Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review
Abstract
:1. Introduction
2. Chemical Composition of Honey
2.1. Polyphenol Composition of Honey
Flavonoids in Honey | Chemical Formula | Botanical Sources | Flavonoid Class |
---|---|---|---|
Kaempferol | C15H10O6 | Buckwheat, acacia, citrus, chestnut, ginger, heather, honeydew, linden, litchi | flavonol |
Galangin | C15H10O5 | Acacia, manuka, rosemary, sage, sunflower, lotus, linden, honeydew, heather, eucalyptus, citrus, buckwheat, chestnut | flavone |
Myricetin | C15H10O8 | Linden, lotus, pine, spruce, sunflower, thyme, honeydew, heather, gelam, fir, eucalyptus, citrus, chestnut, buckwheat, strawberry tree, tualang | flavone |
8-methoxykaempferol | C16H12O7 | Manuka, rosemary | flavonol |
Myricetin-3-methylether | C16H11O8 | Australian jelly bush, heather, manuka | flavonol |
Quercetin | C15H10O7 | Australian jelly bush, chestnut, citrus, clover, eucalyptus, gelam, ginger, heather, linden, Japanese grape, mastic, pine, manuka, acacia, rosemary | flavonol |
Isorhamnetin | C16H12O7 | Acacia, citrus, eucalyptus, lotus, linden, honeydew, diplotaxis tenuifolia | flavonol |
Genistein | C15H10O5 | Acacia, clover, cedrus | isoflavone |
Anthocyanidins | C15H11O+ | Acacia, manuka, tualang | |
Hesperetin | C16H14O6 | Citrus, eucalyptus, gelam, lotus | flavanone |
Pinocembrin | C15H12O4 | Spruce, lotus, manuka, rosemary, strawberry tree, sunflower, linden, honeydew, fir, eucalyptus, citrus, chestnut, acacia | flavanone |
Naringenin | C15H12O5 | Lavender, lemon, linden, orange, rosemary, spruce, tualang, fir, honeydew, Rhododendron | flavanone |
Acacetin | C16H12O5 | Acacia, Robina Pseudoacacia | flavone |
Pinobanksin | C15H12O5 | Sunflower, strawberry tree, spruce, rosemary, manuka, lotus, linden, leatherwood, fir, honeydew, eucalyptus, citrus, chestnut | flavanone |
(−)-Catechin | C15H14O6 | Heather, tualang | catechins |
(−)-Epicatechin | Lavender, litchi, oak | catechins | |
Chrysin | C15H10O4 | Citrus, heather, chestnut, honeydew, acacia, linden, rosemary, buckwheat, sunflower, thyme, pine | flavone |
Apigenin | C15H10O5 | Citrus, fir, honeydew, eucalyptus, chestnut, acacia, Astralagus spp. | flavone |
Luteolin | C15H10O6 | Honeydew, lavender, linden, manuka, chestnut, thyme, sage, sunflower, lotus, eucalyptus | flavone |
Ellagic acid | C14H6O8 | Buckwheat, gelam, heather, manuka, Australian jelly bush | Tannins |
Phenolic Acids | |||
Ferulic acid | C10H10O4 | Chaste tree, chestnut, citrus, eucalyptus, canola, buckwheat, heather, jujube | |
Caffeic acid | C15H10O6 | Chestnut, citrus, clover, chaste tree, linden, lotus, gelam, eucalyptus, manuka, rosemary, sunflower, thyme, tualang | |
Homogentisic acid | C8H8O4 | Strawberry tree, chaste tree, thyme | |
Gentisic acid | C7H6O4 | Eucalyptus, pine, thyme, Cedrus, carob (Ceratonia silique) | |
3-phenyllactic acid | C9H10O3 | Leatherwood, mauka, milk thistle, Kamahi, chestnut | |
p-coumaric acid Cinnamic acid | C9H8O3 C9H8O2 | Acacia, astralagus spp., Azadirachta indica, buckwheat Plum, willow, lime, rapeseed | |
Gallic acid | C7H6O5 | Japanese grape, Litchi, Kamahi, honeydew, gelam, chestnut, Australian jelly bush, acacia, linden, heather, ginger | |
Chlorogenic acid | C16H18O9 | Heather, honeydew, thyme, acacia, buckwheat | |
Rosmarinic acid | C18H16O8 | Manuka, mint, heather, buckwheat | |
Syringic acid | C9H10O5 | Lavender, leatherwood, lotus, fir, citrus, pine, oak, thyme, tualang, ginger, heather | |
Benzoic acid | C7H6O2 | Manuka, citrus, heather, tualang, acacia, lotus, eucalyptus | |
4-hydroxybenzoic acid | C7H7O3 | Chaste tree, buckwheat, acacia, chestnut, clover, heather, linden, lotus | |
Vanillic acid | C8H8O4 | Acacia, buckwheat, Cedrus, chestnut, eucalyptus, heather, linden, citrus |
2.2. The Sugar Composition of Honey
2.3. The Floral and Geographical Variations in Honey Based on Sugars
Continent | Country | Percentage of Identified Sugars | Total Sugar | Methods | Continent | Country | Percentage of Identified Sugars | Total Sugar |
---|---|---|---|---|---|---|---|---|
Fructose | Glucose | Sucrose | Trs | Diss | ||||
Europe | Spain | 37.53–39.9 | 26.86–31.03 | 0.1–1.54 | 0.1–1.54 | 71.95–77.68 | GC [57] | |
Turkey | 28.30–45.11 | 17.40–25.90 | b/d–3.39 | 0.5–1.0 | b/d–0.7 | 51–72 | HPLC-RID [58] | |
South America | Brazil | 27.8–45.70 | 49.0–59.4 | 0.7–4.10 | N/A | N/A | 62.4–72.7 | HPLC [59] |
Venezuela | 20.30–38.60 | 11.20–39.60 | 0.1–0.20 | b/d–0.50 | b/d–32.3 | 74.7–76.3 | HPLC [60] | |
Africa | Algeria | 35.99–42.57 | 24.63–35.06 | 0–5.26 | 0.00–1.14 | 0.01–1.63 | 73.05–81.38 | HPAEC-PAD [61] |
Ethiopia | 31.77–43.40 | 26.0–37.55 | 1.11–3.40 | N/A | N/A | 72.4–79.7 | HPLC-RI [62] | |
Asia | Oman | 31.60–35.60 | 22.70–28.00 | 0.11–0.15 | N/A | N/A | 42.1–71.3 | IC [63] |
Malaysia | 39.92–48.44 | 26.72–41.96 | <1.00 | N/A | N/A | 75.16–81.93 | HPLC-ELSD [64] | |
Saudi Arabia | 29.08–39.48 | 20.02–34.10 | b/d–2.95 | N/A | N/A | 50.26–71.3 | GC-MS [65] | |
Australia | Australia | 38.7–43.9 | 24.9–33.7 | N/A | N/A | N/A | HPTLC [66] |
2.4. Geographical Markers Identified in Honey Based on Polyphenols
Geographical Location by Continent | Honey Type | Proposed Markers | Analytical Detection Method | Reference |
---|---|---|---|---|
Europe | ||||
Macedonia | Acacia | Naringenin, caffeic acid | HPLC-DAD-MS | [84] |
Macedonia and Bulgaria | Chestnut | Kynurenic acid | ||
Multifloral | Naringenin, caffeic acid | |||
Italy, France | Chestnut and floral honey | Quercetin | HPLC-DAD | [85] |
Italy | Strawberry tree honey | Homogentisic acid | HPLC-MS | [86] |
RP-HPLC-UV | [87] | |||
HPLC-MS/MS and Q-TOF | [88] | |||
Greece | Multifloral | Quinic acid, gentisic acid, 3-(2,5-dimethoxyphenyl) propanoic acid | UPLC-QTof-MS | [89] |
Poland | Chrysin, acacetin, sebacic acid, isorhamnetin | |||
Spain | Lavender | Luteolin, naringenin | Micellar electrokinetic capillary chromatography | [90] |
Citrus | Hesperetin | Capillary zone electrophoresis | [91] | |
Thyme | Rosmarinic acid | |||
Heather | Ellagic acid | |||
Ukraine, Hungary | Buckwheat | 3-hydroxybenzoic acid, ferulic acid | LC-DAD | [92] |
Croatia | Mint | Methyl syringate | ||
Sage (Salvia officinalis L.) | Lumichrome | |||
Savory | Methyl syringate | |||
Italy, Croatia, France | Sweet chestnut | Kynurenic acid | LC-DAD | |
Portugal | Heather | Myricetin, myricetin-3′-methyl-ether, myricetin-3-methyl ether, tricetin | HPLC-DAD | [93] |
Spain | Rosemary | 8-methoxykaempferol | HPLC-DAD | [94] |
Kaempferol | ||||
England, France, Germany, Denmark | Rapeseed | Cis–trans-abscisic acid, trans–trans-abscisic acid, quercetin, 8-methoxykaempferol, kaempferol | HPLC-DAD | [67,76,95] |
Italy, Portugal, Spain | Eucalyptus (eucalyptus carmaldulensis) | quercetin | ||
Germany, France, the Netherlands, England | Heather | Ellagic acid, cis–trans-abscisic acid, trans–trans-abscisic acid | ||
Spain, Portugal | Rosemary | 8-methoxykaempferol, kaempferol | ||
Turkey | Chestnut | p-hydroxybenzoic acid, caffeic acid | ||
Germany, Italy, France | Acacia | Cis–trans-abscisic acid, trans–trans-abscisic acid | ||
Italy, Slovakia | Acacia | Kaempferol rhamnosides | HPLC-DAD-MS/MS | [96] |
Serbia | Sunflower | Quercetin, eriodictyol | UHPLC-MS (LTQ and Orbitrap) | [97] |
Acacia and linden honey | Cis-, trans-abscisic acid | |||
Italy | Thistle honey | Lumichrome, phenyllactic acid | HPLC-DAD-MS/MS and Q-TOF | [98] |
Asphodel honey | Methyl syringate | HPLC-DAD, LC-MS/MS | ||
Multiple European regions | Chestnut | 4-hydroxybenzoic acid, Dl-p-hydroxyphenyllactic acid, ferulic acid, phenylacetic acid | HPLC-UV | [72] |
Heather | Benzoic acid, phenylacetic acid, L-β-phenyllactic acid | |||
Lime honey | 3-hydroxybenzoic acid | |||
Eucalyptus | Benzoic acid derivatives | |||
Serbia | Buckwheat, oilseed rape, and goldenrod honey | Chlorogenic acid, dicaffeoylquinic acid | UHPLC-MS | [97] |
Finland | Lingonberry and mire honey | Cinnamic acid, p-OH-cinnamic acid, acacetin | HPLC-MS/DAD | [99] |
Spain | Heather | 4-anisaldehyde, 3-hydroxyphenylacetic acid, 4-hydroxybenzaldehyde | LC-MS/MS | [32] |
Asia | ||||
China | Buckwheat honey | Rutin, p-coumaric acid, p-hydroxybenzoic acid | HPLC-MS/MS | [69] |
Rapeseed honey | Benzoic acid, kaempferol, naringenin, pinocembrin | |||
Sunflower honey | Quercetin, chrysin | |||
Codonopsis honey | Gallic acid | |||
China | Citrus | Caffeic acid, p-coumaric acid, ferulic acid, hesperetin | HPLC-ECD | [100] |
China | Longan | Syringic acid, p-coumaric acid, ferulic acid | HPLC-ECD | [101] |
China | Vitex honey | Chlorogenic acid, 4-hydroxybenzoic acid, luteolin, caffeic acid, 3-hydroxybenzoic acid | UHPLC-MS/MS | [102] |
China | Rapeseed (Brassica rapa Linn) | Ellagic acid | LC-ECD | [103] |
Linden honey | 3,4-dihydroxybenzoic acid, isorhamnetin, gallic acid | UHPLC-MS/MS | ||
China | Astragalus honey | Calycosin, isorhamnetin | UHPLC-MS/MS | [102] |
Codonopsis honey | Myricetin, rutin, gallic acid, formononetin | UHPLC-MS/MS | ||
China | Wild Chrysanthemum, jujube flower, acacia | Gallic acid, chlorogenic acid, caffeic acid, syringic acid, protocatechuic acid, rutin | HPLC-DAD | [104] |
China | Rape and chaste honey | Kaempferol, morin, ferulic acid | HPLC-DAD-MS/MS | [105] |
Malaysia | Apis honey | chrysin | HPLC-DAD | [106] |
Gelam honey | Gallic acid, ellagic acid | |||
Starfruit honey | Salicyclic acid, benzoic acid, 4-hydroxybenzoic acid | |||
Malaysia | Longan and tualang | Catechin, caffeic acid, myricetin, gallic acid, naringenin | HPLC-PDA | [107,108] |
Acacia honey | Ferulic acid | |||
Bangladesh | Mustard honey | Caffeic acid, benzoic acid, kaempferol, gallic acid, myricetin, apigenin | HPLC-UV | [74] |
India | N/A | Catechin, ferulic acid, rutin | HPLC-UV | [109] |
Yemen | Ziziphus Spina-Christi honey | Gallic acid, 4-hydroxybenzoic acid, 4-hydroxyphenylacetic acid, vanillic acid, galangin | HPLC-DAD, UHPLC-MS | [110] |
South and North America | ||||
Ecuador | Stingless bee honey | Luteolin | HPTLC | [111] |
Brazil | Jandaira honey | Naringenin, isorhamnetin, vanillic acid, gallic acid, cinnamic acids | HPLC-DAD | [112] |
Brazil | Japanese grape honey | Gallic acid, p-coumaric acid | HPLC-UV | [113] |
Eucalyptus | Gallic acid | |||
Mastic honey | ||||
Polyfloral | ||||
Cuba | Linen vine honey | p-coumaric acid, ferulic acid, quercetin | HPLC-DAD-MS/MS | [114] |
Morning glory honey | Ferulic acid, p-coumaric acid | |||
Black mangrove | p-coumaric acid, kaempferol | |||
M. Beecheii honey | C-pentosyl-C-hexosyl-apigenin | HPLC-DAD | [115] | |
Cuba | Apis Mellifera | Caffeic acid, ferulic acid | ||
USA | Multifloral honey | Apigenin, pinocembrin, myricetin, 6-phenylnarigenin, kaempferol, ferulic acid-5,5-dihydroferulic acid | HPLC-MS/MS | [31] |
USA | Peppermint honey | p-coumaric acid, kaempferol | HPLC-DAD | [115] |
Middle East | ||||
Morocco and Palestine | Multifloral | Gallic acid, tannic acid, pyrogallol, coumaric acid | HPLC | [116] |
Iran | Citrus honey | Quercetin, hesperetin, chrysin | MLC-UV | [117] |
Pakistan | Sidr honey (Ziziphus species) | Caffeic acid, chlorogenic acid, ferulic acid | Florescence spectroscopy | [118] |
Africa | ||||
Mozambique | Multifloral | Pinocembrin, kaempferol, rutin, catechin | HPLC-PDA | [119] |
Algeria | Capparis Spinosa, Trifoliumn honey | Caffeic acid, p-coumaric acid | LC-DAD | [79] |
Sudan | Sunflower, blue nile, sunnut, Tahil honey | Hesperetin, apigenin, kaempferol, isorhamnetin | HPLC-PDA | [120] |
Egypt | Cotton honey | Hesperetin, quercetin, cinnamic acid, p-hydroxybenzoic acid | HPLC-UV | [121] |
Egypt | Clover and citrus | Caffeic acid | HPLC-UV | [78] |
Tunisia | Eucalyptus | Ellagic acid, quercetin, kaempferol | HPLC-DAD | [60,82] |
Rosemary | Kaempferol, 8-methoxykaempferol | |||
Thyme | Kaempferol, isorhamnetin | |||
Rape | Chrysin | |||
New Zealand and Australia | ||||
New Zealand | Manuka honey | Trimethoxybenzoic acid, methylglyoxal, 2-methoxybenzoic acid | HPLC-MS | [80] |
Kanuka honey | 4-methoxyphenyllactic acid | |||
New Zealand | Leptospermum manuka | Quercetin, luteolin, quercetin-3-methyl ether | HPLC-DAD | [122] |
Blackberry | Kaempferol, quercetin, chysin, trans-ferulic acid | |||
Australia | Crow ash (Guioa semiglauca) honey | Myricetin, tricetin, quercetin, luteolin | HPLC-PDA | [59] |
Australia | Australian sunflower honey, tea tree, heath honey | Quercetin, myricetin, luteolin | HPLC-PDA | |
Australia | Eucalyptus camaldulensis (river red gum) | Tricetin | HPLC-DAD | [123] |
Eucalyptus pilligaensis (mallee honey) | Luteolin |
2.5. Characterization of Polyphenol Markers in U.S. Honey
Geographical Origin | Floral Origin | Total Phenolic Content (µg/g) | Phenolic Compounds Identified | Analytical Technique | Reference |
---|---|---|---|---|---|
USA | Buckwheat | 46.5 ± 0.57 | Vanillic acid, p-coumaric acid Syringic acid, p-hydroxybenzoic acid Cinnamic acid, cis-, trans-abscisic acid Pinobanksin, pinocembrin Galangin, chrysin Kaempferol, quercetin | HPLC-DAD-MS | [125] |
Clover | 33.1 ± 2.23 | ||||
Acacia | 11.6 ± 0.95 | ||||
Fireweed | 14.8 ± 2.55 | ||||
Tupelo | 20.9 ± 1.93 | ||||
Soy | 50.7 ± 3.0 | ||||
Hawaiian Christmas berry | 1.96 ± 0.29 | ||||
USA | Gallberry | 33.1–55.0 | Quercetin; luteolin; pinocembrin; chrysin; galangin; rutin; coumaric acid; 2-trans,4-trans-abscisic acid; 2-cis,4-trans-abscisic acid | HPLC-DAD-MS | [124] |
Citrus | 12.2–47.6 | ||||
Palmetto | 19.5–43.7 | ||||
Tupelo | 15.1–55.8 | ||||
Manuka | 7.34–13.5 | ||||
Multifloral | 6.27–102 | ||||
USA | Clover | p-hydroxybenzoic acid; vanillic acid; syringic acid; p-coumaric acid; cis-, trans-abscisic acid cinnamic acid; pinobanksin; quercetin; pinocembrin; kaempferol; chrysin; galangin | HPLC-DAD | [126] | |
USA | Buckwheat | p-hydroxybenzoic acid; vanillic acid; p-coumaric acid; cis-, trans-abscisic acid; cinnamic acid; pinobanksin; pinocembrin; kaempferol; chrysin; galangin | HPLC-DAD | [126] | |
USA | Multifloral | N/A | Isorhamnetin, quercetin, kaempferol, naringenin, chysin, apigenin, pinocembrin, hesperidin, ferulic acid, caffeic acid, 5′5-dihydroferulic acid, sinapic acid, 6-phenylnaringenin | HPLC-MS/MS | [31] |
2.6. Analytical Approaches to Polyphenol Profiling in Honey
3. Challenges in Honey Phenolic Research
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guler, A.; Bakan, A.; Nisbet, C.; Yavuz, O. Determination of Important Biochemical Properties of Honey to Discriminate Pure and Adulterated Honey with Sucrose (Saccharum officinarum L.). Syrup. Food Chem. 2007, 105, 1119–1125. [Google Scholar] [CrossRef]
- Jibril, F.I.; Bakar, A.; Hilmi, M.; Manivannan, L. Isolation and Characterization of Polyphenols in Natural Honey for the Treatment of Human Diseases. Bull. Natl. Res. Cent. 2019, 43, 4. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulou, N.S.; Xagoraris, M.; Revelou, P.K.; Kaparakou, E.; Kanakis, C.; Pappas, C.; Tarantilis, P. The Use of SPME-GC-MS IR and Raman Techniques for Botanical and Geographical Authentication and Detection of Adulteration of Honey. Foods 2021, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.J.; Musharraf, S.G.; Choudhary, M.I.; Rahman, A.-U. Application of Analytical Methods in Authentication and Adulteration of Honey. Food Chem. 2017, 217, 687–698. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Hu, Y.; Zhou, J.; Chen, L.; Lu, X. Systematic Review of the Characteristic Markers in Honey of Various Botanical, Geographic, and Entomological Origins. ACS Food Sci. Technol. 2022, 2, 206–220. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S. Honey Adulteration Detection Using Raman Spectroscopy. Food Anal. Methods 2018, 11, 959–968. [Google Scholar] [CrossRef]
- Maione, C.; Barbosa, F.; Barbosa, R.M. Predicting the Botanical and Geographical Origin of Honey with Multivariate Data Analysis and Machine Learning Techniques: A Review. Comput. Electron. Agric. 2019, 157, 436–446. [Google Scholar] [CrossRef]
- Kaškoniene, V.; Venskutonis, P.R.; Čeksteryte, V. Composition of Volatile Compounds of Honey of Various Floral Origin and Beebread Collected in Lithuania. Food Chem. 2008, 111, 988–997. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Zhihua, L.; Yaodi, Z. Comprehensive Evaluation of Antioxidant Properties and Volatile Compounds of Sudanese Honeys. J. Food Biochem. 2015, 39, 349–359. [Google Scholar] [CrossRef]
- Aliferis, K.A.; Tarantilis, P.A.; Harizanis, P.C.; Alissandrakis, E. Botanical Discrimination and Classification of Honey Samples Applying Gas Chromatography/Mass Spectrometry Fingerprinting of Headspace Volatile Compounds. Food Chem. 2010, 121, 856–862. [Google Scholar] [CrossRef]
- Du, B.; Wu, L.; Xue, X.; Chen, L.; Li, Y.; Zhao, J.; Cao, W. Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 6614–6623. [Google Scholar] [CrossRef] [PubMed]
- Herpai, Z.; Szigeti, J.; Csapó, J. A Rapid and Sensitive Method for the Determination of High-Fructose Corn Syrup (HFCS) in Honey. Acta Univ. Sapientiae Aliment. 2013, 6, 5–13. [Google Scholar]
- Morales, V.; Corzo, N.; Sanz, M.L. HPAEC-PAD Oligosaccharide Analysis to Detect Adulterations of Honey with Sugar Syrups. Food Chem. 2008, 107, 922–928. [Google Scholar] [CrossRef]
- Oroian, M.; Paduret, S.; Ropciuc, S. Honey Adulteration Detection: Voltammetric e-Tongue versus Official Methods for Physicochemical Parameter Determination. J. Sci. Food Agric. 2018, 98, 4304–4311. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S. Romanian Honey Authentication Using Voltammetric Electronic Tongue. Correlation of Voltammetric Data with Physico-Chemical Parameters and Phenolic Compounds. Comput. Electron. Agric. 2019, 157, 371–379. [Google Scholar] [CrossRef]
- Guler, A.; Kocaokutgen, H.; Garipoglu, A.V.; Onder, H.; Ekinci, D.; Biyik, S. Detection of Adulterated Honey Produced by Honeybee (Apis mellifera L.) Colonies Fed with Different Levels of Commercial Industrial Sugar (C3 and C4 Plants) Syrups by the Carbon Isotope Ratio Analysis. Food Chem. 2014, 155, 155–160. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S. Honey Authentication Based on Physicochemical Parameters and Phenolic Compounds. Comput. Electron. Agric. 2017, 138, 148–156. [Google Scholar] [CrossRef]
- Juan-Borrás, M.; Domenech, E.; Hellebrandova, M.; Escriche, I. Effect of Country Origin on Physicochemical, Sugar and Volatile Composition of Acacia, Sunflower and Tilia Honeys. Food Res. Int. 2014, 60, 86–94. [Google Scholar] [CrossRef]
- Fechner, D.C.; Moresi, A.L.; Ruiz Díaz, J.D.; Pellerano, R.G.; Vazquez, F.A. Multivariate Classification of Honeys from Corrientes (Argentina) According to Geographical Origin Based on Physicochemical Properties. Food Biosci. 2016, 15, 49–54. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Buculei, A. Romanian Honey Authentication Based on Physico-Chemical Parameters and Chemometrics. J. Food Meas. Charact. 2017, 11, 719–725. [Google Scholar] [CrossRef]
- Mohammed, M.E.A. Factors Affecting the Physicochemical Properties and Chemical Composition of Bee’s Honey. Food Rev. Int. 2022, 38, 1330–1341. [Google Scholar] [CrossRef]
- Kujawski, M.W.; Namieśnik, J. Challenges in Preparing Honey Samples for Chromatographic Determination of Contaminants and Trace Residues. TrAC Trends Anal. Chem. 2008, 27, 785–793. [Google Scholar] [CrossRef]
- Lawag, I.L.; Lim, L.Y.; Joshi, R.; Hammer, K.A.; Locher, C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Bento-Silva, A.; Koistinen, V.M.; Mena, P.; Bronze, M.R.; Hanhineva, K.; Sahlstrøm, S.; Kitrytė, V.; Moco, S.; Aura, A.-M. Factors Affecting Intake, Metabolism and Health Benefits of Phenolic Acids: Do We Understand Individual Variability? Eur. J. Nutr. 2020, 59, 1275–1293. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Ciucure, C.T.; Geană, E.I. Phenolic Compounds Profile and Biochemical Properties of Honeys in Relationship to the Honey Floral Sources. Phytochem. Anal. 2019, 30, 481–492. [Google Scholar] [CrossRef]
- Sergiel, I.; Pohl, P.; Biesaga, M. Characterisation of Honeys According to Their Content of Phenolic Compounds Using High Performance Liquid Chromatography/Tandem Mass Spectrometry. Food Chem. 2014, 145, 404–408. [Google Scholar] [CrossRef]
- Nyarko, K.; Boozer, K.; Greenlief, C.M. Profiling of the Polyphenol Content of Honey from Different Geographical Origins in the United States. Molecules 2023, 28, 5011. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, L.; Armada, D.; Celeiro, M.; Dagnac, T.; Llompart, M. Evaluating the Presence and Contents of Phytochemicals in Honey Samples: Phenolic Compounds as Indicators to Identify Their Botanical Origin. Foods 2021, 10, 2616. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Q.X. Chemical Composition, Characterization, and Differentiation of Honey Botanical and Geographical Origins. Adv. Food Nutr. Res. 2011, 62, 89–137. [Google Scholar] [CrossRef] [PubMed]
- Bodor, Z.; Benedek, C.; Kovacs, Z.; Zinia Zaukuu, J.-L. Identification of Botanical and Geographical Origins of Honey-Based on Polyphenols. In Plant-Based Functional Foods and Phytochemicals; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 125–161. [Google Scholar] [CrossRef]
- Kunat-Budzy’nska, M.; Budzy’nska, B.; Rysiak, A.; Wiater, A.; Grąz, M.; Andrejko, M.; Budzy´nski, M.; Budzy´nski, B.; Bry´sbry´s, M.S.; Sudzí Nski, M.; et al. Chemical Composition and Antimicrobial Activity of New Honey Varietals. Int. J. Environ. Res. Public Health 2023, 20, 2458. [Google Scholar] [CrossRef]
- González-Montemayor, Á.M.; Flores-Gallegos, A.C.; Serrato-Villegas, L.E.; López-Pérez, M.G.; Montañez-Sáenz, J.C.; Rodríguez-Herrera, R. Honey and Syrups: Healthy and Natural Sweeteners with Functional Properties. Nat. Beverages 2019, 13, 143–177. [Google Scholar] [CrossRef]
- Missio, P.; Gauche, C.; Gonzaga, L.V.; Carolina, A.; Costa, O. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Wu, L.; Du, B.; Vander Heyden, Y.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent Advancements in Detecting Sugar-Based Adulterants in Honey—A Challenge. TrAC Trends Anal. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and novel approaches the analysis of honey and detection of adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Pita-Calvo, C.; Guerra-Rodríguez, M.E.; Vázquez, M. Analytical Methods Used in the Quality Control of Honey. J. Agric. Food Chem. 2017, 65, 690–703. [Google Scholar] [CrossRef]
- Tewari, J.; Irudayaraj, J. Quantification of Saccharides in Multiple Floral Honeys Using Fourier Transform Infrared Microattenuated Total Reflectance Spectroscopy. J. Agric. Food Chem. 2004, 52, 3237–3243. [Google Scholar] [CrossRef]
- Tosi, E.A.; Ré, E.; Lucero, H.; Bulacio, L. Effect of Honey High-Temperature Short-Time Heating on Parameters Related to Quality, Crystallisation Phenomena and Fungal Inhibition. LWT Food Sci. Technol. 2004, 37, 669–678. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Stephen Elmore, J.; Bernal, J. Recent Trends in the Analysis of Honey Constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef] [PubMed]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical Characteristics of Honey from Different Origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Tatlisu, N.B.; Toker, O.S.; Karaman, S.; Dertli, E.; Sagdic, O.; Arici, M. Steady, Dynamic and Creep Rheological Analysis as a Novel Approach to Detect Honey Adulteration by Fructose and Saccharose Syrups: Correlations with HPLC-RID Results. Food Res. Int. 2014, 64, 634–646. [Google Scholar] [CrossRef]
- Pascual-Maté, A.; Osés, S.M.; Marcazzan, G.L.; Gardini, S.; Fernández Muiño, M.A.; Teresa Sancho, M. Sugar Composition and Sugar-Related Parameters of Honeys from the Northern Iberian Plateau. J. Food Compos. Anal. 2018, 74, 34–43. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An Investigation of Turkish Honeys: Their Physico-Chemical Properties, Antioxidant Capacities and Phenolic Profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- de Sousa, J.M.B.; de Souza, E.L.; Marques, G.; de Toledo Benassi, M.; Gullón, B.; Pintado, M.M.; Magnani, M. Sugar Profile, Physicochemical and Sensory Aspects of Monofloral Honeys Produced by Different Stingless Bee Species in Brazilian Semi-Arid Region. LWT Food Sci. Technol. 2016, 65, 645–651. [Google Scholar] [CrossRef]
- Bogdanov, S.; Vit, P.; Kilchenmann, V. Sugar Profiles and Conductivity of Stingless Bee Honeys from Venezuela. Apidologie 1996, 27, 445–450. [Google Scholar] [CrossRef]
- Ouchemoukh, S.; Schweitzer, P.; Bachir Bey, M.; Djoudad-Kadji, H.; Louaileche, H. HPLC Sugar Profiles of Algerian Honeys. Food Chem. 2010, 121, 561–568. [Google Scholar] [CrossRef]
- Belay, A.; Haki, G.D.; Birringer, M.; Borck, H.; Lee, Y.C.; Cho, C.W.; Kim, K.T.; Bayissa, B.; Baye, K.; Melaku, S. Sugar Profile and Physicochemical Properties of Ethiopian Monofloral Honey. Int. J. Food Prop. 2017, 20, 2855–2866. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Belushi, S.; Al-Amri, A.; Al-Hadhrami, A.; Al-Rusheidi, M.; Al-Alawi, A. Quality Evaluation of Omani Honey. Food Chem. 2018, 262, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kek, S.P.; Chin, N.L.; Tan, S.W.; Yusof, Y.A.; Chua, L.S. Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Anal. Methods 2017, 10, 19–30. [Google Scholar] [CrossRef]
- Alghamdi, B.A.; Alshumrani, E.S.; Bin Saeed, M.S.; Rawas, G.M.; Alharthi, N.T.; Baeshen, M.N.; Helmi, N.M.; Alam, M.Z.; Suhail, M. Analysis of Sugar Composition and Pesticides Using HPLC and GC–MS Techniques in Honey Samples Collected from Saudi Arabian Markets. Saudi J. Biol. Sci. 2020, 27, 3720–3726. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Sugar Profiling of Honeys for Authentication and Detection of Adulterants Using High-Performance Thin Layer Chromatography. Molecules 2020, 25, 5289. [Google Scholar] [CrossRef] [PubMed]
- Revised Codex Standard for Honey. Available online: https://alimentosargentinos.magyp.gob.ar/contenido/marco/Codex_Alimentarius/normativa/codex/stan/CODEX_STAN_12.htm (accessed on 11 January 2023).
- Rashed, M.N.; Soltan, M.E. Major and Trace Elements in Different Types of Egyptian Mono-Floral and Non-Floral Bee Honeys. J. Food Compos. Anal. 2004, 17, 725–735. [Google Scholar] [CrossRef]
- Kıvrak, Ş.; Kıvrak, İ. Assessment of Phenolic Profile of Turkish Honeys. Int. J. Food Prop. 2017, 20, 864–876. [Google Scholar] [CrossRef]
- Yaoa, L.; Jiang, Y.; Singanusong, R.; Datta, N.; Raymont, K. Phenolic Acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus Honeys and Their Potential for Floral Authentication. Food Res. Int. 2005, 38, 651–658. [Google Scholar] [CrossRef]
- Martos, I.; Cossentini, M.; Ferreres, F.; Tomás-Barberán, F.A. Flavonoid Composition of Tunisian Honeys and Propolis. J. Agric. Food Chem. 1997, 45, 2824–2829. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Gałkowska, D.; Fortuna, T.; Witczak, T. Phenolic Profile and Antioxidant Properties of Polish Honeys. Int. J. Food Sci. Technol. 2011, 46, 528–534. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Makowicz, E.; Stanek, N. Chromatographic Fingerprint, Antioxidant Activity, and Colour Characteristic of Polish Goldenrod (Solidago virgaurea L.) Honey and Flower. Eur. Food Res. Technol. 2018, 244, 1169–1184. [Google Scholar] [CrossRef]
- Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE 2014, 9, e94860. [Google Scholar] [CrossRef] [PubMed]
- Haroun, M.I.; Poyrazoglu, E.S.; Konar, N.; Artik, N. Phenolic Acids and Flavonoids Profiles of Some Turkish Honeydew and Floral Honeys. J. Food Technol. 2012, 10, 39–45. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Martos, I.; Ferreres, F.; Radovic, B.S.; Anklam, E. HPLC Flavonoid Profiles as Markers for the Botanical Origin of European Unifloral Honeys. J. Sci. Food Agric. 2001, 81, 485–496. [Google Scholar] [CrossRef]
- Escriche, I.; Kadar, M.; Juan-Borrás, M.; Domenech, E. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem. 2014, 142, 135–143. [Google Scholar] [CrossRef]
- Ferreres, F.; Tomás-Barberán, F.A.; Soler, C.; García-Viguera, C.; Ortiz, A.; Tomás-Lorente, F. A Simple Extractive Technique for Honey Flavonoid HPLC Analysis. Apidologie 1994, 25, 21–30. [Google Scholar] [CrossRef]
- Pasini, F.; Gardini, S.; Marcazzan, G.L.; Caboni, M.F. Buckwheat Honeys: Screening of Composition and Properties. Food Chem. 2013, 141, 2802–2811. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Zhang, J.; Li, Y.; Chen, L.; Zhao, W.; Zhou, J.; Jin, Y. Characterization of Chinese Unifloral Honeys Based on Proline and Phenolic Content as Markers of Botanical Origin, Using Multivariate Analysis. Molecules 2017, 22, 735. [Google Scholar] [CrossRef]
- Devi, A.; Jangir, J.; Anu-Appaiah, K.A. Chemical Characterization Complemented with Chemometrics for the Botanical Origin Identification of Unifloral and Multifloral Honeys from India. Food Res. Int. 2018, 107, 216–226. [Google Scholar] [CrossRef]
- Khalil, M.I.; Alam, N.; Moniruzzaman, M.; Sulaiman, S.A.; Gan, S.H. Phenolic Acid Composition and Antioxidant Properties of Malaysian Honeys. J. Food Sci. 2011, 76, C921–C928. [Google Scholar] [CrossRef]
- Dimitrova, B.; Gevrenova, R.; Anklam, E. Analysis of Phenolic Acids in Honeys of Different Floral Origin by Solid-Phase Extraction and High-Performance Liquid Chromatography. Phytochem. Anal. 2007, 18, 24–32. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Physicochemical and Antioxidant Properties of Malaysian Honeys Produced by Apis Cerana, Apis Dorsata and Apis Mellifera. BMC Complement. Altern. Med. 2013, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Yung An, C.; Rao, P.V.; Hawlader, M.N.I.; Azlan, S.A.B.M.; Sulaiman, S.A.; Gan, S.H. Identification of Phenolic Acids and Flavonoids in Monofloral Honey from Bangladesh by High Performance Liquid Chromatography: Determination of Antioxidant Capacity. Biomed. Res. Int. 2014, 2014, 737490. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, N.; Asokan, S. Research Article Identification of Phenolic Compounds from Honey Ob-Tained from Theni District, Tamilnadu, India. Int. J. Pharm. Drug Anal. 2018, 6, 160–167. [Google Scholar]
- Ferreres, F.; Andrade, P.; Tomás-Barberán, F.A. Flavonoids from Portuguese Heather Honey. Z. Lebensm. Unters. Forsch. 1994, 199, 32–37. [Google Scholar] [CrossRef]
- Ferreres, F.; Tomáas-Barberáan, F.A.; Gil, M.I.; Tomáas-Lorente, F. An HPLc Technique for Flavonoid Analysis in Honey. J. Sci. Food Agric. 1991, 56, 49–56. [Google Scholar] [CrossRef]
- Aziem, A. Phenolic Compounds As A Marker For Different Botanical And Geographical Origins Of Honeys. Egypt. J. Agric. Res. 2014, 92, 1269–1277. [Google Scholar]
- Ouchemoukh, S.; Amessis-Ouchemoukh, N.; Gómez-Romero, M.; Aboud, F.; Giuseppe, A.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Characterisation of Phenolic Compounds in Algerian Honeys by RP-HPLC Coupled to Electrospray Time-of-Flight Mass Spectrometry. LWT 2017, 85, 460–469. [Google Scholar] [CrossRef]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic Compounds and Methylglyoxal in Some New Zealand Manuka and Kanuka Honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Kłębukowska, L. Antioxidant Properties and Antimicrobial Activity of Manuka Honey versus Polish Honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Martos, I.; Ferreres, F.; Tomás-Barberán, F.A. Identification of Flavonoid Markers for the Botanical Origin of Eucalyptus Honey. J. Agric. Food Chem. 2000, 48, 1498–1502. [Google Scholar] [CrossRef]
- Nayik, G.A.; Nanda, V. A Chemometric Approach to Evaluate the Phenolic Compounds, Antioxidant Activity and Mineral Content of Different Unifloral Honey Types from Kashmir, India. LWT 2016, 74, 504–513. [Google Scholar] [CrossRef]
- Bogojovska, M.; Stefova, M.; Stanoeva, J.P.; Bankova, V.; Popova, M. Polyphenols and Minor Constituents in Honey From North Macedonia and Bulgaria. Comptes Rendus L’Academie Bulg. Sci. 2022, 75, 207–215. [Google Scholar] [CrossRef]
- Güneş, M.E.; Şahin, S.; Demir, C.; Borum, E.; Tosunoğlu, A. Determination of Phenolic Compounds Profile in Chestnut and Floral Honeys and Their Antioxidant and Antimicrobial Activities. J. Food Biochem. 2017, 41. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Tuberoso, C.; Floris, I.; Reniero, F.; Guillou, C.; Ghelli, S. Homogentisic Acid: A Phenolic Acid as a Marker of Strawberry-Tree (Arbutus unedo) Honey. J. Agric. Food Chem. 1999, 47, 4064–4067. [Google Scholar] [CrossRef]
- Scanu, R.; Spano, N.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Sanna, G.; Tapparo, A. Direct Chromatographic Methods for the Rapid Determination of Homogentisic Acid in Strawberry Tree (Arbutus unedo L.). Honey. J. Chromatogr. A 2005, 1090, 76–80. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; Caboni, P.; Cottiglia, F.; Cabras, P.; Floris, I. Floral Markers of Strawberry Tree (Arbutus unedo L.). Honey. J. Agric. Food Chem. 2010, 58, 384–389. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Aalizadeh, R.; Dasenaki, M.E.; Panagopoulou, E.I.; Drivelos, S.; Halagarda, M.; Georgiou, C.A.; Proestos, C.; Thomaidis, N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using Hrms Targeted and Untargeted Metabolomics. Molecules 2021, 26. [Google Scholar] [CrossRef]
- Ferreres, F.; Blázquez, M.A.; Gil, M.I.; Tomás-Barberán, F.A. Separation of Honey Flavonoids by Micellar Electrokinetic Capillary Chromatography. J. Chromatogr. A 1994, 669, 268–274. [Google Scholar] [CrossRef]
- Andrade, P.; Ferreres, F.; Gil, M.I.; Tomás-Barberán, F.A. Determination of Phenolic Compounds in Honeys with Different Floral Origin by Capillary Zone Electrophoresis. Food Chem. 1997, 60, 79–84. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Borawska, M.H.; Socha, K. Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification. Foods 2020, 9, 1028. [Google Scholar] [CrossRef]
- Ferreres, F.; Andrade, P.; Gil, M.I.; Tomás-Barberán, F.A. Floral Nectar Phenolics as Biochemical Markers for the Botanical Origin of Heather Honey. Eur. Food Res. Technol. 1996, 202, 40–44. [Google Scholar] [CrossRef]
- Gil, M.I.; Ferreres, F.; Ortiz, A.; Subra, E.; Tomás-Barberán, F.A. Plant Phenolic Metabolites and Floral Origin of Rosemary Honey. J. Agric. Food Chem. 1995, 43, 2833–2838. [Google Scholar] [CrossRef]
- Truchado, P.; Ferreres, F.; Tomas-Barberan, F.A. Liquid Chromatography-Tandem Mass Spectrometry Reveals the Widespread Occurrence of Flavonoid Glycosides in Honey, and Their Potential as Floral Origin Markers. J. Chromatogr. A 2009, 1216, 7241–7248. [Google Scholar] [CrossRef] [PubMed]
- Truchado, P.; Ferreres, F.; Bortolotti, L.; Sabatini, A.G.; Tomás-Barberán, F.A. Nectar Flavonol Rhamnosides Are Floral Markers of Acacia (Robinia pseudacacia) Honey. J. Agric. Food Chem. 2008, 56, 8815–8824. [Google Scholar] [CrossRef] [PubMed]
- Kečkeš, S.; Gašić, U.; Veličković, T.Ć.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The Determination of Phenolic Profiles of Serbian Unifloral Honeys Using Ultra-High-Performance Liquid Chromatography/High Resolution Accurate Mass Spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; Caboni, P.; Sarais, G.; Cottiglia, F.; Floris, I. Lumichrome and Phenyllactic Acid as Chemical Markers of Thistle (Galactites Tomentosa Moench) Honey. J. Agric. Food Chem. 2011, 59, 364–369. [Google Scholar] [CrossRef]
- Salonen, A.; Julkunen-Tiitto, R. Characterisation of Two Unique Unifloral Honeys from the Boreal Coniferous Zone: Lingonberry and Mire Honeys. Agric. Food Sci. 2012, 21, 159–170. [Google Scholar] [CrossRef]
- Liang, Y.; Cao, W.; Chen, W.; Xiao, X.; Chemistry, J.Z.-F. Simultaneous Determination of Four Phenolic Components in Citrus Honey by High Performance Liquid Chromatography Using Electrochemical Detection. Food Chem. 2009, 114, 1537–1541. [Google Scholar] [CrossRef]
- Zhao, J.; Du, X.; Cheng, N.; Chen, L.; Xue, X.; Zhao, J.; Wu, L.; Cao, W. Identification of Monofloral Honeys Using HPLC-ECD and Chemometrics. Food Chem. 2016, 194, 167–174. [Google Scholar] [CrossRef]
- Shen, S.; Wang, J.; Zhuo, Q.; Chen, X.; Liu, T.; Zhang, S.Q. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins. Molecules 2018, 23, 1110. [Google Scholar] [CrossRef]
- Wang, J.; Xue, X.; Du, X.; Cheng, N.; Chen, L.; Zhao, J.; Zheng, J.; Cao, W. Identification of Acacia Honey Adulteration with Rape Honey Using Liquid Chromatography–Electrochemical Detection and Chemometrics. Food Anal. Methods 2014, 7, 2003–2012. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, H.L.; Wang, J.Y.; Tu, D.Z.; Kang, C.; Zhao, J.; Chen, Y.; Miu, X.X.; Yu, R.Q. Fast HPLC-DAD Quantification of Nine Polyphenols in Honey by Using Second-Order Calibration Method Based on Trilinear Decomposition Algorithm. Food Chem. 2013, 138, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yao, L.; Li, Y.; Chen, L.; Wu, L.; Zhao, J. Floral Classification of Honey Using Liquid Chromatography-Diode Array Detection-Tandem Mass Spectrometry and Chemometric Analysis. Food Chem. 2014, 145, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, S.; Selamat, J.; Abdul Shomad, M.; Ab Aziz, M.F.; Haque Akanda, M.J. Antioxidant Properties and Characterization of Heterotrigona Itama Honey from Various Botanical Origins According to Their Polyphenol Compounds. J. Food Qual. 2022, 14, 2022. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Amrah Sulaiman, S.; Gan, S.H. Phenolic Acid and Flavonoid Composition of Malaysian Honeys. J. Food Biochem. 2017, 41. [Google Scholar] [CrossRef]
- Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. High 5-Hydroxymethylfurfural Concentrations Are Found in Malaysian Honey Samples Stored for More than One Year. Food Chem. Toxicol. 2010, 48, 2388–2392. [Google Scholar] [CrossRef]
- Mahnot, N.K.; Saikia, S.; Mahanta, C.L. Quality Characterization and Effect of Sonication Time on Bioactive Properties of Honey from North East India. J. Food Sci. Technol. 2019, 56, 724–736. [Google Scholar] [CrossRef]
- Wabaidur, S.M.; Ahmed, Y.B.H.; Alothman, Z.A.; Obbed, M.S.; Al-Harbi, N.M.; Al-Turki, T.M. Ultra High Performance Liquid Chromatography with Mass Spectrometry Method for the Simultaneous Determination of Phenolic Constituents in Honey from Various Floral Sources Using Multiwalled Carbon Nanotubes as Extraction Sorbents. J. Sep. Sci. 2015, 38, 2597–2606. [Google Scholar] [CrossRef]
- Guerrini, A.; Bruni, R.; Maietti, S.; Poli, F.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Scalvenzi, L.; Sacchetti, G. Ecuadorian Stingless Bee (Meliponinae) Honey: A Chemical and Functional Profile of an Ancient Health Product. Food Chem. 2009, 114, 1413–1420. [Google Scholar] [CrossRef]
- Silva, T.M.S.; Santos, F.P.D.; Evangelista-Rodrigues, A.; da Silva, E.M.S.; da Silva, G.S.; de Novais, J.S.; de Assis Ribeiro dos Santos, F.; Camara, C.A. Phenolic Compounds, Melissopalynological, Physicochemical Analysis and Antioxidant Activity of Jandaíra (Melipona subnitida) Honey. J. Food Compos. Anal. 2013, 29, 10–18. [Google Scholar] [CrossRef]
- do Nascimento, K.S.; Gasparotto Sattler, J.A.; Lauer Macedo, L.F.; Serna González, C.V.; Pereira de Melo, I.L.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic Compounds, Antioxidant Capacity and Physicochemical Properties of Brazilian Apis Mellifera Honeys. LWT 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; González- Paramás, A.M.; Santos-Buelga, C.; Battino, M. Antioxidant Characterization of Native Monofloral Cuban Honeys. J. Agric. Food Chem. 2010, 58, 9817–9824. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Okuyama, Y.; Murase, M.; Ahn, M.R.; Nakamura, J.; Tatefuji, T. Antioxidant Activity in Honeys of Various Floral Origins: Isolation and Identification of Antioxidants in Peppermint Honey. Food Sci. Technol. Res. 2012, 18, 679–685. [Google Scholar] [CrossRef]
- Imtara, H.; Kmail, A.; Touzani, S.; Khader, M.; Hamarshi, H.; Saad, B.; Lyoussi, B. Chemical Analysis and Cytotoxic and Cytostatic Effects of Twelve Honey Samples Collected from Different Regions in Morocco and Palestine. Evid. Based Complement. Altern. Med. 2019, 2019, 8768210. [Google Scholar] [CrossRef]
- Hadjmohammadi, M.R.; Nazari, S.S.S.J. Separation Optimization of Quercetin, Hesperetin and Chrysin in Honey by Micellar Liquid Chromatography and Experimental Design. J. Sep. Sci. 2010, 33, 3144–3151. [Google Scholar] [CrossRef]
- Ali, H.; Khan, S.; Ullah, R.; Khan, B. Fluorescence Fingerprints of Sidr Honey in Comparison with Uni/Polyfloral Honey Samples. Eur. Food Res. Technol. 2020, 246, 1829–1837. [Google Scholar] [CrossRef]
- Tanleque-Alberto, F.; Juan-Borrás, M.; Escriche, I. Quality Parameters, Pollen and Volatile Profiles of Honey from North and Central Mozambique. Food Chem. 2019, 277, 543–553. [Google Scholar] [CrossRef]
- Zein, S.; Makawi, A.; Gadkariem, A.; Mohamed, S.; Ayoub, H. Determination of Antioxidant Flavonoids in Sudanese Honey Samples by Solid Phase Extraction and High Performance Liquid Chromatography. E-J. Chem. 2009, 6, S429–S437. [Google Scholar] [CrossRef]
- Hamdy, A.A.; Ismail, H.M.; Al-Ahwal, A.E.-M.A.; Gomaa, N.F. Determination of Flavonoid and Phenolic Acid Contents of Clover, Cotton and Citrus Floral Honeys. J. Egypt. Public. Health Assoc. 2009, 84, 245–259. [Google Scholar]
- Yao, L.; Datta, N.; Toma, F.A. Flavonoids, Phenolic Acids and Abscisic Acid in Australian and New Zealand Leptospermum Honeys. Food Chem. 2003, 81, 159–168. [Google Scholar] [CrossRef]
- Martos, I.; Ferreres, F.; Yao, L.; Arcy, B.D.; Caffin, N.; Toma, F.A. Flavonoids in Monospecific Eucalyptus Honeys from Australia. J. Agric. Food Chem. 2000, 48, 4744–4748. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.M.; Schneider, K.R.; Cisneros, K.V.; Gu, L. Determination of Antioxidant Capacities, α-Dicarbonyls, and Phenolic Phytochemicals in Florida Varietal Honeys Using HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2014, 62, 8623–8631. [Google Scholar] [CrossRef] [PubMed]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Identification and Quantification of Antioxidant Components of Honeys from Various Floral Sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Gheldof, N.; Engeseth, N.J. Effect of Processing and Storage on Antioxidant Capacity of Honey. J. Food Sci. 2004, 69, fct96–fct101. [Google Scholar] [CrossRef]
- Hassan, N.H.; Cacciola, F.; Chong, N.S.; Arena, K.; Marriott, P.J.; Wong, Y.F. An Updated Review of Extraction and Liquid Chromatography Techniques for Analysis of Phenolic Compounds in Honey. J. Food Compos. Anal. 2022, 114, 104751. [Google Scholar] [CrossRef]
- Anklam, E. A Review on Analytical Methods to Determine the Geographical and Botanical Origin of Honey. Food Chem. 1998, 63, 549–562. [Google Scholar] [CrossRef]
- Kropf, U.; Golob, T.; Nečemer, M.; Kump, P.; Korošec, M.; Bertoncelj, J.; Ogrinc, N. Carbon and Nitrogen Natural Stable Isotopes in Slovene Honey: Adulteration and Botanical and Geographical Aspects. J. Agric. Food Chem. 2010, 58, 12794–12803. [Google Scholar] [CrossRef]
- Nozal, M.J.; Bernal, J.L.; Toribio, M.L.; Diego, J.C.; Ruiz, A. Rapid and Sensitive Method for Determining Free Amino Acids in Honey by Gas Chromatography with Flame Ionization or Mass Spectrometric Detection. J. Chromatogr. A 2004, 1047, 137–146. [Google Scholar] [CrossRef]
- Giordano, A.; Retamal, M.; Fuentes, E.; Ascar, L.; Velásquez, P.; Rodríguez, K.; Montenegro, G. Rapid Scanning of the Origin and Antioxidant Potential of Chilean Native Honey Through Infrared Spectroscopy and Chemometrics. Food Anal. Methods 2019, 12, 1511–1519. [Google Scholar] [CrossRef]
- Trifković, J.; Andrić, F.; Ristivojević, P.; Guzelmeric, E.; Yesilada, E. Analytical Methods in Tracing Honey Authenticity. J. AOAC Int. 2017, 100, 827–839. [Google Scholar] [CrossRef]
- Swartz, M.E. UPLCTM: An Introduction and Review. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1253–1263. [Google Scholar] [CrossRef]
- Michalkiewicz, A.; Biesaga, M.; Pyrzynska, K. Solid-Phase Extraction Procedure for Determination of Phenolic Acids and Some Flavonols in Honey. J. Chromatogr. A 2008, 1187, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Serwah Boateng, N.A.; Ma, H. Latest Developments in Polyphenol Recovery and Purification from Plant By-Products: A Review. Trends Food Sci. Technol. 2020, 99, 375–388. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; de la Luz Cádiz-Gurrea, M.; Rodríguez-Pérez, C.; Segura-Carretero, A. Recent Advances in Extraction Technologies of Phytochemicals Applied for the Revaluation of Agri-Food by-Products. Funct. Preserv. Prop. Phytochem. 2020, 209–239. [Google Scholar] [CrossRef]
- Zhang, X.H.; Gu, H.W.; Liu, R.J.; Qing, X.D.; Nie, J.F. A Comprehensive Review of the Current Trends and Recent Advancements on the Authenticity of Honey. Food Chem. X 2023, 19, 100850. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyarko, K.; Mensah, S.; Greenlief, C.M. Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review. Molecules 2024, 29, 4940. https://doi.org/10.3390/molecules29204940
Nyarko K, Mensah S, Greenlief CM. Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review. Molecules. 2024; 29(20):4940. https://doi.org/10.3390/molecules29204940
Chicago/Turabian StyleNyarko, Kate, Stephen Mensah, and C. Michael Greenlief. 2024. "Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review" Molecules 29, no. 20: 4940. https://doi.org/10.3390/molecules29204940
APA StyleNyarko, K., Mensah, S., & Greenlief, C. M. (2024). Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review. Molecules, 29(20), 4940. https://doi.org/10.3390/molecules29204940