Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures
Abstract
:1. Introduction
- Identifying and categorizing the common artifacts and anomalies in Raman spectroscopy and analyzing their underlying causes and effects on the Raman data;
- Reviewing the existing and emerging artifact correction and anomaly mitigation procedures, including experimental techniques, numerical or computational approaches, and deep learning (DL) methods;
- Discuss current correction procedure limitations and suggest future research directions.
2. Origins and Types of Artifacts and Anomalies
- Instrumental effects introduced by measuring instruments.
- Sampling-related effects caused by the sampling process.
- Sample-induced effects that are properties or behaviors of the sample itself.
2.1. Instrumental Effects
2.1.1. Laser Source
2.1.2. Optics for Sample Illumination and Collection
2.1.3. Filters
2.1.4. Spectrometer
2.1.5. Detector
2.2. Sample-Related Artifacts
2.3. Artifacts from the Sampling Process
3. Strategies for Mitigating Artifacts and Anomalies in Raman Spectroscopy
3.1. Experimental Design for Artifact Minimization
3.2. Computational Methods for Artifact Correction
Pre-Treatment Phase | ||
---|---|---|
Artifacts (Source) | Algorithms Used | Description |
Cosmic rays (Detector) | Upper bound spectrum method [30,91,92,93] | Removes spikes by comparing their intensity to an upper bound limit derived from multiple spectra. |
Wavelet transforms [94,95,96] | Remove spikes by filtering high-frequency noise. | |
Moving window filtering [97] | By averaging within a moving window and replacing spikes with the averaged values. | |
Polynomial filters [98,99,100] | Fitting polynomials by replacing high-intensity outliers with interpolated values. | |
Multistage spike recognition [101,102] | Tracks change in the time domain through a multistage process, automatically identifying and confirming spikes. | |
Normalized covariance, Nearest neighbor comparison (NNC) [23] | Combines single and double acquisition techniques, using normalized covariance to remove contaminated pixels. | |
PCA and NNC [26,88,103,104] | Replacing contaminated spectra with best-fit spectra using NNC. | |
Laplacian operator and Median filtering [24,105] | Tracks intensity changes using a Laplacian operator, applies an automated threshold to separate spikes from spectral features, and uses median filtering for interpolation. | |
Moving average filter [106] | Uses modified Z-scores (standard scores adjusted for outliers) to detect spikes. | |
Wavelength calibration (Instrument) | Polynomial fitting [107,108,109,110] | Involves using a polynomial function to correlate pixel positions in Raman spectra to accurate wavenumbers. |
Optimization fitting algorithm [111] | Analytical calibration model based on the Czerny–Turner optical system, using grating equation and geometric optics principles | |
Physical model with a fast search algorithm [112,113] | Physical model to relate pixel positions to wavelengths refined by a brute-force search and linear regression to calibrate spectral data accurately. | |
Intensity calibration (Instrument) | Polynomial curve fitting, cross-relation analysis [114] | Fitting a polynomial curve to remove broad signal components. |
Pre-processing Phase | ||
Fluorescence (Sample) | Fourier transform filtering [22,115] | Broad fluorescence components are separated and filtered by converting to the frequency domain. |
Polynomial fitting [6,116,117,118,119,120,121] | The fluorescence spectrum is fitted to a low-order polynomial and then subtracted from the Raman spectrum. | |
Wavelet transforms [122,123,124,125] | Low-frequency components corresponding to the fluorescence background are removed. | |
First and second-order derivatives [126,127,128] | Derivative of a measured Raman spectrum reduces the magnitude of the fluorescence background. | |
PCA [129,130] | Decomposes mixed spectra into principal components, isolating the Raman signal in the subsequent components. | |
MSC methods [27,87,131,132,133,134,135] | Normalize spectral data by correcting for baseline offsets and scatter effects to ensure sample consistency. | |
Least squares methods [136,137,138,139,140,141] | Fit a smooth baseline by minimizing a penalized least squares function, asymmetrically weighting deviations to keep the baseline below signal peaks. | |
Spline smoothing method [142] | Fits a smooth baseline for Raman spectra using penalized spline smoothing and vector transformation. | |
Automatic Two-side Exponential Baseline algorithm [143] | Applies two-sided exponential smoothing, which iteratively smooths the signal using exponentially decreasing weights. | |
Iterative reweighted quantile regression [144] | Applies quantile regression iteratively with reweighted residuals, allowing it to distinguish between baseline and signal peaks. | |
Genetic algorithm (GA) [145,146] | Based on natural selection and evolution principles, GA optimizes the parameters of methods like ALS, spline smoothing, and polynomial fitting. | |
Goldindec approach [147] | Introduces the asymmetric index function, which increases the cost when the fitting curve deviates from the true baseline. | |
Morphological and histogram-based baseline determination [148,149,150] | Fits a smooth baseline by using structural elements to remove unwanted features and adjusting the histogram to minimize deviations. | |
Savitzky–Golay (SG)-based iterative smoothing [29,151] | Identifies Raman peaks using a negative relaxation factor and then iteratively applies Savitzky–Golay smoothing to subtract the fluorescence baseline. | |
Wavelet transformation and penalized least squares fitting [152] | Detects peak positions using a wavelet transform estimates peak width through SNR enhancement and fits the background using penalized least squares. | |
Iterative Smoothing-Splines with Root Error Adjustment [153] | Iteratively fitting smoothing splines to the raw spectrum, adjusting prediction errors using a root transformation to estimate and correct the baseline. | |
Noise (Instrument, Sampling) | Conventional scale correlation [125] | Applies quantile regression iteratively with reweighted residuals, allowing it to distinguish between baseline and signal peaks. |
Tikhonov regularization [154] | Tikhonov regularization and morphological operations in a unified variation model iteratively smooth the spectrum. | |
Third-order discrete wavelet transform [25] | Decomposes the signal into different frequency components, applying a threshold to remove high-frequency noise. | |
Hilbert vibration decomposition (HVD) [155] | Denoises signals by iteratively decomposing them into components based on instantaneous frequency and amplitude, extracting and compensating peaks. |
3.3. Deep Learning-Based Correction Procedures
Algorithms Used | Description |
---|---|
Neural net comprising encoder and decoder [170] | Autoencoder learns to reconstruct clean spectra from noisy input by encoding essential features into a lower-dimensional space and decoding them back to remove noise and artifacts. |
1D-CNN [171,172,173,174,175,176,177] | Convolutional filters detect and learn peaks and patterns |
Long short-term memory (LSTM) [178] | Learning from environmental correlates and temporal patterns to accurately predict and adjust for measurement errors. |
CNN with a custom loss function [179] | Custom loss function combines mean squared error with an additional term for peak preservation, balancing overall denoising with the retention of critical spectral features. |
Convolution autoencoders [170,180] | Use convolutional layers and a comparison function to capture and correct baseline features accurately. |
1D-Unet [181] | Learns using an encoder–decoder architecture in which the 1D CNNs in the encoder extract hierarchical features and the decoder reconstructs the signal. |
Multi-Scale Feature Extraction Denoising (MFED) [182] | Improves the signal-to-noise ratio of spectra by using a CNN with multi-scale feature extraction and data augmentation. |
ResNet and Unet [183,184,185] | Utilize residual connections to prevent the vanishing gradient problem, effectively allowing the network to learn complex representations from deep layers. |
PINN [169] | The physics of light-matter interactions constrain the loss function with terms that account for the spectral contributions from the element concentration, background noise, and the continuity of the background spectrum. |
4. Future Directions
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Raman, C.; Krishnan, K. hν o hν. Nature 1928, 121, 501. [Google Scholar] [CrossRef]
- Maiman, T.H.; Maiman, T.H.; Holland. Laser Inventor; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Das, R.S.; Agrawal, Y. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Cordero, E.; Latka, I.; Matthäus, C.; Schie, I.W.; Popp, J. In-vivo Raman spectroscopy: From basics to applications. J. Biomed. Opt. 2018, 23, 071210. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Elías, M.G.; Alda, J.; González, F.J. Noise and artifact characterization of in vivo Raman spectroscopy skin measurements. Appl. Spectrosc. 2012, 66, 650–655. [Google Scholar] [CrossRef]
- Schleusener, J.; Gluszczynska, P.; Reble, C.; Gersonde, I.; Helfmann, J.; Cappius, H.-J.; Fluhr, J.W.; Meinke, M.C. Perturbation factors in the clinical handling of a fiber-coupled Raman probe for cutaneous in vivo diagnostic Raman spectroscopy. Appl. Spectrosc. 2015, 69, 243–256. [Google Scholar] [CrossRef]
- Dochow, S.; Bergner, N.; Matthäus, C.; Praveen, B.B.; Ashok, P.C.; Mazilu, M.; Krafft, C.; Dholakia, K.; Popp, J. Etaloning, fluorescence and ambient light suppression by modulated wavelength Raman spectroscopy. Biomed. Spectrosc. Imaging 2012, 1, 383–389. [Google Scholar] [CrossRef]
- Bowie, B.T.; Chase, D.B.; Lewis, I.R.; Griffiths, P.R. Anomalies and artifacts in Raman Spectroscopy. Handb. Vib. Spectrosc. 2002, 3, 2355–2378. [Google Scholar]
- Guo, S.; Beleites, C.; Neugebauer, U.; Abalde-Cela, S.; Afseth, N.K.; Alsamad, F.; Anand, S.; Araujo-Andrade, C.; Askrabic, S.; Avci, E. Comparability of Raman spectroscopic configurations: A large scale cross-laboratory study. Anal. Chem. 2020, 92, 15745–15756. [Google Scholar] [CrossRef]
- Ryabchykov, O.; Guo, S.; Bocklitz, T. Analyzing Raman spectroscopic data. Phys. Sci. Rev. 2019, 4, 20170043. [Google Scholar] [CrossRef]
- Bertens, C.J.; Zhang, S.; Erckens, R.J.; van den Biggelaar, F.J.; Berendschot, T.T.; Webers, C.A.; Nuijts, R.M.; Gijs, M. Pipeline for the removal of hardware related artifacts and background noise for Raman spectroscopy. MethodsX 2020, 7, 100883. [Google Scholar] [CrossRef]
- Carter, D.; Pemberton, J.E. Frequency/wavelength calibration of multipurpose multichannel Raman spectrometers. Part I: Instrumental factors affecting precision. Appl. Spectrosc. 1995, 49, 1550–1560. [Google Scholar] [CrossRef]
- Carter, D.A.; Thompson, W.R.; Taylor, C.E.; Pemberton, J.E. Frequency/wavelength calibration of multipurpose multichannel Raman spectrometers. Part II: Calibration fit considerations and calibration standards. Appl. Spectrosc. 1995, 49, 1561–1576. [Google Scholar] [CrossRef]
- Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage 2014, 85, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.J.; Selb, J.; Gagnon, L.; Phillip, D.; Schytz, H.W.; Iversen, H.K.; Ashina, M.; Boas, D.A. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front. Neurosci. 2012, 6, 147. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Theron, C.W.; Muhamadali, H.; Kell, D.B.; Goodacre, R. Spectral artefacts induced by moving targets in live hyperspectral stimulated raman spectroscopy: The case of lipid droplets in yeast cells. Clin. Spectrosc. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Esmonde-White, K.A.; Cuellar, M.; Uerpmann, C.; Lenain, B.; Lewis, I.R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 2017, 409, 637–649. [Google Scholar] [CrossRef]
- Buckley, K.; Ryder, A.G. Applications of Raman spectroscopy in biopharmaceutical manufacturing: A short review. Appl. Spectrosc. 2017, 71, 1085–1116. [Google Scholar] [CrossRef]
- Wei, D.; Chen, S.; Liu, Q. Review of fluorescence suppression techniques in Raman spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 387–406. [Google Scholar] [CrossRef]
- Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom. Intell. Lab. Syst. 2012, 117, 100–114. [Google Scholar] [CrossRef]
- Mosier-Boss, P.; Lieberman, S.; Newbery, R. Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques. Appl. Spectrosc. 1995, 49, 630–638. [Google Scholar] [CrossRef]
- Barton, S.J.; Hennelly, B.M. An algorithm for the removal of cosmic ray artifacts in spectral data sets. Appl. Spectrosc. 2019, 73, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Ryabchykov, O.; Bocklitz, T.; Ramoji, A.; Neugebauer, U.; Foerster, M.; Kroegel, C.; Bauer, M.; Kiehntopf, M.; Popp, J. Automatization of spike correction in Raman spectra of biological samples. Chemom. Intell. Lab. Syst. 2016, 155, 1–6. [Google Scholar] [CrossRef]
- Sun, S.; Wang, X.; Gao, X.; Ren, L.; Su, X.; Bu, D.; Ning, K. Condensing Raman spectrum for single-cell phenotype analysis. BMC Bioinform. 2015, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Calvet, A.; Casamayou-Boucau, Y.; Ryder, A.G. Kernel principal component analysis residual diagnosis (KPCARD): An automated method for cosmic ray artifact removal in Raman spectra. Anal. Chim. Acta 2016, 913, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Liland, K.H.; Kohler, A.; Afseth, N.K. Model-based pre-processing in Raman spectroscopy of biological samples. J. Raman Spectrosc. 2016, 47, 643–650. [Google Scholar] [CrossRef]
- Ramos, R.; Gordon, M. Near-field artifacts in tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 2012, 100, 213111. [Google Scholar] [CrossRef]
- Chen, K.; Wei, H.; Zhang, H.; Wu, T.; Li, Y. A Raman peak recognition method based automated fluorescence subtraction algorithm for retrieval of Raman spectra of highly fluorescent samples. Anal. Methods 2015, 7, 2770–2778. [Google Scholar] [CrossRef]
- Anthony, S.M.; Timlin, J.A. Removing cosmic spikes using a hyperspectral upper-bound spectrum method. Appl. Spectrosc. 2017, 71, 507–519. [Google Scholar] [CrossRef]
- Dictionary, O. Oxford Dictionary; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chalmers, J.M. Mid-infrared spectroscopy: Anomalies, artifacts and common errors. Handb. Vib. Spectrosc. 2006, 3, 2326–2347. [Google Scholar]
- Ciurczak, E.W. Anomalies in Near-Infrared Spectroscopy. Handb. Vib. Spectrosc. 2006. [Google Scholar] [CrossRef]
- Chase, D.B. Artifacts in FT-Raman spectroscopy. In Proceedings of the 7th Intl Conf on Fourier Transform Spectroscopy, Fairfax, Virginia, 19–23 June 1989; pp. 172–173. [Google Scholar]
- Bowie, B.T.; Chase, D.B.; Griffiths, P.R.; Pont, D. Factors affecting the performance of bench-top Raman spectrometers. Part I: Instrumental effects. Appl. Spectrosc. 2000, 54, 164A–173A. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Westenberger, B.J.; Buhse, L.F.; Kauffman, J.F. Standardization of Raman spectra for transfer of spectral libraries across different instruments. Analyst 2011, 136, 4232–4240. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett. 2019, 14, 231. [Google Scholar] [CrossRef] [PubMed]
- Dieing, T.; Hollricher, O.; Toporski, J. Confocal Raman Microscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 158. [Google Scholar]
- Kuzin, E.; Beltran-Perez, G.; Basurto-Pensado, M.; Rojas-Laguna, R.; Andrade-Lucio, J.; Torres-Cisneros, M.; Alvarado-Mendez, E. Stimulated Raman scattering in a fiber with bending loss. Opt. Commun. 1999, 169, 87–91. [Google Scholar] [CrossRef]
- Allred, C.D.; McCreery, R.L. Near-infrared Raman spectroscopy of liquids and solids with a fiber-optic sampler, diode laser, and CCD detector. Appl. Spectrosc. 1990, 44, 1229–1231. [Google Scholar] [CrossRef]
- Latka, I.; Dochow, S.; Krafft, C.; Dietzek, B.; Popp, J. Fiber optic probes for linear and nonlinear Raman applications–Current trends and future development. Laser Photonics Rev. 2013, 7, 698–731. [Google Scholar] [CrossRef]
- Newman, C.D.; Bret, G.G.; McCreery, R.L. Fiber-optic sampling combined with an imaging spectrograph for routine Raman spectroscopy. Appl. Spectrosc. 1992, 46, 262–265. [Google Scholar] [CrossRef]
- Schwab, S.D.; McCreery, R.L. Versatile, efficient Raman sampling with fiber optics. Anal. Chem. 1984, 56, 2199–2204. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Sinfield, J.V. Characterization of raman spectroscopy system transfer functions in intensity, wavelength, and time. Instruments 2020, 4, 22. [Google Scholar] [CrossRef]
- Lewis, I.R.; Griffiths, P.R. Raman spectrometry with fiber-optic sampling. Appl. Spectrosc. 1996, 50, 12A–30A. [Google Scholar] [CrossRef]
- Santos, L.F.; Wolthuis, R.; Koljenović, S.; Almeida, R.M.; Puppels, G.J. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal. Chem. 2005, 77, 6747–6752. [Google Scholar] [CrossRef] [PubMed]
- Ameer, F.S.; Ansar, S.M.; Hu, W.; Zou, S.; Zhang, D. Inner filter effect on surface enhanced Raman spectroscopic measurement. Anal. Chem. 2012, 84, 8437–8441. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, M.; Reeder, R. Characterization of holographic band-reject filters designed for Raman spectroscopy. Appl. Spectrosc. 1991, 45, 765–770. [Google Scholar] [CrossRef]
- Lyon, L.A.; Keating, C.D.; Fox, A.P.; Baker, B.E.; He, L.; Nicewarner, S.R.; Mulvaney, S.P.; Natan, M.J. Raman spectroscopy. Anal. Chem. 1998, 70, 341–362. [Google Scholar] [CrossRef] [PubMed]
- Jakubek, R.S. Effect of the spectrometer slit width and charge-coupled device detector on Raman intensities. J. Raman Spectrosc. 2021, 52, 1317–1333. [Google Scholar] [CrossRef]
- Braeuer, P.A.; Bahr, L.A.; Koß, H.-J.; Will, S. Advanced spectral reconstruction (ASR) for setup-independent universal Raman spectroscopy models. Chemom. Intell. Lab. Syst. 2023, 232, 104730. [Google Scholar] [CrossRef]
- Bocklitz, T.; Dörfer, T.; Heinke, R.; Schmitt, M.; Popp, J. Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2015, 149, 544–549. [Google Scholar] [CrossRef]
- Fountain III, A.W.; Mann, C.K.; Vickers, T.J. Routine wavenumber calibration of an FT-Raman spectrometer. Appl. Spectrosc. 1995, 49, 1048–1053. [Google Scholar] [CrossRef]
- Lamperti, M.; Rutkowski, L.; Gatti, D.; Gotti, R.; Moretti, L.; Polli, D.; Cerullo, G.; Marangoni, M. A stimulated Raman loss spectrometer for metrological studies of quadrupole lines of hydrogen isotopologues. Mol. Phys. 2023, 121, e2196353. [Google Scholar] [CrossRef]
- Tuesta, A.D.; Fisher, B.T.; Skiba, A.W.; Williams, L.T.; Osborn, M.F. Low-pressure multipass Raman spectrometer. Appl. Opt. 2021, 60, 773–784. [Google Scholar] [CrossRef]
- Wen, C.; Huang, X.; Shen, C. Multiple-pass enhanced Raman spectroscopy for fast industrial trace gas detection and process control. J. Raman Spectrosc. 2020, 51, 781–787. [Google Scholar] [CrossRef]
- Shaver, J.M. Chemometrics for Raman spectroscopy. Pract. Spectrosc. Ser. 2001, 28, 275–306. [Google Scholar]
- Massie, C.; Chen, K.; Berger, A.J. Calibration technique for suppressing residual etalon artifacts in slit-averaged Raman spectroscopy. Appl. Spectrosc. 2022, 76, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, L. Noise minimization via deep submicron system-on-chip integration in megapixel CMOS imaging sensors. Opto-Electron. Rev. 2006, 14, 11–18. [Google Scholar] [CrossRef]
- Reigue, A.; Auguié, B.; Etchegoin, P.G.; Le Ru, E.C. CW measurements of resonance Raman profiles, line-widths, and cross-sections of fluorescent dyes: Application to Nile Blue A in water and ethanol. J. Raman Spectrosc. 2013, 44, 573–581. [Google Scholar] [CrossRef]
- Pommier, C.J.; Walton, L.K.; Ridder, T.D.; Denton, M.B. Array Detectors for R aman Spectroscopy. Handb. Vib. Spectrosc. 2006. [Google Scholar] [CrossRef]
- Denson, S.C.; Pommier, C.J.; Denton, M.B. The impact of array detectors on Raman spectroscopy. J. Chem. Educ. 2007, 84, 67. [Google Scholar] [CrossRef]
- Schulze, H.G.; Turner, R.F. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra. Appl. Spectrosc. 2014, 68, 185–191. [Google Scholar] [CrossRef]
- Guo, S.; Popp, J.; Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat. Protoc. 2021, 16, 5426–5459. [Google Scholar] [CrossRef]
- West, Y.D. Study of sample heating effects arising during laser Raman spectroscopy. Internet J. Vib. Spectrosc. 1996, 1, 5. [Google Scholar]
- Marigheto, N.; Kemsley, E.; Potter, J.; Belton, P.; Wilson, R. Effects of sample heating in FT-Raman spectra of biological materials. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 1996, 52, 1571–1579. [Google Scholar] [CrossRef]
- Bloomfield, M.; Andrews, D.; Loeffen, P.; Tombling, C.; York, T.; Matousek, P. Non-invasive identification of incoming raw pharmaceutical materials using Spatially Offset Raman Spectroscopy. J. Pharm. Biomed. Anal. 2013, 76, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Short, M.; Braun, T.; Lui, H.; McLean, D.; Zeng, H. Clinical Raman measurements under special ambient lighting illumination. J. Biomed. Opt. 2014, 19, 111609. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, J.; Jeong, H.; Chung, H. Direct through-container Raman spectroscopic analyses of samples housed in glass and plastic containers: A review. Appl. Spectrosc. Rev. 2023, 58, 509–524. [Google Scholar] [CrossRef]
- Feidl, F.; Garbellini, S.; Vogg, S.; Sokolov, M.; Souquet, J.; Broly, H.; Butté, A.; Morbidelli, M. A new flow cell and chemometric protocol for implementing in-line Raman spectroscopy in chromatography. Biotechnol. Prog. 2019, 35, e2847. [Google Scholar] [CrossRef]
- Bocklitz, T.; Walter, A.; Hartmann, K.; Rösch, P.; Popp, J. How to pre-process Raman spectra for reliable and stable models? Anal. Chim. Acta 2011, 704, 47–56. [Google Scholar] [CrossRef]
- Choquette, S.J.; Etz, E.S.; Hurst, W.S.; Blackburn, D.H.; Leigh, S.D. Relative intensity correction of Raman spectrometers: NIST SRMs 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation. Appl. Spectrosc. 2007, 61, 117–129. [Google Scholar] [CrossRef]
- Shreve, A.P.; Cherepy, N.J.; Mathies, R.A. Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique. Appl. Spectrosc. 1992, 46, 707–711. [Google Scholar] [CrossRef]
- De Luca, A.C.; Mazilu, M.; Riches, A.; Herrington, C.S.; Dholakia, K. Online fluorescence suppression in modulated Raman spectroscopy. Anal. Chem. 2010, 82, 738–745. [Google Scholar] [CrossRef]
- Korinth, F.; Mondol, A.; Stiebing, C.; Schie, I.; Krafft, C.; Popp, J. New methodology to process shifted excitation Raman difference spectroscopy data: A case study of pollen classification. Sci. Rep. 2020, 10, 11215. [Google Scholar] [CrossRef]
- Thyr, J.; Edvinsson, T. Evading the Illusions: Identification of False Peaks in Micro-Raman Spectroscopy and Guidelines for Scientific Best Practice. Angew. Chem. Int. Ed. 2023, 62, e202219047. [Google Scholar] [CrossRef] [PubMed]
- Maiwald, M.; Erbert, G.; Klehr, A.; Kronfeldt, H.-D.; Schmidt, H.; Sumpf, B.; Tränkle, G. Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm. Appl. Phys. B 2006, 85, 509–512. [Google Scholar] [CrossRef]
- Zhao, J.; Bakeev, K.A.; Zhou, X.J. Advancements in Raman technology for identifying real-world samples. In Proceedings of the Next-Generation Spectroscopic Technologies XII, Baltimore, MD, USA, 15–17 April 2019; pp. 89–96. [Google Scholar]
- Goldrick, S.; Lovett, D.; Montague, G.; Lennox, B. Influence of Incident Wavelength and Detector Material Selection on Fluorescence in the Application of Raman Spectroscopy to a Fungal Fermentation Process. Bioengineering 2018, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Mostafapour, S.; Dörfer, T.; Heinke, R.; Rösch, P.; Popp, J.; Bocklitz, T. Investigating the effect of different pre-treatment methods on Raman spectra recorded with different excitation wavelengths. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123100. [Google Scholar] [CrossRef] [PubMed]
- Dörfer, T.; Bocklitz, T.; Tarcea, N.; Schmitt, M.; Popp, J. Checking and improving calibration of Raman spectra using chemometric approaches. Z. Für Phys. Chem. 2011, 225, 753–764. [Google Scholar] [CrossRef]
- Friedrich, F.; Nickel, N. Resonant Raman scattering in hydrogen and nitrogen doped ZnO. Appl. Phys. Lett. 2007, 91, 111903. [Google Scholar] [CrossRef]
- ASTM E1840-96(2014); Standard Guide for Raman Shift Standards for Spectrometer Calibration. ASTM: West Conshohocken, PA, USA, 2014. [CrossRef]
- Carrabba, M.M. Wavenumber standards for Raman spectrometry. Handb. Vib. Spectrosc. 2006, 1, 2348–2354. [Google Scholar]
- Ryabchykov, O.; Schie, I.W.; Popp, J.; Bocklitz, T. Errors and Mistakes to Avoid when Analyzing Raman Spectra. Spectroscopy 2022, 37, 48–50. [Google Scholar] [CrossRef]
- Afseth, N.K.; Segtnan, V.H.; Wold, J.P. Raman spectra of biological samples: A study of preprocessing methods. Appl. Spectrosc. 2006, 60, 1358–1367. [Google Scholar] [CrossRef]
- Pavlou, E.; Kourkoumelis, N. Preprocessing and Analyzing Raman Spectra Using Python. Eng. Proc. 2023, 56, 28. [Google Scholar] [CrossRef]
- Barton, B.; Thomson, J.; Diz, E.L.; Portela, R. Chemometrics for Raman spectroscopy harmonization. Appl. Spectrosc. 2022, 76, 1021–1041. [Google Scholar] [CrossRef] [PubMed]
- Wahl, J.; Klint, E.; Hallbeck, M.; Hillman, J.; Wårdell, K.; Ramser, K. Impact of preprocessing methods on the Raman spectra of brain tissue. Biomed. Opt. Express 2022, 13, 6763–6777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jallad, K.N.; Ben-Amotz, D. Stripping of cosmic spike spectral artifacts using a new upper-bound spectrum algorithm. Appl. Spectrosc. 2001, 55, 1523–1531. [Google Scholar] [CrossRef]
- Zhang, D.; Ben-Amotz, D. Removal of cosmic spikes from hyper-spectral images using a hybrid upper-bound spectrum method. Appl. Spectrosc. 2002, 56, 91–98. [Google Scholar] [CrossRef]
- Zhang, D.; Hanna, J.D.; Ben-Amotz, D. Single scan cosmic spike removal using the upper bound spectrum method. Appl. Spectrosc. 2003, 57, 1303–1305. [Google Scholar] [CrossRef] [PubMed]
- Maury, A.; Revilla, R.I. Autocorrelation analysis combined with a wavelet transform method to detect and remove cosmic rays in a single Raman spectrum. Appl. Spectrosc. 2015, 69, 984–992. [Google Scholar] [CrossRef]
- Ehrentreich, F.; Sümmchen, L. Spike removal and denoising of Raman spectra by wavelet transform methods. Anal. Chem. 2001, 73, 4364–4373. [Google Scholar] [CrossRef]
- Tian, Y.; Burch, K.S. Automatic spike removal algorithm for Raman spectra. Appl. Spectrosc. 2016, 70, 1861–1871. [Google Scholar] [CrossRef]
- Katsumoto, Y.; Ozaki, Y. Practical algorithm for reducing convex spike noises on a spectrum. Appl. Spectrosc. 2003, 57, 317–322. [Google Scholar] [CrossRef]
- Phillips, G.; Harris, J.M. Polynomial filters for data sets with outlying or missing observations: Application to charge-coupled-device-detected Raman spectra contaminated by cosmic rays. Anal. Chem. 1990, 62, 2351–2357. [Google Scholar] [CrossRef]
- Schulze, H.G.; Turner, R.F. A Fast, Automated, Polynomial-Based Cosmic Ray Spike–Removal Method for the High-Throughput Processing of Raman Spectra. Appl. Spectrosc. 2013, 67, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.; Rogalla, D. Spike-correction of weak signals from charge-coupled devices and its application to Raman spectroscopy. Anal. Chem. 1992, 64, 2575–2579. [Google Scholar] [CrossRef]
- Mozharov, S.; Nordon, A.; Littlejohn, D.; Marquardt, B. Automated cosmic spike filter optimized for process Raman spectroscopy. Appl. Spectrosc. 2012, 66, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- James, T.M.; Schlösser, M.; Lewis, R.J.; Fischer, S.; Bornschein, B.; Telle, H.H. Automated quantitative spectroscopic analysis combining background subtraction, cosmic ray removal, and peak fitting. Appl. Spectrosc. 2013, 67, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Henson, M.J. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. Appl. Spectrosc. 2007, 61, 1015–1020. [Google Scholar] [CrossRef]
- Cappel, U.B.; Bell, I.M.; Pickard, L.K. Removing cosmic ray features from Raman map data by a refined nearest neighbor comparison method as a precursor for chemometric analysis. Appl. Spectrosc. 2010, 64, 195–200. [Google Scholar] [CrossRef]
- Takeuchi, H.; Hashimoto, S.; Harada, I. Simple and efficient method to eliminate spike noise from spectra recorded on charge-coupled device detectors. Appl. Spectrosc. 1993, 47, 129–131. [Google Scholar] [CrossRef]
- Whitaker, D.A.; Hayes, K. A simple algorithm for despiking Raman spectra. Chemom. Intell. Lab. Syst. 2018, 179, 82–84. [Google Scholar] [CrossRef]
- Hamaguchi, H.-O. Calibrating multichannel Raman spectrometers. Appl. Spectrosc. Rev. 1988, 24, 137–174. [Google Scholar] [CrossRef]
- Hutsebaut, D.; Vandenabeele, P.; Moens, L. Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst 2005, 130, 1204–1214. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Ford, J.F.; Mann, C.K.; Vickers, T.J. Wavelength calibration of a multichannel spectrometer. Appl. Spectrosc. 1993, 47, 1808–1813. [Google Scholar]
- Gaigalas, A.K.; Wang, L.; He, H.-J.; DeRose, P. Procedures for wavelength calibration and spectral response correction of CCD array spectrometers. J. Res. Natl. Inst. Stand. Technol. 2009, 114, 215. [Google Scholar] [PubMed]
- Liu, K.; Yu, F. Accurate wavelength calibration method using system parameters for grating spectrometers. Opt. Eng. 2013, 52, 013603. [Google Scholar]
- Liu, D.; Hennelly, B.M. Wavenumber calibration protocol for raman spectrometers using physical modelling and a fast search algorithm. Appl. Spectrosc. 2024, 78, 00037028241254847. [Google Scholar]
- Liu, D.; Hennelly, B.M. Improved wavelength calibration by modeling the spectrometer. Appl. Spectrosc. 2022, 76, 1283–1299. [Google Scholar]
- Jones, J.P.; Wambles, R.E.; Mann, C.K.; Vickers, T.J. Effect on noise of intensity-axis correction of spectra recorded with charge-coupled device detectors. Appl. Spectrosc. 2002, 56, 564–569. [Google Scholar]
- Schulze, G.; Jirasek, A.; Marcia, M.; Lim, A.; Turner, R.F.; Blades, M.W. Investigation of selected baseline removal techniques as candidates for automated implementation. Appl. Spectrosc. 2005, 59, 545–574. [Google Scholar]
- Zhao, J.; Lui, H.; McLean, D.I.; Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. [Google Scholar]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar]
- Mazet, V.; Carteret, C.; Brie, D.; Idier, J.; Humbert, B. Background removal from spectra by designing and minimising a non-quadratic cost function. Chemom. Intell. Lab. Syst. 2005, 76, 121–133. [Google Scholar]
- Bergholt, M.S.; Zheng, W.; Lin, K.; Wang, J.; Xu, H.; Ren, J.-l.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; Huang, Z. Characterizing variability of in vivo Raman spectroscopic properties of different anatomical sites of normal colorectal tissue towards cancer diagnosis at colonoscopy. Anal. Chem. 2015, 87, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Desroches, J.; Jermyn, M.; Pinto, M.; Picot, F.; Tremblay, M.-A.; Obaid, S.; Marple, E.; Urmey, K.; Trudel, D.; Soulez, G. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci. Rep. 2018, 8, 1792. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Bai, J.; Xia, G.; Zhang, W.; Ma, Y. Improved baseline correction method based on polynomial fitting for Raman spectroscopy. Photonic Sens. 2018, 8, 332–340. [Google Scholar] [CrossRef]
- Galloway, C.; Le Ru, E.C.; Etchegoin, P.G. An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectrosc. 2009, 63, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jiang, T.; Shen, A.; Li, W.; Wang, X.; Hu, J. A background elimination method based on wavelet transform for Raman spectra. Chemom. Intell. Lab. Syst. 2007, 85, 94–101. [Google Scholar] [CrossRef]
- Ramos, P.M.; Ruisánchez, I. Noise and background removal in Raman spectra of ancient pigments using wavelet transform. J. Raman Spectrosc. Int. J. Orig. Work. All Asp. Raman Spectrosc. Incl. High. Order Process. Also Brillouin Rayleigh Scatt. 2005, 36, 848–856. [Google Scholar] [CrossRef]
- Xi, Y.; Li, Y.; Duan, Z.; Lu, Y. A novel pre-processing algorithm based on the wavelet transform for Raman spectrum. Appl. Spectrosc. 2018, 72, 1752–1763. [Google Scholar] [CrossRef]
- Zhang, D.; Ben-Amotz, D. Enhanced chemical classification of Raman images in the presence of strong fluorescence interference. Appl. Spectrosc. 2000, 54, 1379–1383. [Google Scholar] [CrossRef]
- O’Grady, A.; Dennis, A.C.; Denvir, D.; McGarvey, J.J.; Bell, S.E. Quantitative Raman spectroscopy of highly fluorescent samples using pseudosecond derivatives and multivariate analysis. Anal. Chem. 2001, 73, 2058–2065. [Google Scholar] [CrossRef]
- Leger, M.N.; Ryder, A.G. Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures. Appl. Spectrosc. 2006, 60, 182–193. [Google Scholar] [CrossRef]
- Hasegawa, T.; Nishijo, J.; Umemura, J. Separation of Raman spectra from fluorescence emission background by principal component analysis. Chem. Phys. Lett. 2000, 317, 642–646. [Google Scholar] [CrossRef]
- Palacký, J.; Mojzeš, P.; Bok, J. SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. J. Raman Spectrosc. 2011, 42, 1528–1539. [Google Scholar] [CrossRef]
- Afseth, N.K.; Kohler, A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom. Intell. Lab. Syst. 2012, 117, 92–99. [Google Scholar] [CrossRef]
- Martens, H.; Stark, E. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. J. Pharm. Biomed. Anal. 1991, 9, 625–635. [Google Scholar] [CrossRef]
- Cordero, E.; Rüger, J.; Marti, D.; Mondol, A.S.; Hasselager, T.; Mogensen, K.; Hermann, G.G.; Popp, J.; Schie, I.W. Bladder tissue characterization using probe-based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction. J. Biophotonics 2020, 13, e201960025. [Google Scholar] [CrossRef]
- Stark, E.W.; Martens, H. Multiplicative Signal Correction Method and Apparatus. U.S. Patent 55,684,00A, 22 October 1996. [Google Scholar]
- Cordero, E.; Korinth, F.; Stiebing, C.; Krafft, C.; Schie, I.W.; Popp, J. Evaluation of shifted excitation Raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra. Sensors 2017, 17, 1724. [Google Scholar] [CrossRef]
- He, S.; Zhang, W.; Liu, L.; Huang, Y.; He, J.; Xie, W.; Wu, P.; Du, C. Baseline correction for Raman spectra using an improved asymmetric least squares method. Anal. Methods 2014, 6, 4402–4407. [Google Scholar] [CrossRef]
- Oller-Moreno, S.; Pardo, A.; Jiménez-Soto, J.M.; Samitier, J.; Marco, S. Adaptive Asymmetric Least Squares baseline estimation for analytical instruments. In Proceedings of the 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Barcelona, Spain, 11–14 February 2014; pp. 1–5. [Google Scholar]
- Korepanov, V.I. Asymmetric least-squares baseline algorithm with peak screening for automatic processing of the Raman spectra. J. Raman Spectrosc. 2020, 51, 2061–2065. [Google Scholar] [CrossRef]
- Ye, J.; Tian, Z.; Wei, H.; Li, Y. Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum. Appl. Opt. 2020, 59, 10933–10943. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Chen, S.; Liang, Y.-Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef]
- Eilers, P.H.; Boelens, H.F. Baseline correction with asymmetric least squares smoothing. Leiden Univ. Med. Cent. Rep. 2005, 1, 5. [Google Scholar]
- Cai, Y.; Yang, C.; Xu, D.; Gui, W. Baseline correction for Raman spectra using penalized spline smoothing based on vector transformation. Anal. Methods 2018, 10, 3525–3533. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Liang, Y.; Sousa, P.F.; Yun, Y.; Yu, L. Baseline correction of high resolution spectral profile data based on exponential smoothing. Chemom. Intell. Lab. Syst. 2014, 139, 97–108. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Sousa, P.F.; Chen, C.; Ouyang, M.; Wei, Y.; Liang, Y.; Chen, Y.; Zhang, C. Selective iteratively reweighted quantile regression for baseline correction. Anal. Bioanal. Chem. 2014, 406, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Bocklitz, T.; Popp, J. Optimization of Raman-spectrum baseline correction in biological application. Analyst 2016, 141, 2396–2404. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Fang, S.; Liu, X.; Zhang, W.; Xie, W.; Zhang, H.; Wei, D.; Fu, W.; Pei, D. Investigation of a genetic algorithm based cubic spline smoothing for baseline correction of Raman spectra. Chemom. Intell. Lab. Syst. 2016, 152, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Sun, J.; Huang, X.; Li, G.; Liu, B. Goldindec: A novel algorithm for Raman spectrum baseline correction. Appl. Spectrosc. 2015, 69, 834–842. [Google Scholar] [CrossRef]
- Koch, M.; Suhr, C.; Roth, B.; Meinhardt-Wollweber, M. Iterative morphological and mollifier-based baseline correction for Raman spectra. J. Raman Spectrosc. 2017, 48, 336–342. [Google Scholar] [CrossRef]
- Perez-Pueyo, R.; Soneira, M.J.; Ruiz-Moreno, S. Morphology-based automated baseline removal for Raman spectra of artistic pigments. Appl. Spectrosc. 2010, 64, 595–600. [Google Scholar] [CrossRef]
- Bukvić, S.; Spasojević, D. An alternative approach to spectrum base line estimation. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1308–1315. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, H.; Wei, H.; Li, Y. Improved Savitzky–Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra. Appl. Opt. 2014, 53, 5559–5569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.M.; Chen, S.; Liang, Y.Z.; Liu, Z.X.; Zhang, Q.M.; Ding, L.X.; Ye, F.; Zhou, H. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy. J. Raman Spectrosc. 2010, 41, 659–669. [Google Scholar] [CrossRef]
- Xu, Y.; Du, P.; Senger, R.; Robertson, J.; Pirkle, J.L. ISREA: An efficient peak-preserving baseline correction algorithm for Raman spectra. Appl. Spectrosc. 2021, 75, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Z.; Liu, S.; Yan, L.; Liu, T.; Zhang, T. Joint baseline-correction and denoising for Raman spectra. Appl. Spectrosc. 2015, 69, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, G.; Sui, Y.; Xu, M.; Tong, L. Denoising method for Raman spectra with low signal-to-noise ratio based on feature extraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 250, 119374. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Acquarelli, J.; van Laarhoven, T.; Gerretzen, J.; Tran, T.N.; Buydens, L.M.; Marchiori, E. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 2017, 954, 22–31. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, T.; Xu, J.; Luo, X.; Ying, Y. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta 2019, 1058, 48–57. [Google Scholar] [CrossRef]
- Luo, R.; Popp, J.; Bocklitz, T. Deep learning for Raman spectroscopy: A review. Analytica 2022, 3, 287–301. [Google Scholar] [CrossRef]
- Wahl, J.; Sjödahl, M.; Ramser, K. Single-step preprocessing of raman spectra using convolutional neural networks. Appl. Spectrosc. 2020, 74, 427–438. [Google Scholar] [CrossRef]
- Shen, J.; Li, M.; Li, Z.; Zhang, Z.; Zhang, X. Single convolutional neural network model for multiple preprocessing of Raman spectra. Vib. Spectrosc. 2022, 121, 103391. [Google Scholar] [CrossRef]
- Marini, F.; Bucci, R.; Magrì, A.L.; Magrì, A.D. Artificial neural networks in chemometrics: History, examples and perspectives. Microchem. J. 2008, 88, 178–185. [Google Scholar] [CrossRef]
- Carvajal, R.C.; Arias, L.E.; Garces, H.O.; Sbarbaro, D.G. Comparative analysis of a principal component analysis-based and an artificial neural network-based method for baseline removal. Appl. Spectrosc. 2016, 70, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Poth, M.; Magill, G.; Filgertshofer, A.; Popp, O.; Großkopf, T. Extensive evaluation of machine learning models and data preprocessings for Raman modeling in bioprocessing. J. Raman Spectrosc. 2022, 53, 1580–1591. [Google Scholar] [CrossRef]
- Jinadasa, M.; Kahawalage, A.C.; Halstensen, M.; Skeie, N.-O.; Jens, K.-J. Deep learning approach for Raman spectroscopy. In Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization; IntechOpen: London, UK, 2021; Volume 77. [Google Scholar]
- Qi, Y.; Hu, D.; Jiang, Y.; Wu, Z.; Zheng, M.; Chen, E.X.; Liang, Y.; Sadi, M.A.; Zhang, K.; Chen, Y.P. Recent progresses in machine learning assisted Raman spectroscopy. Adv. Opt. Mater. 2023, 11, 2203104. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Puleio, A.; Rossi, R.; Gaudio, P. Calibration of spectra in presence of non-stationary background using unsupervised physics-informed deep learning. Sci. Rep. 2023, 13, 2156. [Google Scholar] [CrossRef]
- Brandt, J.; Mattsson, K.; Hassellöv, M. Deep learning for reconstructing low-quality FTIR and Raman Spectra─ A case study in microplastic analyses. Anal. Chem. 2021, 93, 16360–16368. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, P.; Daengngam, C.; Peng, S.; Chongcheawchamnan, M. A review of artificial intelligence methods combined with Raman spectroscopy to identify the composition of substances. J. Raman Spectrosc. 2022, 53, 6–19. [Google Scholar] [CrossRef]
- Gebrekidan, M.T.; Knipfer, C.; Braeuer, A.S. Refinement of spectra using a deep neural network: Fully automated removal of noise and background. J. Raman Spectrosc. 2021, 52, 723–736. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Hisey, C.; Calderon, M.M.; Chamley, L.; Xu, P.; Broderick, N. Deep learning as an improved method of preprocessing biomedical Raman spectroscopy data. Authorea Prepr. 2023. [Google Scholar] [CrossRef]
- Pan, L.; Pipitsunthonsan, P.; Zhang, P.; Daengngam, C.; Booranawong, A.; Chongcheawchamnan, M. Noise reduction technique for Raman spectrum using deep learning network. In Proceedings of the 2020 13th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 12–13 December 2020; pp. 159–163. [Google Scholar]
- Pan, L.; Pipitsunthonsan, P.; Daengngam, C.; Channumsin, S.; Sreesawet, S.; Chongcheawchamnan, M. Method for classifying a noisy Raman spectrum based on a wavelet transform and a deep neural network. IEEE Access 2020, 8, 202716–202727. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Wang, Y.; Dong, S. Direct recognition of Raman spectra without baseline correction based on deep learning. AIP Adv. 2022, 12, 085212. [Google Scholar] [CrossRef]
- Liu, J.; Osadchy, M.; Ashton, L.; Foster, M.; Solomon, C.J.; Gibson, S.J. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 2017, 142, 4067–4074. [Google Scholar] [CrossRef]
- Loose, B.; Short, R.; Toler, S. Instrument bias correction with machine learning algorithms: Application to field-portable mass spectrometry. Front. Earth Sci. 2020, 8, 537028. [Google Scholar] [CrossRef]
- Barton, S.; Alakkari, S.; O’Dwyer, K.; Ward, T.; Hennelly, B. Convolution network with custom loss function for the denoising of low SNR Raman spectra. Sensors 2021, 21, 4623. [Google Scholar] [CrossRef]
- Han, M.; Dang, Y.; Han, J. Denoising and Baseline Correction Methods for Raman Spectroscopy Based on Convolutional Autoencoder: A Unified Solution. Sensors 2024, 24, 3161. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, P.; Fan, Q.; Jing, H.; Dang, R.; Sun, W.; Feng, Y.; Hu, B.; Wang, Q. Deep neural network: As the novel pipelines in multiple preprocessing for Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123086. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, Z.-Q.; Fan, X.-G.; Wang, X. Modified denoising method of Raman spectra-based deep learning for Raman semi-quantitative analysis and imaging. Microchem. J. 2023, 191, 108777. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Martinez-Calderon, M.; Xu, W.; Chamley, L.W.; Hisey, C.L.; Broderick, N.G. Cascaded deep convolutional neural networks as improved methods of preprocessing raman spectroscopy data. Anal. Chem. 2022, 94, 12907–12918. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Son, Y.; Park, A.; Baek, S.-J. Baseline correction using a deep-learning model combining ResNet and UNet. Analyst 2022, 147, 4285–4292. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, H.; Li, T.; Li, J.; Wang, Y. Two dimensional correlation spectroscopy combined with ResNet: Efficient method to identify bolete species compared to traditional machine learning. LWT 2022, 162, 113490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulchi, R.t.; Morgunov, V.; Junjuri, R.; Bocklitz, T. Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures. Molecules 2024, 29, 4748. https://doi.org/10.3390/molecules29194748
Vulchi Rt, Morgunov V, Junjuri R, Bocklitz T. Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures. Molecules. 2024; 29(19):4748. https://doi.org/10.3390/molecules29194748
Chicago/Turabian StyleVulchi, Ravi teja, Volodymyr Morgunov, Rajendhar Junjuri, and Thomas Bocklitz. 2024. "Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures" Molecules 29, no. 19: 4748. https://doi.org/10.3390/molecules29194748
APA StyleVulchi, R. t., Morgunov, V., Junjuri, R., & Bocklitz, T. (2024). Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures. Molecules, 29(19), 4748. https://doi.org/10.3390/molecules29194748