≥0.9991 | 83.4–103.8% | 3.4–4.7% | [74] |
D-μ-SPE | MIL-101(Cr)-NH2 | Progesterone | Lake water and synthetic urine | DART-MS | 0.02 ng/mL | 0.07 ng/mL | 0.5–500 ng/mL | 0.9992 | 92.0–117.8% | 2.4–8.4% | [75] |
USA-IL-μ-SPE | [Zn2(BDC) 2 (DABCO)]n and ([BMIM] [PF6]) | Hg2+ | Human serum | CV-AAS | 6.5 ng/L | – | 0.02–5.5 μg/L | 0.9988–0.9992 | 96–105% | 4.2% | [76] |
VA-SPE | MIL-101(Cr)/PVA cryogel | 4 non-steroidal anti-inflammatory drugs | Environmental water | HPLC-MS/MS | 0.007–0.037 μg/L | – | 0.10–10 μg/L and 0.0020–2.0 μg/L | ≥0.9934 | 78.44–105.7% | 1.33–9.85 | [77] |
UAE-μ-SPE and VA-μ-SPE | MIL-101(Cr) | Polar estrogens | Water samples | UPLC-MS/MS | 0.95–23 ng/L | 3.74–22.5 ng/L | 5–100.000 ng/L | 0.996–0.999 | 85.4–120.8% | ≤9.9% | [78] |
D-μ-SPE | UiO-66-NH2 | Chlorophenoxy acids herbicides (CPAHs) | Biosamples, vegetables | HPLC-MS | 0.16–0.37 ng/g | 0.46 to 1.15 ng/g | 10–1000 pmol/mL | >0.9985 | 82.3–102% | 3.1–5.9% | [79] |
D-μ-SPE | M-MIL-53(Fe) | 4 Phenols and anilines | Environmental water | HPLC-PDA | 0.03–0.2 μg/L | – | 0.1–2000 μg/L | 0.9992–0.9995 | 39.5–93.3% | 3.5–12.6% | [80] |
VA-D-μ-SPE | HKUST-1 | 7 Parabens | Drinking and pool water, Cosmetic creams, Human urine | HPLC-DAD | 1.5–2.6 μg/L | 5.0–8.7 μg/L | 0.5–147 μg/L | >0.9966 | 80.3% | <10% | [81] |
VA-D-μ-SPE | IL-MIL-100(Fe) | PAHs | Environmental water, vegetable, and fruit juice | GC-FID | 2.0–5.5 ng/L | 6.1–16.8 ng/L | 0.02–200 ng/mL | 0.9984–0.9997 | 97–103.5% | 3.0–3.8 and 4.1–4.9% | [82] |
VA-D-μ-SPE | MIL-101(Cr) | 5 nitroimidazole residues | Environmental water | UPLC-MS/MS | 0.03–0.06 μg/L | 0.09–0.20 μg/L | 0.1–20 and 0.2–40 μg/L | >0.992 | 75.2–98.8% | <8% | [83] |
MAE-D-μ-SPE | MIL-101 (Cr) | Herbicides | Soybeans | HPLC-DAD | 1.56–2.00 μg/kg | 5.20–6.68 μg/kg | 5.00 to 513 μg/kg | 0.9996–0.9998 | 91.1–106.7% | ≤6.7% | [84] |
MA-D-μ-SPE | MIL-101(Cr)@GO | The pharmaceutical residue (MNZ, TNZ, CAP, SMX) | Chicken breast | HPLV-MS/MS | 0.08–1.02 ng/kg | 0.26–3.40 ng/kg | 1–100 ng/kg | ≥0.9928 | 88.9–102.3% | 2.5–4.3% | [85] |
MD-μ-SPE | GO/MOF-74/Fe3O4/PTy | Prokinetics drugs (DOM and ITP) | Human plasma | HPLC-UV | 0.4–1.1 ng/mL | – | 1.5–1100 ng/mL and 4.0–1750.0 ng/mL | 0.991–0.995 | 88.0–90.0% | 8.6–9.0% | [86] |
μ-SPE | ZIF-8 | 6 PAHs | Environmental water | GC-MS | 0.002–0.012 ng/mL | 0.029–0.083 ng/mL | 0.1/0.5–50 ng/mL | 0.9955–0.9995 | 98.0–106.5% | <8.5% | [87] |
μ-SPE | MIL-101 | 5 organochlorine pesticides | Water | GC-MS | 0.0025–0.016 ng/mL | 0.010–0.074 ng/mL | 0.05–50 ng/mL | >0.9946 | 87.6–98.6% | <10% | [88] |
μ-SPE | MIL-101(Cr) | 6 Phthalate esters | Drinking water | GC-MS | 0.004–0.02 μg/L | 0.01–0.07 μg/L | 0.1–50 μg/L | >0.9942 | 71.5–93.5% | 0.8–10.9% | [89] |
μ-SPE | HF-MIL-101 | 7 PCBs | Environmental water | GC-MS/MS | 0.15–0.63 ng/L | 0.51–2.07 ng/L | 5–1000 ng/L | 0.991–0.996 | 83.0–115.9% | <13.5% | [90] |
MOF | Analytes | Matrix/Sample | Analytical Technique | LOD | LOQ | Linearity Range | R2 | Recovery | RSD | Source |
---|---|---|---|---|---|---|---|---|---|---|
Fe3O4@MOF-808 | Benzoylurea insecticides (bus) | Tea beverages and juice samples | HPLC-DAD | 0.04–0.15 ng/mL | 0.15–0.50 ng/mL | 0.15–50 ng/mL | 09971–0.9999 | 84.6–98.3% | 2.6–11.4% | [36] |
ZIF-7 | PAHs | Rainwater | GC-MS | 0.71–5.79 ng/L | 2.50–19.2 ng/L | 0.05–5 ng/mL | >0.9944 | >82% | <9.2% | [91] |
Fe3O4@SiO2-MIL-101(Cr) | PAHs | Environmental water | HPLC-PDA | 2.8–27.2 ng/L | 6.3–87.7 ng/L | – | – | 81.3–105% | 3.1–8.7 and 6.1–8.5% | [96] |
Fe3O4/ZIF-8/IL | 4 Pyrethroid insecticides | Tea infusions | GC-MS/MS | 0.0065–0.1017 μg/L | – | 0.5–50 and 0.5–500 μg/L | >0.999 | 72.1–96.8% | 9.70–11.95% | [97] |
Fe3O4@SiO2@Ti-MOF | Caffeic acid (CA) | Medical extracts of plants and water samples | UPLC-UV | 0.016–0.021 ng/mL | 0.052–0.068 ng/mL | 0.15–3200 ng/mL | – | 99.76% | 1.84–5.54% | [98] |
Fe3O4@SiO2-GO/MIL-101(Cr) | Seven triazine herbicides | Rice samples | HPLC-UV-Vis | 0.010–0.080 μg/kg | 0.050–0.28 μg/kg | 2.00–1000.00 μg/kg | 0.9992–0.9998 | 83.9–103.5% | < 8.7% | [99] |
Fe3O4@APTES-GO/ZIF-8 | Four triazole fungicides | water, honey, and fruit juices | HPLC-DAD | 0.014–0.109 μg/L | 0.047–0.365 μg/L | 1–1000 μg/L | ≥0.9914 | 71.2–110.9% | 0.3–6.9% | [100] |
Fe3O4@MOF-5 | Heterocyclic pesticides (Carbendazim, Triadimefon, Chlorfenapyr, Fenpyroximate) | Environmental water | HPLC-DAD/FLD | 0.04 μg/L and 0.13 μg/L | 0.11 μg/L and 0.35 μg/L | 0.3–500 μg/L and 0.1–500 μg/L | >0.9992 | 80.20–108.33% | 2.98–7.11% and 3.31–7.12% | [101] |
Fe3O4@MIL-100(Fe) | Seven NSAIDS | Environmental water | UPLC-MS/MS | 0.02–0.09 μg/L | 0.06–0.3 μg/L | 0.1–10 μg/L 0.2–20 μg/L and 0.3–30 μg/L | 0.9987–0.9995 | 75.2–105.2% | ≤9.6% | [102] |
Fe3O4@Cys@MIL125-NH2 | Five fluoro- quinolones | Water samples (Tap and river water) | UPLC-TUV | 0.05–0.2 μg/L | 0.1–0.5 μg/L | 0.1–1000 μg/L | 0.9950–0.9995 | 83.8–109.4% | <8.9% | [103] |
Fe3O4@TGA@TMU-6 | Organophosphorus pesticides | Rice and environmental water | HPLC-UV | 0.5–1 μg/L | 7.5–10.0 μg/L | 7.5–75 μg/L 10–100 μg/L and 10–150 μg/L | 0.9912–0.9987 | 88.0–107.2% | 4.8–7.1% | [104] |
Fe3O4@SiO2-MOF-177 | Phenols | Environmental water | GC-MS | 16.8–208.3 ng/L | 56.0–694.2 ng/L | 1–200 μg/L | – | 83.3–108.7% | 4.2–8.5% and 5.1–9.2% | [105] |
MG@MIL-100-B | Endogenous catecholamines (DA, E and NE) | Rat plasma | HPLC-MS/MS | 0.005–0.02 ng/mL | 0.01–0.1 ng/mL | 0.01–2 and 0.10–8 ng/mL | 0.9909–0.9943 | 94.40–109.51% | 2.84–11.44% | [106] |
MOF-5@ Fe3O4 | Fluoroquinolones (FQs) | Milk | HPLC-MS/MS | 0.009–0.016 ng/mL | – | 0.5–1000 ng/mL | 0.9965–0.9995 | 95.33–104.7% | 2.93–4.21% | [107] |
MIL-100(Cr) | Malachite green (MG) | Drinking, tap, Groundwater, Trout fish | HPLC-UV-Vis | 0.012 mg/L | 0.040 mg/L | 0.04–2 mg/L | 0.9980 | 95–107% | 1.4–4.3% | [108] |
MOF | Analytes | Matrix/Sample | Analytical Technique | LOD | LOQ | Linearity Range | R2 | Recovery | RSD | Source |
---|---|---|---|---|---|---|---|---|---|---|
Th-MOF | Bisphenol A | Bottled drinking water | HPLC-FD | 0.0010 ng/mL | 0.02–0.456 ng/mL | 0.996 | 93.3–106.7% | 3.2–5.0% | [109] | |
UiO-66/PAN nanofibers | 4 Phytohormones | Watermelon and mung bean sprouts | HPLC-fluorescence detector | 0.01–0.02 ng/mL | – | 0.06–60 ng/mL | >0.992 | 84.4–111.2% | 1.5–5.6 | [110] |
Mil-53(Fe)/PAN nanofibers | Benzodiazepine drugs | Wastewater and biological fluids | HPLC-DAD | 1.5–2.5 ng/mL | – | 5.0–1000 ng/mL | 0.9991 and 0.9995 | 92.4–100.3% | ≤7.6% | [112] |
Cotton@UiO-66 | 4 Phenoxy Herbicides | Soil, cucumber, tap water | HPLC-PDA | 0.1–0.3 μg/L | 0.3–1.0 μg/L | 1.4–280 μg/L | 0.9959–0.9996 | 83.3–106.8% | <6.3% | [113] |
MIL-68@COF | Sulfonamides | Water, milk, and meat samples | HPLC-VWD | 1 ng/mL | – | 10–2000 ng/mL | 0.9987–0.9998 | 68.9–103.8% | <5.2% | [114] |
ZIF-8/cellulose aerogel | Fluoroquinolones (FQs) | Bottle, tap, and river water samples | HPLC-FLD | 0.337–1.707 ng/L | 1.012–5.120 ng/L | 1.0–512.0 ng/L | 0.9954–0.9992 | 75.9–96.8% | <8.0% | [115] |
Co-MOF | Levofloxacin | Wastewater samples | HPLC-UV | 0.041 μg/L | – | 0.70–150.0 μg/L | 0.99 | 74.3–103.8% | <2.75% | [116] |
UiO-66-NH2 | Carbamazepine | Urine and water samples | HPLC | 0.05 μg/L | 0.13 μg/L | 0.1–50 μg/L | 0.9988 | 98.8–99.4% | 3.2–2.5% | [117] |
MOF-545 | Hg2+ | Fish samples | CVAAS | 20 ng/L | – | 0.2–50 μg/L | 0.989 | 74.3–98.7% | <3.1% | [118] |
Co-MOF | Organic dyes | Seawater samples | HPLC-DAD | 0.09–0.38 μg/L | – | 0.5–200 μg/L and 1.0–150 μg/L | 0.9908–0.999 | 78.5–99.6% | <6.4% | [119] |
Co-MOF | Bisphenol A (BPA) | Juice and drinking water | HPLC-UV | 0.07 μg/L | 0.3 μg/L | 0.3–300 μg/L | – | 98.2–99.1% | 3.2–5.7% | [120] |
MOF | Analytes | Matrix/Sample | Analytical Technique | LOD | LOQ | Linearity Range | R2 | Recovery | RSD | Source |
---|---|---|---|---|---|---|---|---|---|---|
MOFs-MIPs | Three pyrethroids residue | Six wheat samples | GC-MS/MS | 1.8–2.8 ng/g | – | 10–1000 ng/g | >0.9979 | 95.7–108.9% | 2.7–6.3% | [129] |
MIPs-MOFs | Tetracyclines | Milk powder | UHPLC-MS/MS | 0.217–0.318 ng/g | 1–100 ng/g | >0.998 | 84.7–93.9% | 2.8–7.4% | [130] | |
Lanthanide-based MOFs | Pesticides | Peppers (Capsicum annuum L.) | GC-MS | 16.0–67.0 µg/kg | 50.3–200.0 µg/kg | 50.0–1000.0 µg/kg | >0.9930 | 48.4–135.0% | 6.3–43.6% | [131] |
Graphene oxide, MW-CNTs, MOF | Fifteen phthalates | Soil samples (agricultural soil and sand) | UHPLC-MS/MS | – | 0.14–2.7 µg/kg | 2–101 µg/kg | – | 70–120% | <20% | [132] |
MOF-808 | Five saponins | (P. ginseng) leaves | UHPLC-TOF/MS | 0.087–0.114 µg/kg | 0.292–0.379 µg/kg | 0.01–100 µg/mL | >0.998 | 87.04–103.78% | <5% | [133] |
NdMOF LaMOF | Lindane, bifenthrin, pirimicarb | Freeze-dried chicken eggs (Gallus gallus domesticus) | GC-MS | 0.003–0.015 mg/kg | – | 0.01–2 µg/mL | >0.999 | 70–120% | 0.8–7.9% | [134] |
MOF | Analytes | Matrix/Sample | Analytical Technique | LOD | LOQ | Linearity Range | R2 | Recovery | RSD | Source |
---|---|---|---|---|---|---|---|---|---|---|
LDH-ZIF-8 | Benzyl-penicilin | Biological and food samples | HPLC | 0.05 µg/L | 0.15 µg/L | 0.5–500 µg/L | 0.9921 | 95.0–105.1% | 2.8–5.9% | [139] |
UiO-66@FGR | Five NSAIDs | Food samples | UHPLC | 0.92 ng/mL | – | 10–1500 ng/mL | 80.8–117.2% | <8.0% | [140] | |
NH2-MIL-101(Al)@GMA monolith | Estrone, 17β-estradiol, estriol, 17β-ethinylestradiol | Water and human urine | HPLC-FLD | 0.015–0.58 µg/L | 0.05–1.9 µg/L | 2–750 µg/L | >0.999 | 70–95% | <6% | [141] |
Cu-BDC | Fenthion | Water and fruit samples | Corona discharge IMS | 0.1 µg/L | – | 0.5–80 µg/L | – | 88–111% | 6.4–8.6% | [142] |
UiO-66-(OH)2 | Enoxacin, norfloxacin, ciprofloxacin | Fish and shrimp samples | UHPLC | 0.48–0.8 ng/mL | – | 10–300 ng/mL | >0.9989 | 74.8–115.8% | <6.9% | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, J.; Nawała, J.; Dziedzic, D.; Popiel, S. Overview of Liquid Sample Preparation Techniques for Analysis, Using Metal-Organic Frameworks as Sorbents. Molecules 2024, 29, 4752. https://doi.org/10.3390/molecules29194752
Woźniak J, Nawała J, Dziedzic D, Popiel S. Overview of Liquid Sample Preparation Techniques for Analysis, Using Metal-Organic Frameworks as Sorbents. Molecules. 2024; 29(19):4752. https://doi.org/10.3390/molecules29194752
Chicago/Turabian StyleWoźniak, Jakub, Jakub Nawała, Daniel Dziedzic, and Stanisław Popiel. 2024. "Overview of Liquid Sample Preparation Techniques for Analysis, Using Metal-Organic Frameworks as Sorbents" Molecules 29, no. 19: 4752. https://doi.org/10.3390/molecules29194752
APA StyleWoźniak, J., Nawała, J., Dziedzic, D., & Popiel, S. (2024). Overview of Liquid Sample Preparation Techniques for Analysis, Using Metal-Organic Frameworks as Sorbents. Molecules, 29(19), 4752. https://doi.org/10.3390/molecules29194752