Optimizing NiFe-Modified Graphite for Enhanced Catalytic Performance in Alkaline Water Electrolysis: Influence of Substrate Geometry and Catalyst Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solutions and Chemical Reagents
2.2. Electrodes and Electrochemical Cell
2.3. Expanded Graphite and Compressed Graphite Electrodes
2.4. Experimental Methodology
3. Results and Discussion
3.1. Surface Characterization
3.1.1. SEM/EDS Analysis
3.1.2. AFM Analysis
3.1.3. XRD Analysis
3.2. Electrochemical Characterizations
3.2.1. Cyclic Voltammetry
3.2.2. AC Impedance—HER
3.2.3. Polarization Technique—HER
Base Material | Catalyst | Loading [mg cm−2] | Electrolyte | EIS | Tafel | Refs. | |||
---|---|---|---|---|---|---|---|---|---|
j0 [A cm−2] | j0 [A cm−2] | bc [mV dec−1] | η(j=10 mA cm−2) [mV] | ||||||
Low η | High η | ||||||||
Unmodified expanded graphite | None | 0 | 0.1 M NaOH | 2.78 × 10−7 | 2.78 × 10−7 | 1.97 × 10−6 | 203 | - | This article |
1.0 M NaOH | - | - | 2.18 × 10−6 | 163 | 596 | ||||
Expanded graphite | NiFe | 0.5 | 0.1 M NaOH | 5.67 × 10−5 | 2.37 × 10−4 | 2.00 × 10−4 | 137 | 290 | This article |
1.0 M NaOH | - | - | 1.40 × 10−4 | 112 | 200 | ||||
Expanded graphite | NiFe | 2.5 | 0.1 M NaOH | 5.41 × 10−5 | 2.31 × 10−4 | 1.80 × 10−4 | 133 | 245 | This article |
1.0 M NaOH | - | - | 1.35 × 10−4 | 110 | 203 | ||||
Expanded graphite | NiFe | 5.0 | 0.1 M NaOH | 3.10 × 10−5 | 2.32 × 10−4 | 1.03 × 10−4 | 116 | 252 | This article |
1.0 M NaOH | - | - | 2.63 × 10−4 | 123 | 198 | ||||
Expanded graphite | NiFe | 7.5 | 0.1 M NaOH | 1.53 × 10−5 | 2.34 × 10−4 | 3.14 × 10−5 | 77 | 219 | This article |
1.0 M NaOH | - | - | 1.40 × 10−4 | 119 | 222 | ||||
Unmodified compressed graphite | None | 0 | 0.1 M NaOH | 3.12 × 10−6 | 3.06 × 10−6 | 5.00 × 10−5 | 84 | - | This article |
1.0 M NaOH | - | - | 1.42 × 10−8 | 116 | 596 | ||||
Compressed graphite | NiFe | 0.5 | 0.1 M NaOH | 1.70 × 10−4 | 4.31 × 10−4 | 1.20 × 10−4 | 110 | 194 | This article |
1.0 M NaOH | - | - | 1.13 × 10−4 | 93 | 199 | ||||
Compressed graphite | NiFe | 2.5 | 0.1 M NaOH | 7.77 × 10−5 | 2.24 × 10−4 | 1.30 × 10−4 | 113 | - | This article |
1.0 M NaOH | - | - | 1.30 × 10−4 | 96 | 201 | ||||
Compressed graphite | NiFe | 5.0 | 0.1 M NaOH | 1.65 × 10−5 | 3.48 × 10−4 | 3.47 × 10−5 | 94 | - | This article |
1.0 M NaOH | - | - | 4.50 × 10−5 | 102 | 198 | ||||
Compressed graphite | NiFe | 7.5 | 0.1 M NaOH | 1.19 × 10−5 | 2.61 × 10−4 | 3.49 × 10−5 | 104 | - | This article |
1.0 M NaOH | - | - | 2.50 × 10−5 | 101 | 204 | ||||
Ni foam | NiFeRu LDH | 1.2 | 1.0 M KOH | - | - | - | 31 | 29 | [24] |
Ni foam | NiFe LDH | 1.2 | 1.0 M KOH | - | - | - | 153 | 269 | [24] |
Glassy carbon | Ni3FeN NPs | 0.35 | 1.0 M KOH | - | - | - | 42 | 158 | [26] |
Carbon cloth | Ni-FeP/TiN | - | 1.0 M KOH | - | - | - | 73 | 75 | [27] |
Ni foam | NiFe LDH | 0.45 | 1.0 M KOH | - | - | - | 120 | 195 | [25] |
Ni foam | NiFeIr LDH | 0.45 | 1.0 M KOH | - | - | - | 56 | 51 | [25] |
Ni foam | NiFeRh LDH | 0.45 | 1.0 M KOH | - | - | - | 27 | 24 | [25] |
Carbon cloth | PtNi-Ninanoarray | - | 0.1 M KOH | - | - | - | 42 | 38 | [28] |
3.2.4. AC Impedance—OER
3.2.5. Polarization Technique—OER
Base Material | Catalyst | Loading [mg cm−2] | Electrolyte | Tafel | Refs. | ||
---|---|---|---|---|---|---|---|
j0.3V [A cm−2] | ba [mV dec−1] | η(j = 10 mA cm−2) [mV] | |||||
Pure expanded graphite | None | 0 | 0.1 M NaOH | 6.9 × 10−5 | 111 | - | This article |
1.0 M NaOH | 1.3 × 10−4 | 79 | - | ||||
Expanded graphite | NiFe | 0.5 | 0.1 M NaOH | 4.2 × 10−3 | 71 | - | This article |
1.0 M NaOH | 1.7 × 10−2 | 55 | 286 | ||||
Expanded graphite | NiFe | 2.5 | 0.1 M NaOH | 2.8 × 10−3 | 68 | - | This article |
1.0 M NaOH | 1.4 × 10−2 | 83 | 270 | ||||
Expanded graphite | NiFe | 5.0 | 0.1 M NaOH | 2.3 × 10−3 | 77 | - | This article |
1.0 M NaOH | 2.2 × 10−2 | 71 | 278 | ||||
Expanded graphite | NiFe | 7.5 | 0.1 M NaOH | 1.7 × 10−3 | 91 | - | This article |
1.0 M NaOH | 2.2 × 10−2 | 66 | 282 | ||||
Pure compressed graphite | None | 0 | 0.1 M NaOH | 2.4 × 10−4 | 126 | - | This article |
1.0 M NaOH | 1.0 × 10−4 | 124 | - | ||||
Compressed graphite | NiFe | 0.5 | 0.1 M NaOH | 7.3 × 10−3 | 55 | - | This article |
1.0 M NaOH | 2.7 × 10−2 | 36 | 260 | ||||
Compressed graphite | NiFe | 2.5 | 0.1 M NaOH | 2.4 × 10−3 | 59 | - | This article |
1.0 M NaOH | 2.6 × 10−2 | 56 | 277 | ||||
Compressed graphite | NiFe | 5.0 | 0.1 M NaOH | 6.7 × 140−3 | 40 | - | This article |
1.0 M NaOH | 6.4 × 10−3 | 52 | 310 | ||||
Compressed graphite | NiFe | 7.5 | 0.1 M NaOH | 1.3 × 10−3 | 65 | - | This article |
1.0 M NaOH | 1.0 × 10−2 | 54 | 300 | ||||
Fluorine-doped tin oxide glass | Ni3Co3Fe3 LDH | - | 1.0 M NaOH | - | 65 | 290 | [32] |
Ni foam | NiCo LDH | 1.76 | 0.1 M KOH | - | 113 | 290 | [33] |
Glassy carbon | O-NiCoFe LDH | 0.12 | 0.1 M KOH | - | - | 420 | [34] |
Ni foam | NiFe LDH/N-rOG | 0.36 | 0.1 M KOH | - | 63 | 258 | [35] |
Carbon fiber cloth | NiCoFe LDH | 0.4 | 1.0 M KOH | - | 32 | 239 | [36] |
Ni foam | Ni3FeAl0.91 LDH | 0.5 | 1.0 M KOH | - | 57 | 304 | [37] |
Ni foam | NiFeRu LDH | 1.2 | 1.0 M KOH | - | 32 | 225 | [24] |
Ni foam | NiFe LDH | 1.2 | 1.0 M KOH | - | - | 230 | [24] |
Carbon paper | NiFe LDH-UF | 0.35 | 1.0 M KOH | - | 32 | 254 | [38] |
Glassy carbon | IrO2 | 0.71 | 1.0 M KOH | 76 | 340 | [39] | |
Glassy carbon | CoP NP | 5.0 | 1.0 M KOH | 99 | 340 | [39] | |
Glassy carbon | RuO2/CeO2 | - | 0.1 M NaOH | 1.0 × 10−3 | 44 | - | [40] |
- | RuCu nanosheets | - | 1.0 M KOH | - | - | 234 | [41] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Cui, L.; Liu, J. Recent Advances in Cobalt-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. J. Alloys Compd. 2020, 821, 153542. [Google Scholar] [CrossRef]
- Cai, Z.; Bu, X.; Wang, P.; Ho, J.C.; Yang, J.; Wang, X. Recent Advances in Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2019, 7, 5069–5089. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, D.; Ling, T.; Vasileff, A.; Qiao, S.-Z. S-NiFe2O4 Ultra-Small Nanoparticle Built Nanosheets for Efficient Water Splitting in Alkaline and Neutral pH. Nano Energy 2017, 40, 264–273. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharyya, S. Porous NiFe-Oxide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting. ACS Appl. Mater. Interfaces 2017, 9, 41906–41915. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S.P.; Shao, Z. Grain Boundary Engineering: An Emerging Pathway toward Efficient Electrocatalysis. InfoMat 2024, 6, e12608. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing Single-Atom Catalysts toward Improved Alkaline Hydrogen Evolution Reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Guan, D.; Xu, H.; Zhang, Q.; Huang, Y.-C.; Shi, C.; Chang, Y.-C.; Xu, X.; Tang, J.; Gu, Y.; Pao, C.-W.; et al. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production. Adv. Mater. 2023, 35, 2305074. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, D.; Gu, Y.; Xu, H.; Wang, C.; Shao, Z.; Guo, Y. Tuning Synergy between Nickel and Iron in Ruddlesden–Popper Perovskites through Controllable Crystal Dimensionalities towards Enhanced Oxygen-Evolving Activity and Stability. Carbon Energy 2024, 6, e465. [Google Scholar] [CrossRef]
- Zang, Y.; Lu, D.-Q.; Wang, K.; Li, B.; Peng, P.; Lan, Y.-Q.; Zang, S.-Q. A Pyrolysis-Free Ni/Fe Bimetallic Electrocatalyst for Overall Water Splitting. Nat. Commun. 2023, 14, 1792. [Google Scholar] [CrossRef]
- Gong, L.; Yang, H.; Douka, A.I.; Yan, Y.; Xia, B.Y. Recent Progress on NiFe-Based Electrocatalysts for Alkaline Oxygen Evolution. Adv. Sustain. Syst. 2021, 5, 2000136. [Google Scholar] [CrossRef]
- Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M.B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.; et al. In-Situ Structure and Catalytic Mechanism of NiFe and CoFe Layered Double Hydroxides during Oxygen Evolution. Nat. Commun. 2020, 11, 2522. [Google Scholar] [CrossRef] [PubMed]
- Suryanto, B.H.R.; Wang, Y.; Hocking, R.K.; Adamson, W.; Zhao, C. Overall Electrochemical Splitting of Water at the Heterogeneous Interface of Nickel and Iron Oxide. Nat. Commun. 2019, 10, 5599. [Google Scholar] [CrossRef] [PubMed]
- Kuczyński, M.; Mikołajczyk, T.; Pierożyński, B. Alkaline Water Splitting by Ni-Fe Nanoparticles Deposited on Carbon Fibre and Nickel-Coated Carbon Fibre Substrates. Catalysts 2023, 13, 1468. [Google Scholar] [CrossRef]
- Pierozynski, B.; Smoczynski, L. Kinetics of Hydrogen Evolution Reaction at Nickel-Coated Carbon Fiber Materials in 0.5 M H2SO4 and 0.1 M NaOH Solutions. J. Electrochem. Soc. 2009, 156, B1045. [Google Scholar] [CrossRef]
- Pierozynski, B. On the Hydrogen Evolution Reaction at Nickel-Coated Carbon Fibre in 30 Wt.% KOH Solution. Int. J. Electrochem. Sci. 2011, 6, 63–77. [Google Scholar] [CrossRef]
- Pierozynski, B. Hydrogen Evolution Reaction at Pd-Modified Carbon Fibre and Nickel-Coated Carbon Fibre Materials. Int. J. Hydrogen Energy 2013, 38, 7733–7740. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Kenan, W.R. Impedance Spectroscopy: Emphasizing Solid Materials and Systems, 1st ed.; Wiley-Interscience: New York, NY, USA, 1987; ISBN 978-0-471-83122-8. [Google Scholar]
- Boudet, A.; Henrotte, O.; Limani, N.; El Orf, F.; Oswald, F.; Jousselme, B.; Cornut, R. Unraveling the Link between Catalytic Activity and Agglomeration State with Scanning Electrochemical Microscopy and Atomic Force Microscopy. Anal. Chem. 2022, 94, 1697–1704. [Google Scholar] [CrossRef]
- Li, J.; Lv, Y.; Wu, X.; Zhao, K.; Zhang, H.; Guo, J.; Jia, D. Effectively Enhanced Activity of Hydrogen Evolution through Strong Interfacial Coupling on SnS2/MoS2/Ni3S2 Heterostructured Porous Nanosheets. Colloids Surf. Physicochem. Eng. Asp. 2023, 670, 131634. [Google Scholar] [CrossRef]
- Connor, P.; Schuch, J.; Kaiser, B.; Jaegermann, W. The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Z. Für Phys. Chem. 2020, 234, 979–994. [Google Scholar] [CrossRef]
- Schalenbach, M. Impedance Spectroscopy and Cyclic Voltammetry to Determine Double Layer Capacitances and Electrochemically Active Surface Areas. 2018. [Google Scholar] [CrossRef]
- Feng, B.; Jiang, W.; Deng, R.; Lu, J.; Tsiakaras, P.; Yin, S. Agglomeration Inhibition Engineering of Nickel–Cobalt Alloys by a Sacrificial Template for Efficient Urea Electrolysis. J. Colloid Interface Sci. 2024, 663, 1019–1027. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, D.; Li, D.; Jia, H.; Qin, W. Control of Ostwald Ripening. Sci. China Mater. 2023, 66, 1249–1255. [Google Scholar] [CrossRef]
- Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Adv. Mater. 2018, 30, 1706279. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, W.; Li, J.-G.; Li, Z.; Ao, X.; Xue, K.-H.; Ostrikov, K.K.; Tang, J.; Wang, C. Rh-Engineered Ultrathin NiFe-LDH Nanosheets Enable Highly-Efficient Overall Water Splitting and Urea Electrolysis. Appl. Catal. B Environ. 2021, 284, 119740. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, Y.; Chen, G.; Shang, L.; Shi, R.; Kang, X.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Abild-Pedersen, F.; Jaramillo, T.F. Designing an Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends. Energy Environ. Sci. 2015, 8, 3022–3029. [Google Scholar] [CrossRef]
- Xie, L.; Liu, Q.; Shi, X.; Asiri, A.M.; Luo, Y.; Sun, X. Superior Alkaline Hydrogen Evolution Electrocatalysis Enabled by an Ultrafine PtNi Nanoparticle-Decorated Ni Nanoarray with Ultralow Pt Loading. Inorg. Chem. Front. 2018, 5, 1365–1369. [Google Scholar] [CrossRef]
- Díez-Pérez, I.; Gorostiza, P.; Sanz, F.; Müller, C. First Stages of Electrochemical Growth of the Passive Film on Iron. J. Electrochem. Soc. 2001, 148, B307. [Google Scholar] [CrossRef]
- Alsabet, M.; Grden, M.; Jerkiewicz, G. Electrochemical Growth of Surface Oxides on Nickel. Part 2: Formation of β-Ni(OH)2 and NiO in Relation to the Polarization Potential, Polarization Time, and Temperature. Electrocatalysis 2014, 5, 136–147. [Google Scholar] [CrossRef]
- Pierozynski, B.; Smoczynski, L. Electrochemical Corrosion Behavior of Nickel-Coated Carbon Fiber Materials in Various Electrolytic Media. J. Electrochem. Soc. 2008, 155, C427. [Google Scholar] [CrossRef]
- Guzmán-Vargas, A.; Vazquez-Samperio, J.; Oliver-Tolentino, M.A.; Nava, N.; Castillo, N.; Macías-Hernández, M.J.; Reguera, E. Influence of Cobalt on Electrocatalytic Water Splitting in NiCoFe Layered Double Hydroxides. J. Mater. Sci. 2018, 53, 4515–4526. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, A.; Li, L.; Ai, L. Nickel–Cobalt Layered Double Hydroxide Nanosheets as High-Performance Electrocatalyst for Oxygen Evolution Reaction. J. Power Sources 2015, 278, 445–451. [Google Scholar] [CrossRef]
- Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245. [Google Scholar] [CrossRef]
- Zhan, T.; Liu, X.; Lu, S.; Hou, W. Nitrogen Doped NiFe Layered Double Hydroxide/Reduced Graphene Oxide Mesoporous Nanosphere as an Effective Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Appl. Catal. B Environ. 2017, 205, 551–558. [Google Scholar] [CrossRef]
- Wang, A.-L.; Xu, H.; Li, G.-R. NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. ACS Energy Lett. 2016, 1, 445–453. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Lu, X.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Zhu, H.; Tie, Z.; Liu, J.; et al. The Effects of Al Substitution and Partial Dissolution on Ultrathin NiFeAl Trinary Layered Double Hydroxide Nanosheets for Oxygen Evolution Reaction in Alkaline Solution. Nano Energy 2017, 35, 350–357. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Zhao, Y.; Shi, R.; Waterhouse, G.I.N.; Zhang, T. A Simple Synthetic Strategy toward Defect-Rich Porous Monolayer NiFe-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Adv. Energy Mater. 2019, 9, 1900881. [Google Scholar] [CrossRef]
- Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution. ACS Catal. 2015, 5, 6874–6878. [Google Scholar] [CrossRef]
- Galani, S.M.; Mondal, A.; Srivastava, D.N.; Panda, A.B. Development of RuO2/CeO2 Heterostructure as an Efficient OER Electrocatalyst for Alkaline Water Splitting. Int. J. Hydrogen Energy 2020, 45, 18635–18644. [Google Scholar] [CrossRef]
- Yang, J.; Ji, Y.; Shao, Q.; Zhang, N.; Li, Y.; Huang, X. A Universal Strategy to Metal Wavy Nanowires for Efficient Electrochemical Water Splitting at pH-Universal Conditions. Adv. Funct. Mater. 2018, 28, 1803722. [Google Scholar] [CrossRef]
Expanded Graphite | Compressed Graphite | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Loading [mg cm−2] | 0 | 0.5 | 2.5 | 5.0 | 7.5 | 0 | 0.5 | 2.5 | 5.0 | 7.5 |
Capacitance [uF] | 9000 | 7700 | 4500 | 3600 | 2500 | 2900 | 22400 | 7500 | 7300 | 3500 |
E/mV | Rp/Ω cm2 | Cp/µF cm−2 | Rct/Ω cm2 | Cdl/µF cm−2 |
---|---|---|---|---|
Unmodifiedexpanded graphite | ||||
−50 | 17.3 ± 1.1 | 3495 ± 346 | - | 7999 ± 380 |
−400 | 28.3 ± 1.1 | 7863 ± 143 | - | 4693 ± 152 |
−450 | 10.5 ± 0.3 | 4447 ± 320 | 396.2 ± 7.4 | 12,351 ± 35 |
−700 | 7.1 ± 0.5 | 1960 ± 298 | 24.5 ± 0.8 | 12,815 ± 290 |
NiFe 0.5 mg cm−2 | ||||
−50 | 51.2 ± 3.3 | 11,879 ± 237 | 123.1 ± 0.7 | 13,277 ± 185 |
−450 | - | - | 6.1 ± 0.1 | 3474 ± 241 |
NiFe 2.5 mg cm−2 | ||||
−50 | 22.2 ± 3.2 | 9257 ± 436 | 123.8 ± 1.4 | 10,673 ± 173 |
−450 | - | - | 4.7 ± 0.0 | 1948 ± 43 |
NiFe 5.0 mg cm−2 | ||||
−50 | 170.6 ± 0.8 | 3970 ± 155 | 178.0 ± 24.6 | 3022 ± 168 |
−450 | - | - | 4.4 ± 0.1 | 848 ± 56 |
NiFe 7.5 mg cm−2 | ||||
−50 | 238.0 ± 0.9 | 2205 ± 37 | 276.5 ± 4.6 | 1360 ± 16 |
−450 | - | - | 5.7 ± 0.1 | 464 ± 27 |
Unmodifiedcompressed graphite | ||||
−50 | 4.3 ± 0.2 | 9783 ± 688 | 2162.9 ± 19.1 | 2766 ± 4 |
−450 | 1.4 ± 0.2 | 4066 ± 772 | 494.3 ± 5.9 | 3763 ± 16 |
−650 | 38.2 ± 3.6 | 7097 ± 200 | 140.8 ± 6.9 | 20,992 ± 2072 |
−700 | 22.4 ± 6.8 | 5242 ± 464 | 51.7 ± 5.4 | 40,964 ± 3549 |
NiFe 0.5 mg cm−2 | ||||
−50 | 3.6 ± 0.8 | 3923 ± 1150 | 39.1 ± 1.9 | 9741 ± 110 |
−450 | - | - | 5.7 ± 0.1 | 5501 ± 172 |
NiFe 2.5 mg cm−2 | ||||
−50 | - | - | 97.5 ± 0.9 | 3154 ± 45 |
−450 | - | - | 6.7 ± 0.1 | 1457 ± 99 |
NiFe 5.0 mg cm−2 | ||||
−50 | - | - | 318.7 ± 1.9 | 976 ± 7 |
−450 | - | - | 8.2 ± 0.9 | 676 ± 60 |
NiFe 7.5 mg cm−2 | ||||
−50 | - | - | 362.8 ± 3.8 | 841 ± 9 |
−450 | - | - | 5.7 ± 0.1 | 417 ± 25 |
E/mV | Rp/Ω cm2 | Cp/µF cm−2 | Rct/Ω cm2 | Cdl/µF cm−2 |
---|---|---|---|---|
Unmodified expanded graphite | ||||
1300 | 72.5 ± 4.2 | 1427 ± 129 | - | 4762 ± 153 |
1400 | 50.2 ± 2.2 | 2302 ± 144 | - | 5379 ± 173 |
1600 | 44.9 ± 3.5 | 3103 ± 247 | 523.2 ± 80.7 | 8816 ± 108 |
1800 | 36.4 ± 1.7 | 906 ± 27 | 53.0 ± 3.5 | 11,069 ± 847 |
NiFe 0.5 mg cm−2 | ||||
1300 | 35.3 ± 3.3 | 3606 ± 301 | - | 14,140 ± 195 |
1400 | - | - | 351.9 ± 26.3 | 31,733 ± 188 |
1500 | 41.1 ± 0.1 | 20,773 ± 51 | ||
1600 | - | - | 8.6 ± 0.1 | 16,106 ± 238 |
1800 | 3.4 ± 0.2 | 19,283 ± 2338 | ||
NiFe 2.5 mg cm−2 | ||||
1300 | 33.0 ± 2.1 | 4241 ± 230 | - | 9763 ± 166 |
1400 | - | - | 2427.2 ± 469.4 | 27,367 ± 81 |
1500 | 33.6 ± 0.1 | 45,891 ± 160 | ||
1600 | - | - | 6.8 ± 0.1 | 44,530 ± 873 |
1800 | 2.2 ± 0.1 | 34,172 ± 3782 | ||
NiFe 5.0 mg cm−2 | ||||
1300 | 489.1 ± 15.4 | 2594 ± 18 | - | 4710 ± 148 |
1400 | - | - | 874.4 ± 23.3 | 9843 ± 39 |
1500 | 47.1 ± 0.1 | 22,100 ± 32 | ||
1600 | - | - | 8.5 ± 0.0 | 20,093 ± 238 |
1800 | 2.8 ± 0.1 | 4710 ± 148 | ||
NiFe 7.5 mg cm−2 | ||||
1300 | 305.5 ± 7.8 | 2362 ± 15 | - | 4038 ± 54 |
1400 | - | - | 506.6 ± 15.5 | 18,150 ± 89 |
1500 | 51.3 ± 0.1 | 21,468 ± 42 | ||
1600 | - | - | 7.7 ± 0.0 | 21,551 ± 143 |
1800 | 2.5 ± 0.2 | 18,765 ± 589 | ||
Unmodified compressed graphite | ||||
1300 | - | - | - | 1607 ± 6 |
1400 | - | - | - | 1657 ± 7 |
1500 | - | - | 6020.1 ± 227.8 | 1703 ± 6 |
1600 | - | - | 942.9 ± 9.7 | 1651 ± 9 |
1800 | - | - | 101.0 ± 0.5 | 1498 ± 19 |
NiFe 0.5 mg cm−2 | ||||
1300 | 46.5 ± 6.2 | 11,402 ± 303 | - | 3527 ± 314 |
1400 | 2.1 ± 0.2 | 31,534 ± 2106 | - | 30,076 ± 2104 |
1500 | 0.5 ± 0.0 | 62,836 ± 8838 | 32.2 ± 0.2 | 66,025 ± 188 |
1600 | - | - | 9.5 ± 0.1 | 63,908 ± 453 |
1800 | - | - | 4.3 ± 0.1 | 67,769 ± 2389 |
NiFe 2.5 mg cm−2 | ||||
1300 | 248.2 ± 53.6 | 7532 ± 279 | - | - |
1400 | 8.9 ± 0.9 | 6037 ± 788 | - | - |
1500 | - | - | 34.1 ± 0.1 | 10,430 ± 335 |
1600 | - | - | 8.3 ± 0.0 | 50,340 ± 178 |
1800 | - | - | 3.4 ± 0.1 | 52,233 ± 462 |
NiFe 5.0 mg cm−2 | ||||
1300 | 397.5 ± 17 | 3719 ± 28 | - | 3395 ± 110 |
1400 | 132.9 ± 9.8 | 30,423 ± 303 | - | 15,350 ± 45 |
1500 | - | - | 32.8 ± 0.1 | 26,630 ± 93 |
1600 | - | - | 7.1 ± 0.0 | 29,546 ± 359 |
1800 | - | - | 2.5 ± 0.1 | 30,010 ± 991 |
NiFe 7.5 mg cm−2 | ||||
1300 | - | - | - | 2826 ± 11 |
1400 | - | - | - | 26,412 ± 133 |
1500 | - | - | 65.3 ± 0.3 | 19,398 ± 64 |
1600 | - | - | 8.3 ± 0.1 | 21,559 ± 456 |
1800 | - | - | 2.4 ± 0.1 | 16,191 ± 2277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuczyński, M.; Mikołajczyk, T.; Pierożyński, B.; Karczewski, J. Optimizing NiFe-Modified Graphite for Enhanced Catalytic Performance in Alkaline Water Electrolysis: Influence of Substrate Geometry and Catalyst Loading. Molecules 2024, 29, 4755. https://doi.org/10.3390/molecules29194755
Kuczyński M, Mikołajczyk T, Pierożyński B, Karczewski J. Optimizing NiFe-Modified Graphite for Enhanced Catalytic Performance in Alkaline Water Electrolysis: Influence of Substrate Geometry and Catalyst Loading. Molecules. 2024; 29(19):4755. https://doi.org/10.3390/molecules29194755
Chicago/Turabian StyleKuczyński, Mateusz, Tomasz Mikołajczyk, Bogusław Pierożyński, and Jakub Karczewski. 2024. "Optimizing NiFe-Modified Graphite for Enhanced Catalytic Performance in Alkaline Water Electrolysis: Influence of Substrate Geometry and Catalyst Loading" Molecules 29, no. 19: 4755. https://doi.org/10.3390/molecules29194755
APA StyleKuczyński, M., Mikołajczyk, T., Pierożyński, B., & Karczewski, J. (2024). Optimizing NiFe-Modified Graphite for Enhanced Catalytic Performance in Alkaline Water Electrolysis: Influence of Substrate Geometry and Catalyst Loading. Molecules, 29(19), 4755. https://doi.org/10.3390/molecules29194755