Chromatographic and Spectroscopic Analyses of Cannabinoids: A Narrative Review Focused on Cannabis Herbs and Oily Products
Abstract
:1. Introduction
2. Review of the Analytical Techniques and Methods
- This section is inspired by the published thesis of Duchateau C. [23]
3. Analytical Techniques
- This section is inspired by the published thesis of Duchateau C. [23]
3.1. Gas Chromatography (GC)
Analytical Technique 1st Author [Reference] | Matrix (Sample State) | Cannabinoids | Internal Standard | Column | Carrier Gas Flow Rate/Velocity | GC/Detector Conditions Temperature in °C | Extraction Solvent (Recovery Rates After Extraction) | Derivatization | Analysis Time Quantitative (LOQ)/Screening (LOD) |
---|---|---|---|---|---|---|---|---|---|
2024 | |||||||||
Two-dimensional GC-MS Spadafora N. [34] | Dried inflorescences | CBDV, CBD(A), CBC, CBG(A), Δ9-THC(A) | No | (1°) HP-5-ms (0.18 µm, 20 m × 0.18 mm) (2°) DB-17MS (0.25 µm, 2.5 m × 0.25 mm) | Helium (1°) 0.5 mL/min (2°) 10 mL/min | To: 40–230 Ti: 250 Ts: - | SPME | no | n.m. Quantification (n.m.) |
GC-FID Micalizzi G. [36] | Dried, pulverized, and sieved inflorescences | CBD(A), Δ9-THC(A) | n-nonadecane | HP-5 (0.25 µm, 15 m × 0.25 mm) | Helium 1.0 mL/min | To: 240 Ti: 290 TFID: 300 | MeOH | no | 8 min Quantitative (n.m.) |
GC-FID Arsenault T. [31] | Dried, sieved, and mixed flowers (buds) | CBD, Δ9-THC | No | Rxi-35sil msS (0.25 µm, 15m × 0.25 m) | Hydrogen 4 mL/min | To: 225–325 Ti: 250 TFID: 350 | MeOH | no | 10 min Quantitative (n.m) |
2023 | |||||||||
GC-MS Koo Y. [37] | Dried and ground plant material (flower, stem, root, and leaves) | CBD, Δ9-THC | no | DB-5-ms (0.25 µm, 15 m × 0.25 mm) | Helium 1.0 mL/min | To: 80–300 Ti: 300 Ts: - | EtOH | no | <24 min. Quantitative (n.m.) |
GC-MS Motiejauskaite D. [38] | Dired and ground inflorescences | CBDVA, CBL, CBD, CBC, CBN, CBG | no | Rxi-5 ms (0.25 µm, 30 m × 0.25 µm) | Helium | To: 110–280 Ti: 250 Ts: 200 Electron ionization | MeOH, Triton-X-100 (>86%) | no | 39 min Quantitative (n.m.) |
GC-MS Ronald H. [39] | Dried ground inflorescences | CBD, THC, CBN | no | Elite-5ms | Helium (0.8 mL/min) | To: 200–280 Ti: 280 Ts: 225 Electron ionization | Acetone | no | 45 min Quantitative (n.m) |
GC-MS Judžentienė A. [40] | Inflorescence, leave, root, and stem | CBC, CBD(A), CBG, CBN | no | Rxi-5ms (0.25 µm, 33 m × 0.25 mm) | Helium 1 mL/min | To: 50–250 Ti: 250 Ts: 220 EI ionization | MeOH | no | 47 min Qualitative |
GC-FID Gul W. [42] | Dried and ground inflorescences | CBC(A), CBL(A), CBD(A), CBDV(A), CBG(A), CBN(A), THCV, Δ8-THC, Δ9-THC(A), Δ9-THCV(A)) | 4-androstene-3,17-dione | DB-1MS (0.25 µm, 15 m × 0.25 mm) | Helium 0.8 mL/min | To: 190–300 Ti: 275 TFID: 300 | ACN:MeOH | BSTFA | 17.5 min Quantitative (LOD: 0.1 µg/mL LOQ: 0.25–0.50 µg/mL) |
2022 | |||||||||
GC-FID Wilson J. [32] | Dried sieved inflorescences | CBD | no | Rxi-35Sil MS (0.25 µm × 15 m × 0.25 mm) | Hydrogen 1.75 mL/min | - | EtOH (>63%) | no | n.m. Quantitative (n.m.) |
GC-MS De Prato L. [41] | Dried ground inflorescences | CBC, CBD(A), CBDV, CBG(A), Δ8-THC(A), Δ9-THC(A) | 5α-cholestane | HP-5MS (0.25 µm, 15 m × 0.25 mm) | Helium 1.2 mL/min | To: 80–300 Ti: - Ts: 280 EI ionization | n-Hexane | MSTFA BSTFA | n.m. Semi-quantitative (LOD: 82.31–166.40 mg/kg LOQ: 274.36–554.65 mg/kg) |
2021 | |||||||||
GC-MS Ahmed A.Q. [33] | Dried ground flowers | CBC CBD CBG CBL CBN Δ9-THC | CBD-d3, Δ9-THC-d3 | HP-5MS capillary column (0.25 µm, 30 m × 0.25 mm) | Hydrogen 1.6 mL/min | To: 180–250 Ti: 280 EI ionization | MeOH (80–100%) | no | 14 min Quantitative (LOD: 0.006–0.008 mg/mL LOQ: 0.018–0.026 mg/mL) (SIM mode) |
GC-MS Duchateau C. [43] | Oils | CBN, CBDV, CBT, CBC, Δ8-THC, Δ9-THC, THCV, CBG | methylarachidate | VF-5 MS (0.25 µm, 30 m × 0.25 mm) | Helium 1.5 mL/min | To: 200–280 Ti: 250 Ts: 280 EI ionization | n-hexane QuEChERS (Bond Elut EMR lipid) | no | 17.3 min Screening (LOD: 10–14 ng/mL) Quantitative (n.m.) |
2020 | |||||||||
GC-FID Zekič J. [50] | Dried and ground plant material | CBC, CBD, CBG, CBN, Δ8-THC, Δ9-THC | squalane | RTX-50 (0.25 µm, 30 m × 0.25 mm) | Helium 2 mL/min | To: 60–290 Ti: 310 TFID: 310 | Acetone (>92%) | no | 17 min Quantitative (LOD: 0.662–0.857 µg/mL LOQ: 2.207–2.858 µg/mL) |
GC-MS Slosse A. [35] | Dried ground inflorescences | THCV, CBD, CBC, Δ9-THC, CBN, CBG | tribenzylamine | DB5-ms (0.25 µm, 15 m × 0.25 mm) | Helium 1.3 mL/min | To: 60–320 Ti: 230 Ts: - EI ionization | EtOH | no | 29 min Qualitative (n.m.) |
Two-dimensional GC-TOF-MS (low resolution) | Dried inflorescences | CBD, CBN, Δ9-THC | chlorobenzene-d5 | Two MXT Y unions Nonpolar Rxi-5MS (0.25 µm × 25 m × 25 mm) Midpolar Rxi-17Sil MS (0.25 µm × 5 m × 0.25 mm) | Helium 0.4 mL/min 7 mL/min | To: 50–330 Ti: 20–300 Ts: 230 | MeOH Acetone Water | no | n.m. Quantitative (LOD: 0.02–0.15 µg/mL LOQ: 0.05–0.51 µg/mL) |
Two-dimensional GC-TOF-MS (high resolution) Franchina F. [44] | Helium 1 mL/min | To: 50–330 Ti: 20–300 Ts: 250 | no | ||||||
GC-FID Bakro F. [45] | No dried ground leaves and inflorescences | CBD | n-tridecane | RTX-5 0.1 µm × 10 m × 0.1 mm) | Helium 46 cm/s | To: 60–310 Ti: 310 TFID: 340 | EtOH | no | 16 min Quantitative (LOD: 0.16 µg/mL LOQ: 0.55 µg/mL) |
GC-FID Baranauskaite J. [46] | Dried and ground inflorescences | CBD, CBG | / | Rxi-5MS (0.25 µm × 30 m × 0.25 mm) | Helium 1 mL/min | To: 80–310 Ti: 290 TFID: 330 | EtOH | no | 30 min Quantitative (LOD: 0.21–0.25 µg/mL LOQ: 0.66–0.75 µg/mL) |
GC-MS Fernandez N. [47,48] | Oils | CBC, CBDA, CBD, CBG, CBN, THCA, Δ9-THC | Δ9-THC-d3 | HP-5MS (0.25 µm, 30 m × 0.25 mm) | Helium 1 mL/min | To: 60–300 Ti: 280 Ts: 280 EI ionization | Diethyl ether | MSTFA | 26 min Screening Quantitative (n.m.) LOQ: 0.04–0.1 µg/mL) |
GC-FID Duchateau C. [55] | Dry flowers crushed by hand | CBN, Δ9-THC | methylarachidate | DB-5ms (0.25 µm × 30 m × 0.25 mm) | Helium 1.5 mL/min | To: 270–310 Ti: 225 TFID: 300 | DCM | no | (n.m.) Quantitative (n.m.) |
GC-MS ElSohly M. [49] | Oils | CBD(A), Δ9-THC(A) | CBD-d3, Δ9-THC-d3 | D-1 (0.4 µm, 10 m × 0.18 mm) | Helium 0.4 mL/min | To: 180–280 Ti: 250 Ts: - | n-Hexane | MSTFA | 13 min Quantitative (LOD: 1 µg/mL LOQ: 2.5 µg/mL) |
GC-TOF/MS Delgado-Povedano M.M. [51] | Dried and ground leaves and inflorescences | CBC, CBD, CBDVA, CBDV, CBG, CBL, CBN, THCA, Δ8-THC Δ9-THC, THCV | no | DB-5MS-UI (0.25 µm, 30 m × 0.25 mm) | Helium 1 mL/min | To: 50–310 Ti: 250 Ts: 305 EI ionization | n-Hexane | BSTFA TMCS Pyridine | 37 min Screening (n.m.) |
2019 | |||||||||
GC-MS Burnier C. [52] | Cannabis plant (flowers and leaves) | CBD, CBN, Δ9-THC | tribenzylamine | HP-5MS (0.25 µm, 30 m × 0.25 mm) | Helium 1 mL/min | To: 50–260 Ti: 280 Ts: 230 | MeOH EtOH | no | 15 min Quantitative (LOD: 4.54 µg/mL LOQ: 15.13 µg/mL) |
2018 | |||||||||
GC-MS Cardenia V. [53] | Dried flowers and leaves | CBC, CBD, CBDA, CBG, CBGA, CBN, THCV, Δ8-THC, Δ9-THC, THCA | 5α-cholestane | Restek RTX 5 (0.1 µm,10m × 0.1 mm) | Helium n.m. | To: 180–250 Ti: 300 Ts: 200 EI ionization | MeOH :CHCl3 | Methylation: diazomethane Silylation: pyridine, MSTFA-TMCS, n-hexane | 10 min Quantitative (LOD: 2.16–58.86 ng/mL LOQ: 7.18–169.29 ng/mL) |
GC-MS Fodor B. [54] | Dried and ground inflorescences | CBC, CBD, CBG, CBN, Δ9-THC, 11-OH-THC, THCA-A | no | HP-5MS capillary column (0.25 µm × 30 m × 0.25 mm) | Helium 1 mL/min | To: 100–300 Ti: 300 Ts: 210 | MeOH | BSTFA TMCS Pyridine MTBSTFA TBDMCS TMCS | 20 min Quantitative (LOQ: 20–80 pg/µL) |
3.2. Liquid Chromatography (LC)
Analytical Technique 1st Author [Reference] | Matrix (Sample State) | Cannabinoids | Internal Standard | Analysis Time Quantitative (LOQ)/Screening (LOD) | Solvent Extraction (Recovery After Extraction) | Mobile Phase | Column (Particle Size, Length × Inner Diameter) Temperature (T°) in °C |
---|---|---|---|---|---|---|---|
2024 | |||||||
UHPLC-UV (DAD) (228 and 306 nm) Spadafora N. [34] | Dried inflorescences | CBDV, CBD, CBDA, CBC, CBG, CBGA, Δ9-THC, Δ9-THCA | no | n.m. Quantification (n.m.) | MeOH | Water + Orthophosphoric acid (pH 2.2) ACN (gradient) | Raptor ARC-18 column (2.7 µm, 150 mm × 2.1 mm) T°: 25 |
2D-HPLC-DAD (200 nm) Caruso S.J. [65] | Dried inflorescences | CBGA, CBG, CBDA, CBD, CBC, THCV, CBN, Δ8-THC, Δ9-THC, THCA-A | no | 75 min Screening (n.m.) | can | D1: Water + formic acid 0.05% MeOH + formic acid 0.05% (gradient) D2: Water + formic acid 0.05% ACN + formic acid 0.05% (gradient) | Zorbax SB-CN (5 µm, 250 mm × 4.6 mm) and Poroshell 120-SB C18 (2.7 µm, 50 mm × 2.1 mm) T° D1: 35 T° D2: 75 |
UHPLC-DAD (270 nm) Mastellone G. [100] | Died ground inflorescences and oils | CBD, CBDA | no | 56 min Quantification (LOD: 0.03–1 µg/mL LOQ: 0.1–4 µg/mL) | Eutectic solvents: [Ch+] [Br-] + thymol | Water + formic acid 0.1% ACN + formic acid 0.1% (gradient) | Ascentis Express C18 (2.7 µm, 150 mm × 2.1 mm) T°: 30 |
UHPLC-Q-ToF-MS Woźniczka K. [92] | Fresh plant material | Δ9-THCA, CBDA, CBGA, CBVA, THCVA | Phemprocoumon | 6 min Quantification (n.m.) | MeOH/isopriopanol 50/50 v/v | ACN + 0.1% formic acid (gradient) | Poroshell 120 PFP (2.7 µm, 100 mm × 2.1 mm) T°: 33 |
UHPLC-QTrap-MS Wishart D.S. [93] | Dried ground inflorescences | CBDV, CBDVA, THC-COOH, CBLA, CBCA, CBNA, CBDA, THCV, CBGA, CBD, CBN, CBC, CBG, CBL, Δ9-THC, THCA | Tridecane | 9.5 min Quantification (LOD: 0.001–0.00426 ng/mL LOQ: 0.00333–0.0142 ng/mL) | Hexane/MeOH 3/1 v/v | 0.2% formic acid 0.2% formic acid + ACN (gradient) | Zorbax Eclipse XDB C18 column (3.5 µm, 100 mm × 3.0 mm) T°: 50 |
HPLC-APCI-MS/MS Raeber J. [88] | Dried ground flowers | CBDV, CBG, CBD, CBDA, CBN, Δ9-THC, THCA (+ terpenes) | no | 28 min Quantification (n.m.) | EtOH | 2 mM ammonium acetate + 0.1% formic acid 2 mM ammonium acetate + 0.1% formic acid/methanol (5/95) (gradient) | Symmetry C18 (3.5 µm, 100 mm × 4.6 mm) + guard column T°: 45 |
UHPLC-MS/MS Cai Y. [71] | Ground flowers and leaves | CBC, CBDV, CBD(A), CBG(A), CBL, CBN, THCV, Δ8-THC, Δ9-THC, THCA-A | CBD-d3 | 11 min Quantification | MeOH | Water + 0.1% formic acid ACN (gradient) | Acquity BEH-C18 (1.7 µm, 2.1 mm × 50 mm) T°: 30 |
UHPLC-MS/MS Lindekamp N. [91] | Oils | CBC(A), CBD(A), CBDV(A), CBG(A), CBL(A), CBN(A), Δ9-THC(A) | CBD-d3, CBN-d3, Δ9-THC-d3, THCA-d3 | 18 min Quantification (LOD: 0.02–4.32 ng/mL LOQ: 0.07–14.38 ng/mL) | Acetone | Water + 0.1% form acid ACN + 0.1% formic acid (gradient) | Acquity UPLC BEH C18 (1.7 µm, 150 mm × 2.1 mm) T°: 30 |
LC-DAD Song L. [74] | Ground flowers | CBC(A), CBD(A), CBDV(A), CBG(A), CBN(A), Δ8-THC, Δ9-THC, THCA, THCV(A), CBL(A), CBT | Abnormal-CBD, cannabichromerorcin | 32 min Quantification (LOQ: 0.04 µg/mL) | MeOH | Water + 0.1% formic acid + ammonium formate 0.5 mM (pH3) MeOH + ACN (isocratic) | Restek Raptor ARC-18 (2.7 µm, 150 mm × 2.1 mm) + guard column T°: 30 |
LC-DAD Wilson W.B. [75] | Dried ground plant (and other matrices, e.g., hemp seed oil) | CBC(A), CBDV(A), CBD(A), CBG(A), CBL(A), CBN(A), THCV(A), Δ9-THC, Δ8-THC, 9S-Δ10-THC, 9R-Δ10-THC, exo-THC | no | 8 min Quantification | MeOH | ACN Water (gradient) | NexLeaf CBX for Potency C18 column (2.7 µm, 150 mm × 4.6 mm) T°: 40 |
2023 | |||||||
UHPLC-Qtrap-MS Kanabus J. [83] | Fresh and dried ground inflorescences | CBDV, CBDVA, THC-COOH, CBLA, CBCA, CBNA, CBDA, THCV, CBGA, CBD, CBN, CBC, CBG, CBL, Δ8-THC, Δ9-THC, Δ9-THCV, Δ9-THCVA, THCA | no | 10 min Quantification (LOD: 0.00003–0.005 µg/mL LOQ: 0.0001–0.02 µg/mL) | MeOH (>90%) | 0.02% formic acid in ACN/5 mM Ammonium formate (gradient) | C18-Cortecs (1.6 µm, 100 mm × 2.1 mm) T°: 20 |
HPLC-DAD-ToF-MS Judžentienė A. [40] | Dried ground inflorescences, leaves, seeds, and roots | CBD, CBDA, CBN | no | 34 min Quantification (n.m.) | Pentane | ACN + 0.1% formic acid (gradient) | Zorbax Eclipse XDB (5 µm, 150 mm × 4.6 mm) T°: 35 |
HPLC-DAD Correia B. [70] | Dried ground flowers and oils | CBD(A), CBN, Δ8-THC, Δ9-THC, THCA | Phemprocoumon | 30 min Quantification (LOD: 0.125–0.250 µg/mL LOQ: 0.5 µg/mL) | ACN | ACN Water + 0.1% formic acid (pH 2.8) | Kinetex C18 (2.6 µm, 150 mm × 2.1 mm) + guard column T°: 20 |
HPLC-MS Duzan B. [67] | Oils | CBC, CBG(A), CBD(A), CBDV, CBN, Δ8-THC, Δ9-THC, THCA | no | 13 min Quantification (LOD: 5–25 ng/mL LOQ: 10–50 ng/mL) | ACN (86–110.88%) | Water + 0.1% formic acid ACN + formic acid 0.1% (isocratic) | Acquity UPLC BEH C18 (1.7 µm, 100 mm × 2.1 mm) + guard column T°: 45 |
UHPLC-MS/MS Fabresse N. [95] | Flowers | CBD, CBN, Δ9-THC | CBD-d3, CBN-d3, Δ9-THC-d3 | <6 min Quantification | Heptane:ethyl acetate (7:1) | Water+ formic acid 0.1% ACN + formic acid 0.1% (gradient) | Luna Omega Polar C18 (1.6 µm, 50 mm × 2.1 mm) T°: 40 |
2022 | |||||||
HPLC-TOF/MS Hewavitharana A.K. [84] | Dried ground inflorescences | CBDA, CBD, CBDV, CBGA, CBG, CBN, THCA, Δ9-THC, THCVA, THCVA | Ibuprofen | 40 min Quantification (LOD: 1.18–9.11 µg/g) LOQ: 3.93–25.3 µg/g) | EtOH | Water + MeOH + formic acid 0.1% ACN + formic acid 0.1% (gradient) | Poroshell C18 (2.7 µm, 150 mm × 2.1 mm) T°: 30 |
HPLC-MS/MS Hall D.R. [76] | Dried sieved inflorescences | CBCA, CBC, CBDA, CBD, CBDVA, CBDV, CBGA, CBG, CBL, CBNA, CBN, Δ8-THC, THCA, Δ9-THC, THCVA, THCV | no | 8 min Quantification (LOD: 20–78 µg/g LOQ: 60–238 µg/g) | MeOH | Water + formic acid 0.1% ACN + formic acid 0.1% (gradient) | Luna Omega C18 (1.6 µm, 150 × 2.1 mm) T°: 40 |
UHPLC-MS/MS McRae G. [96] | Dried ground flowers | CBC(A), CBD(A), CBDV(A), CBG(A), CBL(A), CBN(A), Δ8-THC, Δ9-THC, THCA, THCV(A) | CBD-d3, CBN-d3 Δ9-THC-d3 | 21 min Quantification (LOQ: 10ng/mL) | MeOH:water (8:2) (>98.75%) | Water + formic acid 0.1% ACN + formic acid 0.1% (gradient) | Ace-3 C18-Amide (3 µm, 100 mm × 2.1 mm) + guard column T°: 40 |
UHPLC-DAD Song L. [77] | Hemp concentrate | CBC(A), CBDV(A), CBD(A), CBG(A), CBL(A), CBN, CBT, THCV(A), THCA, Δ8-THC, Δ9-THC | no | 15 min Quantification (LOQ: 0.02 µg/mL) | MeOH | Water (pH 3.6) + formic acid 0.1% ACN (isocratic) | Luna Omega Polar C18 (1.6 µm, 150 mm × 2.1 mm) T°: 30 |
UHPLC-DAD (228 nm) Duchateau C. [78] | Dried and sieved aerial parts | CBD(A), CBN, Δ9-THC, THCA | no | 11 min Quantification (LOD: 0.01–0.03% w/w LOQ: 0.03–0.2% w/w) | MeOH | Water + formic acid 0.1% ACN (isocratic) | CORTECS Shield RP18 (1.6 µm, 100 mm × 2.1 mm) T°: 35 |
DART-MS | Oils | CBD | CBD-d3 | n.m Quantification (n.m.) | MeOH | / | / |
LC-MS Huber S. [79] | n.m. Quantication (LOD: 0.657 mg/L LOQ: 1.63 mg/L) | Water + formic acid 0.1% ACN (gradient) | XSelect CSH C18 (2.5 µm, 150 mm × 4.6 mm) T°: 60 | ||||
LC-MS/MS Johnson E. [68] | Oils | Δ9-THC | Δ9-THC-d9 | 14.25 min Quantification (n.m.) | ACN (>96%) | Water + formic acid 0.1% ACN (gradient) | Kinetex C8 (2.6 µm, 100 mm × 2.1 mm) |
HPLC-MS/MS Plamieri S. [80] | Dried ground inflorescences | CBC(A), CBD(A), CBG(A), CBN, Δ9-THC, THCA, THCV | no | 8 min Quantification (10 cannabinoids) Screening (26 cannabinoids) (n.m.) | MeOH | Water + 5 mM formic acid ACN + 5 mM formic acid (gradient) | Kinetex C18-XB (2.6 µm, 100 µm × 2.1 mm) T°: 35 |
LC-MS/MS Tran J. [81] | Dried ground inflorescences | CBC(A), CBD(A), CBDV(A), CBG(A), CBL, CBN(A), THCV(A), THCA-A, Δ8-THC, Δ9-THC | no | 8 min Quantification (LOD: 0.1 µg/mL LOQ: 0 08–0.71 µg/mL) | MeOH (73–126%) | Water + formic acid 0.1% ACN + formic acid 0.1% (gradient) | Luna Omega C18 (1.6 µm, 150 mm × 2.1 mm) T°: 40 |
LC-DAD Wilson W.B. [82] | Oils | CBC, CBD(A), CBDV(A), CBG(A), CBN, THCA, Δ8-THC, Δ9-THC | no | 10 min Quantification (n.m.) | MeOH | ACN Water (isocratic) | ACE 5 C18-AR (5 µm, 250 mm × 0.5 mm) |
2021 | |||||||
HPLC-MS/MS Bueno J. [89] | Dried and ground inflorescences | CBD, Δ9-THC, tetrahydrocannabiphorol | Δ9-THC-d3 | n.m. Quantification (LOD: 0.0008% w/w) | MeOH:chloroform 9:1 EtOH | Water + 5 mM ammonium formate MeOH (gradient) | Restek Raptor ARC C18 (2.7 µm, 150 mm × 2.1 mm) T°: 45 |
HPLC-UV (220 nm) Chen X. [72] | Dried and ground inflorescences | CBC, CBD(A), CBDV, CBG(A), CBN, THCA, Δ9-THC, Δ8-THC, THCV | no | 17 min Quantification (LOD: 0.01–0.11 µg/mL LOQ: 0.04–0.36 µg/mL) | MeOH | Water + 0.085% phosphoric acid 0.085 MeOH + 0.085% phosphoric acid (gradient) | NexLeaf CBX Potency C18 (2.7 µm, 150 mm × 4.6 mm) + guard column T°: 50 |
HPLC-DAD (220 and 240 nm) Madej K. [66] | Oils | CBD(A), CBN, Δ9-THC | no | 12.5 min Quantification (LOD: 0.17–1.94 µg/mL LOQ: 0.78–5.03 µg/mL) | ACN (69.5–109.5%) | Water + acetic acid 0.5% ACN (gradient) | Spheri-5 C18 (5 µm, 250 mm × 4.6 mm) T°: 25 |
LC-MS/MS Merone G.M. [90] | Oils | CBD(A), CBN, CBG, THCA, THCV, Δ9-THC | CBD-D3, CBN-D3, Δ9-THC-D3 | 15 min Quantification (LOD: 0.01–01 mg/mL LOQ: 0.05–0.1 mg/mL) | Isopropanol | Water + formic acid 0.2% + ammonium formate 2 mL MeOH + formic acid 0.2% + ammonium formate 2 mL (gradient) | Hypersil Gold PFP (1.9 µm, 50 mm × 2.1 mm) n.m. |
HPLC-UV (232 nm) Stempfer M. [94] | Oils, dried ground iInflorescences | CBC, CBDA, CBD, CBDV, CBGA, CBG, CBN, Δ8-THC, Δ9-THCA, Δ9-THC | Fencamfamine | 30 min Quantification (LOQ (inflorescences): 10–3000 µg/kg) | MeOH:water 1:1 | Water + Ammonium formate 20 mM + formic acid 0.1% ACN MeOH + 10 mM ammonium formate + 0.05% formic acid (gradient) | Luna C18 (5 µm, 150 × 4.6 mm) + guard column T°: 40 |
nanoLC-UV nanoLC-MS Žampachová L. [87] | Ground inflorescences | CBD(A), CBG(A), CBC, Δ9-THC, THCA | no | 12 min Quantification (LC-UV LOD: 0.125–1.0 µg/mL LOQ: 0.5–2 µg/mL LC-MS: LOD: 0.020–0.125 µg/mL LOQ: 0.055–0.175 µg/mL) | EtOH (80–95%) | ACN + water + formic acid 1% (isocratic) | ChromSpher C18 (3 µm, 150 mm × 0.1 mm) n.m. |
2020 | |||||||
HPLC-UV-MS/MS (235 nm) Nemeškalová A. [97] | Oils, Ground plant material (and other matrices) | CBDA, CBD, CBDV, CBGA, CBG, CBN, THCA, Δ8-THC, Δ9-THC | CBN-d3, Δ9-THC-d3 | 7.8 min Quantification (oils: LOD: 0.2–1.0 µg/g LOQ: 1–4 µg/g plant material: LOD: 1–5 µg/g LOQ: 5–20 µg/g) | Ethyl acetate:isopropanol 1:1 | Ammonium acetate 10 mM in 5% aqueous MeOH + formic acid 0.1% MeOH + ACN (gradient) | Poroshell 120 EC-C18 (2.7 µm, 100 mm × 2.1 mm) + guard column T°: 35 |
UHPLC-MS/MS Berthold E.C. [98] | Dried, ground flowers (only), composite sample (leaves, flowers, and stems) | CBC, CBL, CBD(A), CBDV, CBG(A), CBN, THCA, Δ8-THC, Δ9-THC, THCV | Δ9-THC-d3, 11-nor-9-carboxy Δ9-THC-d9 | 6 min Quantification (LOD: 1 ng/mL LOQ: ≤ 0.05% w/w) | MeOH:water 9.5:5 | Water + formic acid 0.1% MeOH:CAN (gradient) | UPLC BEH C18 (1.7 µm, 100mm × 2.1 mm) T°: 40 |
2019 | |||||||
HPLC-DAD (211 and 220 nm) Burnier C. [52] | Dried ground leaves, flowers | CBN, CBD, THCA, Δ9-THC | Tribenzylamine | 19.2 min Quantification (LOD: 4.54 µg/mL LOQ: 15.13 µg/mL) | EtOH | Phosphoric acid 50 mM Water + ACN ACN + formic acid 0.1% (isocratic) | Nucleodur C18 gravity (5 µm, 250 mm × 4.6 mm) T°: 35 |
UHPLC-HRMS/MS Citti C. [85] | Oil | CBG(A), THCA, CBD(A), CBN, CBD, Δ9-THC, Δ8-THC(And other cannabinoids) | CBD-d3, Δ9-THC-d3 | 65 min Quantification (screening) (n.m.) | EtOH | Water + formic acid 0.1% ACN + formic acid 0.1% (gradient) | Poroshell 120 EC-C18 (2.7 µm, 100 mm × 3 mm) T°: 25 |
HPLC-UV (220 nm) Mandrioli M. [69] | Dried ground inflorescences | CBD(A), CBG(A), CBC, THCV, Δ9-THC, Δ8-THC, THCA | no | 20 min Quantification (LOD: 0.11–0.17 µg/mL) LOQ: 0.88–3.79 µg/mL- | ACN | Water + 0.085% phosphoric acid ACN + 0.085% phosphoric acid | Nex-Leaf CBX/Potency (2.7 µm, 150 mm × 4.6 mm) + guard column T°: 35 |
2018 | |||||||
HPLC-UV Carcieri C. [99] | Oil | CBD(A), CBN, Δ9-THC | CBD-d3, Δ9-THC-d3 | 3.5 min Quantification (LOQ: 5 ng/mL) | Isopropanol | ACN:water + formic acid 0.1% Isopropanol:ACN + formic acid 0.1% (gradient) | Acquity UPLC HSS T3 (1.8 µm, 30 mm × 2.1 mm) T°: 30 |
HPLC-UV Citti C. [86] | Oil | CBD(A), CBN, CBG, CBDV, THCA, Δ9-THC | / | 15 min Quantification (LOD: 0.2 µg/mL LOQ: 1 µg/mL) | EtOH | Water + formic acid 0.1% ACN + formic acid 0.1% (isocratic) | Poroshell 120 EC-C18 (2.7 µm, 100mm × 3 mm) n.m. |
3.3. Supercritical Fluid Chromatography (SFC)
3.4. Spectroscopy
3.4.1. MIRS and NIRS
3.4.2. Raman Spectroscopy
Spectroscopic Technique (Reference Method) 1st Author [Reference] | Matrix | Cannabinoids | Instrumentation Spectrometer Type | Laser source Resolution Acquisition Time Laser Power | Chemometric Model or Spectral Analysis (Spectral Range) (Preprocessing) |
---|---|---|---|---|---|
2024 | |||||
Raman Grijalva J. [131] | Standards | CBD(A), CBC, CBG, CBN, Δ9-THC, THCA, | Raman microscope | 785 nm n.m. 10 s 100 mW | Linear DA DFT (400–2200 cm−1) |
2023 | |||||
Raman Wolfe T.J. [132] | Dried ground buds (different cultivars of cannabis) to isolate phytocannabinoids | CBC, CBD, CBG(A), CBN, Δ9-THC | Raman equipped with camera | 532 nm n.m. 2 s | DFT (200–4000 cm−1) / |
2022 | |||||
Raman (GC-FID) Porcu S. [130] | Not dried, not ground inflorescences | CBD, Δ9-THC | Raman spectrometer and stereomicroscope equipped with camera | 1064 nm / | PCA Discrimination (655–1800 cm−1) / |
Raman-SERS Botta R. [135] | Standards | CBN, Δ9-THC | Raman microscope | 785 nm / 10 s 20 mW | / (620–1720 cm−1) / |
2020 | |||||
Raman Sánchez L. [137] | Dried flowers | / | Hand-held | 831 nm 15 cm−1 10 s 495 mW | SIMCA Orthogonal PLS-DA Discrimination (701–1700 cm−1) SNV, 1st derivative |
Raman-SERS Islam S. [134] | Standard | CBD, CBN, Δ9-THC | Raman microscope | 633 nm 0.02–05 cm−1 10 s 10 mW | / |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, B.F.; ElSohly, M.A. The Botany of Cannabis sativa L. In The Analytical Chemistry of Cannabis; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–26. [Google Scholar] [CrossRef]
- Strzelczyk, M.; Lochynska, M.; Chudy, M. Systematics and Botanical Characteristics of Industrial Hemp Cannabis sativa L. J. Nat. Fibers 2022, 19, 5804–5826. [Google Scholar] [CrossRef]
- Crocq, M.-A. History of cannabis and the endocannabinoid system. Dialogues Clin. Neurosci. 2020, 22, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, L.O.; Hod, Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med. Cannabis Cannabinoids 2020, 3, 25–60. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Kinghorn, A.D.; Falk, H.; Gibbons, S.; Kobayashi, J. Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Tahir, M.N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J.F. The biosynthesis of the cannabinoids. J. Cannabis Res. 2021, 3, 25–60. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.; Roggen, M. Chapter 3: Cannabinoid chemistry of Cannabis. In Recent Advances in the Science of Cannabis; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- European Commission. Agricultural and Rural Development. Hemp. Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/hemp_en (accessed on 24 April 2024).
- European Commision. Plant Variety Catalogues, Databases & Information Systems. Available online: https://food.ec.europa.eu/plants/plant-reproductive-material/plant-variety-catalogues-databases-information-systems_en (accessed on 24 April 2024).
- Office Fédéral de la Société Publique de la Confédération Suisse. Culture du Cannabis à des Fins Scientifiques. Available online: https://www.bag.admin.ch/bag/fr/home/gesetze-und-bewilligungen/gesuche-bewilligungen/ausnahmebewilligungen-bewilligungen-betmg/ausnahmebewilligungen-verbotene-betaeubungsmittel/ausnahmebewilligungen-anbau-hanf.html (accessed on 24 April 2024).
- European Union. Eur-Lex. Regulation (EU) 2021/2115 of the European Parliament and the Council of 2 December 2021 Establishing Rules on Support for Strategic Plans to be Drawn up by Member States Under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the Europe. Available online: https://eur-lex.europa.eu/eli/reg/2021/2115/oj (accessed on 24 April 2024).
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2022: Trends and Developments. Available online: https://data.europa.eu/doi/10.2810/75644 (accessed on 29 May 2024).
- United Nations. Chapter VI: Narcotic Drugs and Psychotropic Substances. In Single Convention of Narcotic Drugs; United Nations: New York, NY, USA, 1961; Volume 1. [Google Scholar]
- United Nations. Convention on Psychotropic Substances; United Nations: Vienna, Austria, 1971. [Google Scholar]
- United Nations. Convention Against Illicit Trafficking in Narcotic Drugs and Psychotropic Substances; United Nations: Vienna, Austria, 1988. [Google Scholar]
- Laqueur, H.; Rivera-Aguirre, A.; Shev, A.; Castillo-Carniglia, A.; Rudolph, K.E.; Ramirez, J.; Martins, S.S.; Cerdá, M. The impact of cannabis legalization in Uruguay on adolescent cannabis use. Int. J. Drug Policy 2020, 80, 102748. [Google Scholar] [CrossRef] [PubMed]
- Government of Canada. Cannabis Legalization and Regulation. Available online: https://www.justice.gc.ca/fra/jp-cj/cannabis/ (accessed on 17 August 2022).
- European Monitoring Centre for Drugs and Drug Addiction. Usage Médical du Cannabis et des Cannabinoïdes: Questions et Réponses à l’Intention des Décideurs Politiques. Available online: https://data.europa.eu/doi/10.2810/25727 (accessed on 29 May 2024).
- Bajtel, Á.; Kiss, T.; Tóth, B.; Kiss, S.; Hegyi, P.; Vörhendi, N.; Csupor-Löffler, B.; Gede, N.; Hohmann, J.; Csupor, D. Safety of Dronabinol and Nabilone: A Systematic Review and Meta-Analysis of Clinical Trials. Pharmaceuticals 2022, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Federal Agency for Medicines and Health Products. Notice Information du Patient. Sativex, Solution pour Pulvérisation Buccale. Available online: https://app.fagg-afmps.be/pharma-status/api/files/62bc5e411e5c015ab3cb5e8e (accessed on 15 December 2024).
- European Medicines Agency. Epidyolex. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/epidyolex (accessed on 17 August 2022).
- Duchateau, C. Development of Analytical Methods to Study Cannabis and Derived Products. Ph.D. Thesis, ULB, Brussels, Belgium, 2023. [Google Scholar]
- Citti, C.; Braghiroli, D.; Vandelli, M.A.; Cannazza, G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018, 147, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Borille, B.T.; González, M.; Steffens, L.; Ortiz, R.S.; Limberger, R.P. Cannabis sativa: A systematic review of plant analysis. Drug Anal. Res. 2017, 1, 1–23. [Google Scholar] [CrossRef]
- AOAC. Cannabis Analytical Science Program. Available online: https://www.aoac.org/scientific-solutions/casp/ (accessed on 4 August 2023).
- Deidda, R.; Sacre, P.-Y.; Clavaud, M.; Coïc, L.; Avohou, H.; Hubert, P.; Ziemons, E. Vibrational spectroscopy in analysis of pharmaceuticals: Critical review of innovative portable and handheld NIR and Raman spectrophotometers. TrAC Trends Anal. Chem. 2019, 114, 251–259. [Google Scholar] [CrossRef]
- De Araujo, W.R.; Cardoso, T.M.G.; da Rocha, R.G.; Santana, M.H.P.; Muñoz, R.A.A.; Richter, E.M.; Paixão, T.R.L.C.; Coltro, W.K.T. Portable analytical platforms for forensic chemistry: A review. Anal. Chim. Acta 2018, 1034, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Deidda, R.; Dispas, A.; De Bleye, C.; Hubert, P.; Ziemons, É. Critical review on recent trends in cannabinoid determination on cannabis herbal samples: From chromatographic to vibrational spectroscopic techniques. Anal. Chim. Acta 2022, 1209, 339184. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jocelyn Paré, J.R. Chapter 3 Gas chromatography (GC): Principles and applications. In Techniques and Instrumentation in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 1997; pp. 61–91. [Google Scholar] [CrossRef]
- Arsenault, T.L.; Prapayotin-Riveros, K.; Ammirata, M.A.; White, J.C.; Dimkpa, C.O. Compliance Testing of Hemp (Cannabis sativa L.) Cultivars for Total Delta-9 THC and Total CBD Using Gas Chromatography with Flame Ionization Detection. Plants 2024, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.; Simpson, T.; Spelman, K. Total cannabidiol (CBD) concentrations and yields from traditional extraction methods: Percolation vs. maceration. Front. Pharmacol. 2022, 13, 886993. [Google Scholar] [CrossRef]
- Ahmed, A.Q.; Noshad, D.; Li, P.C.H. Quantification of Cannabinoids in Cultivars of Cannabis sp. by Gas Chromatography–Mass Spectrometry. Chromatographia 2021, 84, 711–717. [Google Scholar] [CrossRef]
- Spadafora, N.D.; Felletti, S.; Chenet, T.; Sirangelo, T.M.; Cescon, M.; Catani, M.; De Luca, C.; Stevanin, C.; Cavazzini, A.; Pasti, L. The influence of drying and storage conditions on the volatilome and cannabinoid content of Cannabis sativa L. inflorescences. Anal. Bioanal. Chem. 2024, 416, 3797–3809. [Google Scholar] [CrossRef] [PubMed]
- Slosse, A.; Van Durme, F.; Samyn, N.; Mangelings, D.; Heyden, Y.V. Evaluation of data preprocessings for the comparison of GC-MS chemical profiles of seized cannabis samples. Forensic Sci. Int. 2020, 310, 110228. [Google Scholar] [CrossRef] [PubMed]
- Micalizzi, G.; Cucinotta, L.; Chiaia, V. Profiling of seized Cannabis sativa L. flowering tops by means of microwave-assisted hydro distillation and gas chromatography analyses. J. Chromatogr. A 2024, 1727, 464994. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.M.; Ahsan, S.M.; Kwon, D.B.; Jung, H.; Choi, J.D.; Lee, M.S.; Cho, K.-H.; In, B.-C.; Choi, H.W. Quantitative Analysis of Cannabidiol and Δ9-Tetrahydrocannabinol Contents in Different Tissues of Four Cannabis Cultivars using Gas Chromatography-Mass Spectrometry. J. Hortic. Sci. Technol. 2023, 41, 339–348. [Google Scholar] [CrossRef]
- Motiejauskaitė, D.; Ullah, S.; Kundrotaitė, A.; Žvirdauskienė, R.; Bakšinskaitė, A.; Barčauskaitė, K. Isolation of Biologically Active Compounds from Cannabis sativa L. Inflorescences by Using Different Extraction Solvents and Evaluation of Antimicrobial Activity. Antioxidants 2023, 12, 998. [Google Scholar] [CrossRef] [PubMed]
- Ronald, H.; Patil, K.; Pandey, A. Detection of Cannabis sativa by various Analytical Techniques. Res. J. Pharm. Technol. 2023, 16, 2917–2920. [Google Scholar] [CrossRef]
- Judžentienė, A.; Garjonytė, R.; Būdienė, J. Phytochemical Composition and Antioxidant Activity of Various Extracts of Fibre Hemp (Cannabis sativa L.) Cultivated in Lithuania. Molecules 2023, 28, 4928. [Google Scholar] [CrossRef] [PubMed]
- De Prato, L.; Timmins, M.; Ansari, O.; Ruthrof, K.X.; Hardy, G.E.S.J.; Howieson, J.; O’hara, G. Semi-quantitative analysis of cannabinoids in hemp (Cannabis sativa L.) using gas chromatography coupled to mass spectrometry. J. Cannabis Res. 2022, 4, 51. [Google Scholar] [CrossRef] [PubMed]
- Gul, W.; Ibrahim, E.A.; Gul, S.W.; Shahzadi, I.; Radwan, M.M.; Chandra, S.; Lata, H.; ElSohly, M.A. Development and Validation of a GC-FID Method for the Quantitation of 20 Different Acidic and Neutral Cannabinoids. Planta Med. 2023, 89, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, C.; Canfyn, M.; Desmedt, B.; Kauffmann, J.-M.; Stévigny, C.; De Braekeleer, K.; Deconinck, E. CBD oils on the Belgian market: A validated MRM GC-MS/MS method for routine quality control using QuEChERS sample clean up. J. Pharm. Biomed. Anal. 2021, 205, 114344. [Google Scholar] [CrossRef]
- Franchina, F.A.; Dubois, L.M.; Focant, J.-F. In-Depth Cannabis Multiclass Metabolite Profiling Using Sorptive Extraction and Multidimensional Gas Chromatography with Low- and High-Resolution Mass Spectrometry. Anal. Chem. 2020, 92, 10512–10520. [Google Scholar] [CrossRef]
- Bakro, F.; Jedryczka, M.; Wielgusz, K.; Sgorbini, B.; Inchingolo, R.; Cardenia, V. Simultaneous determination of terpenes and cannabidiol in hemp (Cannabis sativa L.) by fast gas chromatography with flame ionization detection. J. Sep. Sci. 2020, 43, 2817–2826. [Google Scholar] [CrossRef]
- Baranauskaite, J.; Marksa, M.; Ivanauskas, L.; Vitkevicius, K.; Liaudanskas, M.; Skyrius, V.; Baranauskas, A. Development of extraction technique and GC/FID method for the analysis of cannabinoids in Cannabis sativa L. spp. santicha (hemp). Phytochem. Anal. 2020, 31, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Fernández, N.; Carreras, L.J.; Larcher, R.A.; Ridolfi, A.S.; Quiroga, P.N. Quantification of Cannabinoids in Cannabis Oil Using GC/MS: Method Development, Validation, and Application to Commercially Available Preparations in Argentina. Planta Medica Int. Open 2020, 7, e81–e87. [Google Scholar] [CrossRef]
- Fernández, N.; Cappello, M.G.; Quiroga, P.N. An assessment of qualitative and quantitative cannabinoids analysis in selected commercially available cannabis oils in Argentina. Forensic Sci. Int. 2023, 349, 111762. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Murphy, T.P.; Khan, I.; Walker, L.W.; Gul, W. Analysis of Cannabidiol, Δ9-Tetrahydrocannabinol, and Their Acids in CBD Oil/Hemp Oil Products, Med Cannabis. Cannabinoids 2020, 3, 1–13. [Google Scholar] [CrossRef]
- Zekič, J.; Križman, M. Development of Gas-Chromatographic Method for Simultaneous Determination of Cannabinoids and Terpenes in Hemp. Molecules 2020, 25, 5872. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Povedano, M.M.; Sánchez-Carnerero Callado, C.; Priego-Capote, F. Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode. Talanta 2020, 208, 120384. [Google Scholar] [CrossRef]
- Burnier, C.; Esseiva, P.; Roussel, C. Quantification of THC in Cannabis plants by fast-HPLC-DAD: A promising method for routine analyses. Talanta 2019, 192, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Cardenia, V.; Toschi, T.G.; Scappini, S.; Rubino, R.C.; Rodriguez-Estrada, M.T. Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J. Food Drug Anal. 2018, 26, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Fodor, B.; Boldizsár, I.; Molnár-Perl, I. Alkylsilyl speciation and direct sample preparation of plant cannabinoids prior to their analysis by GC-MS. Anal. Chim. Acta 2018, 1021, 51–59. [Google Scholar] [CrossRef]
- Duchateau, C.; Kauffmann, J.-M.; Canfyn, M.; Stévigny, C.; De Braekeleer, K.; Deconinck, E. Discrimination of legal and illegal Cannabis spp. according to European legislation using near infrared spectroscopy and chemometrics. Drug Test. Anal. 2020, 12, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.V.; Christensen, A.; Morgan, D.; Basso, K.B. Gas chromatography/electron ionization mass spectrometry (GC/EI-MS) for the characterization of phytocannabinoids in Cannabis sativa. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 235–274. [Google Scholar] [CrossRef]
- Dussy, F.E.; Hamberg, C.; Luginbühl, M.; Schwerzmann, T.; Briellmann, T.A. Isolation of Δ9-THCA-A from hemp and analytical aspects concerning the determination of Δ9-THC in cannabis products. Forensic Sci. Int. 2005, 149, 3–10. [Google Scholar] [CrossRef] [PubMed]
- AL-Bukhaiti, W.Q.; Noman, A.; Saeed Qasim, A.; Al-Farga, A. Gas Chromatography: Principles, Advantages and Applications in Food Analysis. Int. J. Agric. Innov. Res. 2017, 6, 123–128. [Google Scholar]
- Weil, H.; Willams, T.I. History of Chromatography. Nature 1950, 166, 1000–1001. [Google Scholar] [CrossRef] [PubMed]
- Eur-Lex Access to European Union Law. Annex III: Union Method for the Determination of Delta-9-Tetrahydrocannabinol in Hemp Varieties. Available online: https://eur-lex.europa.eu/eli/reg_del/2017/1155/oj (accessed on 7 August 2022).
- Napolitano-Tabares, P.; Negrín-Santamaría, I.; Gutiérrez-Serpa A et, a.l. Recent efforts to increase greenness in chromatography. Curr. Opin. Green Sustain. Chem. 2021, 32, 100536. [Google Scholar] [CrossRef]
- Nahar, L.; Onder, A.; Sarker, S.D. A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019). Phytochem. Anal. 2020, 31, 413–457. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Dong, M.W. Handbook of Pharmaceutical Analysis by HPLC, 1st ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Moldoveanu, S.C.; David, V. Essentials in Modern HPLC Separations, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Caruso, S.J.; Acquaviva, A.; Müller, J.L.; Castells, C.B. Simultaneous analysis of cannabinoids and terpenes in Cannabis sativa inflorescence using full comprehensive two-dimensional liquid chromatography coupled to smart active modulation. J. Chromatogr. A 2024, 1720, 464810. [Google Scholar] [CrossRef] [PubMed]
- Madej, K.; Chmiołek, A.; Szlachta, K.; Piekoszewski, W. HPLC-DAD Analysis of Hemp Oil Supplements for Determination of Four Cannabinoids: Cannabidiol, Cannabidiolic Acid, Cannabinol and Delta 9-Tetrahydrocannabinol. Separations 2021, 8, 227. [Google Scholar] [CrossRef]
- Duzan, A.; Reinken, D.; Basti, M.M. Quality Control of 11 Cannabinoids by Ultraperformance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS/MS). J. Anal. Methods Chem. 2023, 2023, 3753083. [Google Scholar] [CrossRef]
- Johnson, E.; Kilgore, M.; Babalonis, S. Cannabidiol (CBD) product contamination: Quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) concentrations found in commercially available CBD products. Drug Alcohol Depend. 2022, 237, 109522. [Google Scholar] [CrossRef] [PubMed]
- Mandrioli, M.; Tura, M.; Scotti, S.; Toschi, T.G. Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis sativa L. Molecules 2019, 24, 2113. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.; Ahmad, S.M.; Quintas, A. Determination of phytocannabinoids in cannabis samples by ultrasound-assisted solid-liquid extraction and high-performance liquid chromatography with diode array detector analysis. J. Chromatogr. A 2023, 1705, 464191. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, R.; Zhang, H.; Li, X. Potency analysis of twelve cannabinoids in industrial hemp via ultrahigh-performance liquid chromatography–tandem mass spectrometry. Rapid Comm. Mass Spectrom. 2024, 38, e9871. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Deng, H.; Heise, J.A.; Puthoff, D.P.; Bou-Abboud, N.; Yu, H.; Peng, J. Contents of Cannabinoids in Hemp Varieties Grown in Maryland. ACS Omega 2021, 6, 32186–32197. [Google Scholar] [CrossRef]
- Steiner, D.; Krska, R.; Malachová, A.; Taschl, I.; Sulyok, M. Evaluation of matrix effects and extraction efficiencies of LC-MS/MS methods as the essential part for proper validation of multiclass contaminants in complex feed. J. Agric. Food Chem. 2020, 68, 3868–3880. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Provis, J.; Al-Bataineh, A.M.; Fabien, K.J.; Kotler, M. Development of a liquid chromatographic method with a different selectivity for the quantification of eighteen phytocannabinoids in hemp. Talanta Open 2024, 10, 100336. [Google Scholar] [CrossRef]
- Wilson, W.B.; Urbas, A.A.; Abdur-Rahman, M.; Romares, A.; Mistek-Morabito, E. Determination of Δ9-THC, THCA, Δ8-THC, and total Δ9-THC in 53 smokable hemp plant products by liquid chromatography and photodiode array detection. Forensic Chem. 2024, 37, 100550. [Google Scholar] [CrossRef]
- Hall, D.R.; Sinclair, J.S.; Bhuyan, D.J.; Khoo, C.; Li, C.G.; Sarris, J.; Low, M. Quality control of cannabis inflorescence and oil products: Response factors for the cost-efficient determination of ten cannabinoids by HPLC. Talanta Open 2022, 5, 100112. [Google Scholar] [CrossRef]
- Song, L.; Carlson, S.; Valenzuela, G.; Chao, M.; Pathipaka, S.B. Development of a validated method for rapid quantification of up to sixteen cannabinoids using ultra-high-performance liquid chromatography diode-array detector with optional electrospray ionization time-of-flight mass spectrometry detection. J. Chromatogr. A 2022, 1670, 462953. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, C.; De Leersnijder, C.; Barhdadi, S.; Canfyn, M.; De Braekeleer, K.; Deconinck, E. Discrepancies between validated GC-FID and UHPLC-DAD methods for the analysis of Δ-9-THC and CBD in dried hemp flowers. Drug Test. Anal. 2022, 14, 1732–1743. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Losso, K.; Bonn, G.K.; Rainer, M. Rapid quantification of cannabidiol from oils by direct analysis in real time mass spectrometry. Anal. Methods 2022, 14, 3875–3880. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, S.; Mascini, M.; Oliva, E.; Viteritti, E.; Eugelio, F.; Fanti, F.; Compagnone, D.; Sergi, M. Cannabinoid Profile in Cannabis sativa L. Samples by Means of LC-MRM/IDA/EPI Analysis: A New Approach for Cultivar Classification. J. Agric. Food Chem. 2022, 70, 3907–3916. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Elkins, A.C.; Spangenberg, G.C.; Rochfort, S.J. High-Throughput Quantitation of Cannabinoids by Liquid Chromatography Triple-Quadrupole Mass Spectrometry. Molecules 2022, 27, 742. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.B.; Abdur-Rahman, M. Determination of 11 Cannabinoids in Hemp Plant and Oils by Liquid Chromatography and Photodiode Array Detection. Chromatographia 2022, 85, 115–125. [Google Scholar] [CrossRef]
- Kanabus, J.; Bryła, M.; Roszko, M. The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material. Molecules 2023, 28, 8008. [Google Scholar] [CrossRef]
- Hewavitharana, A.K.; Gloerfelt-Tarp, F.; Nolan, M.; Barkla, B.J.; Purdy, S.; Kretzschmar, T. Simultaneous Quantification of 17 Cannabinoids in Cannabis Inflorescence by Liquid Chromatography-Mass Spectrometry. Separations 2022, 9, 85. [Google Scholar] [CrossRef]
- Citti, C.; Linciano, P.; Panseri, S.; Vezzalini, F.; Forni, F.; Vandelli, M.A.; Cannazza, G. Cannabinoid Profiling of Hemp Seed Oil by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Front. Plant Sci. 2019, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Žampachová, L.; Aturki, Z.; Mariani, F.; Bednář, P. A Rapid Nano-Liquid Chromatographic Method for the Analysis of Cannabinoids in Cannabis sativa L. Extracts. Molecules 2021, 26, 1825. [Google Scholar] [CrossRef] [PubMed]
- Raeber, J.; Poetzsch, M.; Schmidli, A.; Favrod, S.; Steuer, C. Simultaneous quantification of terpenes and cannabinoids by reversed-phase LC-APCI-MS/MS in Cannabis sativa L. samples combined with a subsequent chemometric analysis. Anal. Bioanal. Chem. 2024, 416, 4193–4206. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.; Greenbaum, E.A. (−)-trans-Δ9-Tetrahydrocannabiphorol Content of Cannabis sativa Inflorescence from Various Chemotypes. J. Nat. Prod. 2021, 84, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Merone, G.M.; Tartaglia, A.; Rossi, S.; Santavenere, F.; Bassotti, E.; D’ovidio, C.; Bonelli, M.; Rosato, E.; de Grazia, U.; Zanardo, A.; et al. Fast liquid chromatography-tandem mass spectrometry method for the simultaneous determination of phytocannabinoids in oily based preparations. J. Pharm. Biomed. Anal. 2021, 203, 114174. [Google Scholar] [CrossRef] [PubMed]
- Lindekamp, N.; Triesch, N.; Rohn, S.; Weigel, S. Quantification of sixteen cannabinoids in hemp seed edible oils and the influence of thermal processing on cannabinoid contents and profiles. Food Addit. Contam. Part A 2024, 41, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Woźniczka, K.; Trojan, V.; Urbanowicz, K.; Schreiber, P.; Zadrożna, J.; Bączek, T.; Smoleński, R.T.; Roszkowska, A. In vivo profiling of phytocannabinoids in Cannabis spp. varieties via SPME-LC-MS analysis. Anal. Chim. Acta 2024, 1306, 342621. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Hiebert-Giesbrecht, M.; Inchehborouni, G.; Cao, X.; Guo, A.C.; LeVatte, M.A.; Torres-Calzada, C.; Gautam, V.; Johnson, M.; Liigand, J.; et al. Chemical Composition of Commercial Cannabis. J. Agric. Food Chem. 2024, 72, 14099–14113. [Google Scholar] [CrossRef] [PubMed]
- Stempfer, M.; Reinstadler, V.; Lang, A.; Oberacher, H. Analysis of cannabis seizures by non-targeted liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2021, 205, 114313. [Google Scholar] [CrossRef] [PubMed]
- Fabresse, N.; Faltot, M.; Roux, P.; Becam, J.; Doudon, E.; Lacarelle, B.; Solas, C.; Pelissier-Alicot, A. Determination of cannabinoids content in light cannabis inflorescences sold in France. Drug Test. Anal. 2023, 15, 689–694. [Google Scholar] [CrossRef] [PubMed]
- McRae, G.; Melanson, J.E. Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 7381–7393. [Google Scholar] [CrossRef]
- Nemeškalová, A.; Hájková, K.; Mikulů, L.; Sýkora, D.; Kuchař, M. Combination of UV and MS/MS detection for the LC analysis of cannabidiol-rich products. Talanta 2020, 219, 121250. [Google Scholar] [CrossRef]
- Berthold, E.C.; Yang, R.; Sharma, A.; Kamble, S.H.; Kanumuri, S.R.; King, T.I.; Popa, R.; Freeman, J.H.; Brym, Z.T.; Avery, B.A.; et al. Regulatory sampling of industrial hemp plant samples (Cannabis sativa L.) using UPLC-MS/MS method for detection and quantification of twelve cannabinoids. J. Cannabis Res. 2020, 2, 42. [Google Scholar] [CrossRef] [PubMed]
- Carcieri, C.; Tomasello, C.; Simiele, M.; De Nicolò, A.; Avataneo, V.; Canzoneri, L.; Cusato, J.; Di Perri, G.; D’Avolio, A. Cannabinoids concentration variability in cannabis olive oil galenic preparations. J. Pharm. Pharmacol. 2018, 70, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Mastellone, G.; Marengo, A.; Sgorbini, B.; Rubiolo, P.; Anderson, J.L.; Cagliero, C. Ultrasound-assisted dispersive solid-liquid microextraction with eutectic solvents for the determination of cannabinoids in different hemp products. J. Chromatogr. B 2024, 1232, 123967. [Google Scholar] [CrossRef]
- Hädener, M.; König, S.; Weinmann, W. Quantitative determination of CBD and THC and their acid precursors in confiscated cannabis samples by HPLC-DAD. Forensic Sci. Int. 2019, 299, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Zivovinovic, S.; Alder, R.; Allenspach, M.D.; Steuer, C. Determination of cannabinoids in Cannabis sativa L. samples for recreational, medical, and forensic purposes by reversed-phase liquid chromatography-ultraviolet detection. J. Anal. Sci. Technol. 2018, 9, 27. [Google Scholar] [CrossRef]
- Deidda, R.; Schelling, C.; Roussel, J.; Dispas, A.; De Bleye, C.; Ziemons, É.; Hubert, P.; Veuthey, J.L. The analysis of cannabinoids in cannabis samples by supercritical fluid chromatography and ultra-high-performance liquid chromatography: A comparison study. Anal. Sci. Adv. 2021, 2, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Pilařová, V.; Hadysová, Z.; Švec, F.; Nováková, L. Supercritical fluids in analysis of cannabinoids in various Cannabis products. Anal. Chim. Acta 2022, 1232, 340452. [Google Scholar] [CrossRef] [PubMed]
- Deidda, R.; Coppey, F.; Damergi, D.; Schelling, C.; Coïc, L.; Veuthey, J.-L.; Sacré, P.-Y.; De Bleye, C.; Hubert, P.; Esseiva, P.; et al. New perspective for the in-field analysis of cannabis samples using handheld near-infrared spectroscopy: A case study focusing on the determination of Δ9-tetrahydrocannabinol. J. Pharm. Biomed. Anal. 2021, 202, 114150. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, S.; Speeckaert, M.M.; Delanghe, J.R. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab. Sci. 2018, 55, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D. Near Infrared Spectroscopy in Natural Products Analysis. Planta Med. 2009, 75, 746–756. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Battistini, A.; Materazzi, S. Monitoring of cannabinoids in hemp flours by MicroNIR/Chemometrics. Talanta 2020, 211, 120672. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Vassiliadis, S.; Elkins, A.C.; Cogan, N.O.O.; Rochfort, S.J. Rapid In Situ Near-Infrared Assessment of Tetrahydrocannabinolic Acid in Cannabis Inflorescences before Harvest Using Machine Learning. Sensors 2024, 24, 5081. [Google Scholar] [CrossRef]
- Gloerfelt-Tarp, F.; Hewavitharana, A.K.; Mieog, J.; Palmer, W.M.; Fraser, F.; Ansari, O.; Kretzschmar, T. Using a global diversity panel of Cannabis sativa L. to develop a near InfraRed-based chemometric application for cannabinoid quantification. Sci. Rep. 2023, 13, 2253. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Vassiliadis, S.; Elkins, A.C.; Cogan, N.O.I.; Rochfort, S.J. Developing Prediction Models Using Near-Infrared Spectroscopy to Quantify Cannabinoid Content in Cannabis sativa. Sensors 2023, 23, 2607. [Google Scholar] [CrossRef]
- Birenboim, M.; Kengisbuch, D.; Chalupowicz, D.; Maurer, D.; Barel, S.; Chen, Y.; Fallik, E.; Paz-Kagan, T.; Shimshoni, J.A. Use of near-infrared spectroscopy for the classification of medicinal cannabis cultivars and the prediction of their cannabinoid and terpene contents. Phytochemistry 2022, 204, 113445. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Maghirang, E.; Tan, J.W.; Yoon, J.Y.; Armstrong, P.; Kachroo, P.; Hildebrand, D. NIR spectroscopy for rapid measurement of moisture and cannabinoid contents of industrial hemp (Cannabis sativa). Ind. Crops Prod. 2022, 184, 115007. [Google Scholar] [CrossRef]
- Yao, S.; Ball, C.; Miyagusuku-Cruzado, G.; Giusti, M.M.; Aykas, D.P.; Rodriguez-Saona, L.E. A novel handheld FT-NIR spectroscopic approach for real-time screening of major cannabinoids content in hemp. Talanta 2022, 247, 123559. [Google Scholar] [CrossRef] [PubMed]
- Jarén, C.; Zambrana, P.C.; Pérez-Roncal, C.; López-Maestresalas, A.; Ábrego, A.; Arazuri, S. Potential of NIRS Technology for the Determination of Cannabinoid Content in Industrial Hemp (Cannabis sativa L.). Agronomy 2022, 12, 938. [Google Scholar] [CrossRef]
- Cirrincione, M.; Saladini, B.; Brighenti, V.; Salamone, S.; Mandrioli, R.; Pollastro, F.; Pellati, F.; Protti, M.; Mercolini, L. Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance—Infrared (ATR-FTIR) spectroscopy: A proof of concept. J. Pharm. Biomed. Anal. 2021, 204, 114270. [Google Scholar] [CrossRef] [PubMed]
- Geskovski, N.; Stefkov, G.; Gigopulu, O.; Stefov, S.; Huck, C.W.; Makreski, P. Mid-infrared spectroscopy as process analytical technology tool for estimation of THC and CBD content in Cannabis flowers and extracts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119422. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carnerero Callado, C.; Núñez-Sánchez, N.; Casano, S.; Ferreiro-Vera, C. The potential of near infrared spectroscopy to estimate the content of cannabinoids in Cannabis sativa L.: A comparative study. Talanta 2018, 190, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zimmerleiter, R.; Greibl, W.; Meininger, G.; Duswald, K.; Hannesschläger, G.; Gattinger, P.; Rohm, M.; Fuczik, C.; Holzer, R.; Brandstetter, M. Sensor for Rapid In-Field Classification of Cannabis Samples Based on Near-Infrared Spectroscopy. Sensors 2024, 24, 3188. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, C.; Stévigny, C.; De Braekeleer, K.; Deconinck, E. Characterization of CBD oils, seized on the Belgian market, using infrared spectroscopy: Matrix identification and CBD determination, a proof of concept. Drug Test. Anal. 2024, 16, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; de Boves Harrington, P.; Griffin, V.; Griffin, T. In Situ Determination of Cannabidiol in Hemp Oil by Near-Infrared Spectroscopy. J. Nat. Prod. 2021, 84, 2851–2857. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Battistini, A.; Materazzi, S. Development of a “single-click” analytical platform for the detection of cannabinoids in hemp seed oil. RSC Adv. 2020, 10, 43394–43399. [Google Scholar] [CrossRef]
- Deconinck, E.; Duchateau, C.; Balcaen, M.; Gremeaux, L.; Courselle, P. Chemometrics and infrared spectroscopy—A winning team for the analysis of illicit drug products. Rev. Anal. Chem. 2022, 41, 228–255. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Osorio, M.T.; Koidis, A.; González-Casado, A.; Cuadros-Rodríguez, L. Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT 2017, 86, 174–184. [Google Scholar] [CrossRef]
- Coates, J. A review of sampling methods for infrared spectroscopy. In Applied Spectroscopy; Elsevier: Amsterdam, The Netherlands, 1998; pp. 49–91. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zhang, Y.; Wang, D.; Wang, X.; Yu, L.; Zhang, W.; Li, P. Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils. Trends Food Sci. Technol. 2020, 101, 172–181. [Google Scholar] [CrossRef]
- Dos Santos, C.A.T.; Lopo, M.; Páscoa, R.N.M.J.; Lopes, J.A. A Review on the Applications of Portable Near-Infrared Spectrometers in the Agro-Food Industry. Appl. Spectrosc. 2013, 67, 1215–1233. [Google Scholar] [CrossRef] [PubMed]
- Bumbrah, G.S.; Sharma, R.M. Raman spectroscopy—Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci. 2016, 6, 209–215. [Google Scholar] [CrossRef]
- Guide to Raman Spectroscopy. Available online: https://www.bruker.com/fr/products-and-solutions/infrared-and-raman/raman-spectrometers/what-is-raman-spectroscopy.html (accessed on 10 May 2023).
- Porcu, S.; Tuveri, E.; Palanca, M.; Melis, C.; La Franca, I.M.; Satta, J.; Chiriu, D.; Carbonaro, C.M.; Cortis, P.; De Agostini, A.; et al. Rapid In Situ Detection of THC and CBD in Cannabis sativa L. by 1064 nm Raman Spectroscopy. Anal. Chem. 2022, 94, 10435–10442. [Google Scholar] [CrossRef] [PubMed]
- Grijalva, J.; Huang, T.-Y.; Yu, J.; Buzzini, P.; Williams, D.; Davidson, J.T.; Monjardez, G. Analysis of major cannabinoids using Raman microscopy, density functional theory, chemometrics and a novel artificial intelligence approach. Talanta Open 2024, 10, 100337. [Google Scholar] [CrossRef]
- Wolfe, T.J.; Kruse, N.A.; Radwan, M.M.; Wanas, A.S.; Sigworth, K.N.; ElSohly, M.A.; Hammer, N.I. A study of major cannabinoids via Raman spectroscopy and density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123133. [Google Scholar] [CrossRef]
- Cailletaud, J.; De Bleye, C.; Dumont, E.; Sacré, P.-Y.; Netchacovitch, L.; Gut, Y.; Boiret, M.; Ginot, Y.-M.; Hubert, P.; Ziemons, E. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field. J. Pharm. Biomed. Anal. 2018, 147, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.K.; Cheng, Y.P.; Birke, R.L.; Cañamares, M.V.; Muehlethaler, C.; Lombardi, J.R. An analysis of tetrahydrocannabinol (THC) and its analogs using surface enhanced Raman Scattering (SERS). Chem. Phys. 2020, 536, 110812. [Google Scholar] [CrossRef]
- Botta, R.; Limwichean, S.; Limsuwan, N.; Moonlek, C.; Horprathum, M.; Eiamchai, P.; Chananonnawathorn, C.; Patthanasettakul, V.; Chindaudom, P.; Nuntawong, N.; et al. An efficient and simple SERS approach for trace analysis of tetrahydrocannabinol and cannabinol and multi-cannabinoid detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121598. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, A.M.; Elhendawy, M.A.; Radwan, M.M.; Kidder, L.H.; Wanas, A.S.; Godfrey, M.; Hildreth, J.B.; Robinson, A.E.; ElSohly, M.A. Absorbance-Transmittance Excitation Emission Matrix Method for Quantification of Major Cannabinoids and Corresponding Acids: A Rapid Alternative to Chromatography for Rapid Chemotype Discrimination of Cannabis sativa Varieties. Cannabis Cannabinoid Res. 2023, 8, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.; Filter, C.; Baltensperger, D.; Kurouski, D. Confirmatory non-invasive and non-destructive differentiation between hemp and cannabis using a hand-held Raman spectrometer. RSC Adv. 2020, 10, 3212–3216. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Valverde, M.; Sánchez-Carnerero Callado, C.; del Carmen Díaz-Liñán, M.; de Medina, V.S.; Hidalgo-García, J.; Nadal, X.; Hanuš, L.; Ferreiro-Vera, C. Effect of temperature in the degradation of cannabinoids: From a brief residence in the gas chromatography inlet port to a longer period in thermal treatments. Front. Chem. 2022, 10, 1038729. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Kerrigan, S. Factors influencing the in-situ formation of Δ9-THC from cannabidiol during GC–MS analysis. Drug Test. Anal. 2024, 16, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- European Pharmaceutical Review. New European Monograph for Cannabis Flower Adopted. Available online: https://www.europeanpharmaceuticalreview.com/news/185437/new-european-monograph-for-cannabis-flower-adopted/ (accessed on 17 August 2022).
- Pittiglio, M.K.; Ramirez, G.A.; Tesfatsion, T.T.; Ray, K.P.; Cruces, W. HPLC Method for Better Separation of THC Isomers to Ensure Safety and Compliance in the Hemp Market. ACS Omega 2024, 9, 25390–25394. [Google Scholar] [CrossRef] [PubMed]
- Gerigk, M.; Luca, S.V.; Schwarzenbach, S.; Minceva, M. Model-based design of gradient elution in liquid-liquid chromatography: Application to the separation of cannabinoids. J. Chromatogr. A 2024, 1722, 464888. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial Hemp (Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Desmedt, B.; Van Campenhout, P.; Deconinck, E. A systematic review of analytical methodologies capable of analysing phytocannabinoids in cosmetics. Drug Test. Anal. 2024, 16, 1195–1202. [Google Scholar] [CrossRef]
- Yang, S.; Sun, M. Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (2013–2023): A Comprehensive Review. J. Agric. Food Chem. 2024, 72, 13476–13499. [Google Scholar] [CrossRef]
- Gidal, B.E.; Vandrey, R.; Wallin, C.; Callan, S.; Sutton, A.; Saurer, T.B.; Triemstra, J.L. Product labeling accuracy and contamination analysis of commercially available cannabidiol product samples. Front. Pharmacol. 2024, 15, 1335441. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.; Adisa, M.; Dodson, Z.; Adejumo, E.; Jovanovich, E.; Song, L. A liquid chromatography electrospray ionization tandem mass spectrometry method for quantification of up to eighteen cannabinoids in hemp-derived products. J. Pharm. Biomed. Anal. 2024, 238, 115847. [Google Scholar] [CrossRef] [PubMed]
- Barhdadi, S.; Courselle, P.; Deconinck, E.; Vanhee, C. The analysis of cannabinoids in e-cigarette liquids using LC-HRAM-MS and LC-UV. J. Pharm. Biomed. Anal. 2023, 230, 115394. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Concludes that Existing Regulatory Frameworks for Foods and Supplements are not Appropriate for Cannabibidiol, Will Work with Congress on a New Way Forward. 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-concludes-existing-regulatory-frameworks-foods-and-supplements-are-not-appropriate-cannabidiol (accessed on 13 January 2025).
- Deenin, W.; Wenninger, N.; Schmid, M.G.; Kalcher, K.; Ortner, A.; Chaiyo, S. Rapid electrochemical lateral flow device for the detection of Δ9-tetrahydrocannabinol. Anal. Chim. Acta 2023, 1279, 341768. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Righetti, L.; Claassen, F.W.; Krishna, A.; Ma, M.; van Beek, T.A.; Chen, B.; Zuilhof, H.; Salentijn, G.I. Ultrafast, Selective, and Highly Sensitive Nonchromatographic Analysis of Fourteen Cannabinoids in Cannabis Extracts, Δ8-Tetrahydrocannabinol Synthetic Mixtures, and Edibles by Cyclic Ion Mobility Spectrometry—Mass Spectrometry. Anal. Chem. 2024, 96, 10170–10181. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Thurman, E.M. A novel cannabinoid in hemp: Isolation by flash chromatography and identification by liquid chromatography high resolution mass spectrometry. Talanta Open 2024, 9, 100332. [Google Scholar] [CrossRef]
- Caprari, C.; Ferri, E.; Vandelli, M.A.; Citti, C.; Cannazza, G. An emerging trend in Novel Psychoactive Substances (NPSs): Designer THC. J. Cannabis Res. 2024, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Anceschi, L.; Brighenti, V.; Caroli, C.; Afezolli, C.; Marchetti, A.; Cocchi, M.; Salamone, S.; Pollastro, F.; Pellati, F. Application of experimental design in HPLC method optimisation for the simultaneous determination of multiple bioactive cannabinoids. J. Pharm. Biomed. Anal. 2022, 221, 115037. [Google Scholar] [CrossRef] [PubMed]
- Scientific Working Group for Forensic Toxicology. Scientific Working Group for Forensic Toxicology (SWGTOX): Standard Practices for Method Validation in Forensic Toxicology. J. Anal. Toxicol. 2013, 37, 452–474. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sepehr, E.; Vaught, C.; Yourick, J.; Sprando, R.L. Development and validation of a fit-for-purpose UHPLC-ESI-MS/MS method for the quantitation of cannabinoids in different matrices. J. Chromatogr. B 2023, 1218, 123629. [Google Scholar] [CrossRef]
Cannabinoid | Structure |
---|---|
Cannabichromen(-ic acid) CBC(A) | |
Cannabidiol(-ic acid) CBD(A) | |
Cannabidivarin(-ic acid) CBDV(A) | |
Cannabigerol(-ic acid) CBG(A) | |
Cannabinol(-ic acid) CBN(A) | |
Delta-9-tetrahydrocannabinol(-ic acid) Δ9-THC(A) | |
Tetrahydrocannabidivarin(-ic acid) THCV(A) |
Product | Description and Information About the Product |
---|---|
Herbal product and resin for smoking | Cannabis spp. flowers (CBD cultivars) |
e-liquids | Liquid containing CBD put in an e-cigarette (vaping product) |
Crystals | Solid containing CBD used to make the e-liquid itself |
CBD oil (internal use) | Oil (e.g., hemp seed oil) + CBD |
Edible products—Food | Food based on Cannabis sativa L. (CBD cultivars) (e.g., cookies, chocolate, and pasta) |
Food supplements | e.g., Capsules, gummies, and beverages containing CBD |
Hemp seed oil | Oil made from whole seeds |
Herbal tea | Cannabis leaves/flowers destined to be infused |
Cosmetics | e.g., balms, shampoos, oils, and creams containing CBD |
Potpourri | Cannabis spp. flowers (CBD cultivars) |
Analytical Technique Year 1st Author [Reference] | Matrix (Sample State) | Cannabinoids | Analysis Time (LOD/LOQ) | Solvent Extraction | Mobile Phase | Column |
---|---|---|---|---|---|---|
UHP-SFC-MS/MS Pilařová V. 2022 [104] | Oil, dried plant material (herbs, leaves, and flowers), and other matrices | CBC, CBDA, CBD, CBDV, CBGA, CBG, CBL, CBN, THCA, Δ8-THC, Δ9-THC, THCV | 3.5 min (n.m.) | ACN (plant material) EtOH (dietary supplements, cosmetics) | CO2 + MeOH: ACN (2.5:7.5) + 5% water | Waters Acquity Viridis 2-Ethylpyridine, C18 (1.7 µm, 100 × 3.0 mm) |
UHP-SFC-UV Deidda R. 2020 [105] | Ground inflorescences, resins | CBC, CBDA, CBD, CBGA, CBG, CBN, THCA, Δ8-THC, Δ9-THC | 6 min (LOD: 1.5–2.30 µg/mL LOQ: 2.96–4.55 µg/mL) | EtOH | CO2 + MeOH:ACN (2.5:7.5) (Gradient) | Waters Acquity UPC Torus DIOL (1.7 µm, 100 × 0.3 mm) |
Spectroscopic Technique (Reference Method) 1st Author [Reference] | Matrix (Sample State) | Cannabinoids | Instrumentation Spectrometer Type | Sample Handling Resolution Scans | Chemometric Model (Model Evaluation Metrics) (spectral Range) Preprocessing |
---|---|---|---|---|---|
2024 | |||||
NIR (GC-FID, LC-DAD) Zimmerleiter R. [119] | Dried, ground (with different degrees of fineness) inflorescences | THC total | Hand-held | Diffuse reflectance n.m. 20 | PLS-DA Discrimination (ccr : 70.4–78.6%) (1550 nm-1950 nm) Smoothing and 1st derivative (Savitzky-Golay) + SNV |
MIR and NIR (GC-MS) Duchateau C. [120] | Oils | CBD | Benchtop FT | ATR-MIR 4 cm−1 32 Transflectance (NIR) 8 cm−1 16 | SIMCA (ccr: 100%) PLS-R (RMSEC: 1.0–4.4 RMSEP:0.9–3.9) (5000–16000 nm) (1600–2500 nm) Smoothing and 2nd derivative (Savitzky-Golay) |
NIR (LC-MS) Tran J. [109] | Dried ground inflorescences | THCA | Hand-held (MicroNIR) | Diffuse reflectance | PLS-DA (RMSEC: 0.15 RMSEP: 0.12) PLS-R (RMSEC: 26.34–28) RMSEP: 21.49–23.49) SVM-R (RMSEC: 23.87–25.11 RMSEP: 22.49–24.87) XGB-R (RMSEC: 0.02–12.27 RMSEP: 23.02–28.77) (10,526–6060 cm−1) 2nd derivative, SNV, MC |
2023 | |||||
NIR (HPLC-UV) Gloerfelt-Trap F. [110] | Dried ground aerial part | CBC, CBDA, CBD, CBDVA, CBDV, CBGA, CBG, CBN, THCA, Δ9-THC, THCVA, THCV | Hand-held n.m. | Diffuse reflectance / | Cross-validation (RMSE: 5.27–247.66) Hold-out validation (RMSE: 18.54–94.5) (1350–2500nm) 1st derivative, order 1 |
NIR Tran J. [111] | Dried ground inflorescences | CBCA, CBC, CBDA, CBD, CBDVA, CBDV, CBGA, CBG, CBNA, CBN, THCA, Δ9-THC, THCVA, THCV | Benchtop FT Hand-held (Micro) n.m. | Diffuse reflectance 16 cm−1 64 Diffuse reflectance / 100 | PCA PLS-DA (FT: RMSEC: 0.123–0.237 RMSEP: 0.106–0.211 Micro: RMSEC: 0.165–0.391 RMSEP: 0.125–0.368) PLS-R (FT: RMSEC:0.07–6.93 RMSEP: 0.06–5.51) (1111–2500 nm) SNV, normalization, detrend, 1st/2nd derivatives |
2022 | |||||
NIR (HPLC-DAD) Birenboim M. [112] | Dried ground inflorescences | CBCA, CBC, CBDA, CBD, CBGA, CBG, CBL, THCA, Δ9-THC, THCV | Benchtop FT | Reflectance 4 cm−1 16 | PLS-DA (RMSEC: 0.136–0.232 RMSEP: 0.127–0.228) PLS-R (RMSEC: 0.0086–0.944 RMSEP: 0.011–1.275) (1000–2500 nm) SNV, MSC, normalization (mean centering, autoscaling) GLS, smoothing, |
NIR (GC-FID) Su K. [113] | Dried ground plant material | CBD, CBG, CBN, Δ9-THC | Benchtop n.m | / Reflectance or transflectance / | PLS-R (RMSEC :0.01–1.16 RMSEP: 0.01–1.28) (950–1650 nm) / |
NIR (HPLC-MS/MS) Yao S. [114] | Dried ground plant material | CBDA, CBD, THCA, Δ9-THC | Hand-held (Micro) FT | Diffuse reflectance / | PLS-R (RMSECV: 0.02–0.54 RMSEP: 0.02–0.061) (1350–2560 nm) 2nd derivative (Savitsky-Golay), MC |
NIR (HPLC-UV) Jarén C. [115] | Dried ground plant material | CBD, Δ9-THC | Hand-held Dispersive | Reflectance / 50 | PLS-R (RMSEC: 0.010–0.011 RPD: 2.04) (1200–2200 nm) Normalization, SNV, MSC, SNV-DT, 1st and 2nd derivative (Savitzky-Golay) |
2021 | |||||
MIR (LC-MS/MS) Cirrincione M. [116] | No dried and no ground inflorescences | CBD(A), CBG(A), CBN, THCA, Δ9-THC | Benchtop FT | ATR 4 cm−1 20 scans | PLS-R (RMSEC: 0.163 x10–8–0.238) (4000–400 cm−1) 1st derivative: Δ9-THC: 1514–1485 cm−1 THCA: 141–1391 cm−1 CBD: 3085–3060 cm−1 CBDA: 982–959 cm−1 CBG: 844–830 cm−1 CBGA: 820–807 cm−1 CBN: 910–872 cm−1 |
NIR Chen Z. [121] | Oils | CBD | Benchtop FT | Reflectance 4 cm−1 64 | PLS-R (RMSEC: 5.6 RMSEV: 6.87) SOSVEN (RMSEC: 5.1 RMSEP: 6.6) (1111–2222 nm) 1st derivative (Savitzky-Golay) |
NIR (HPLC-UV) Deidda R. [105] | Inflorescence and resin through a plastic bag | THCA, Δ9-THC | Hand-held (1) Dispersive Hand-held (2) (Micro) Dispersive | Reflectance Reflectance | PLS-R (Instrument (1) RMSEC: 0.88–1.74 RMSEP: 1.55–2.07) (Instrument (2) RMSEC: 0.74–1.02 RMSEP: 1.04–1.75) (900–1700 nm) (1) (950–1650 nm) (2) 2nd derivtive (Savitzky-Golay), SNV |
NIR (HPLC-UV) Geskovski N. [117] | Dried ground flowers and extracts | CBDA, CBD, THCA, Δ9-THC | Benchtop FT | ATR 4 cm−1 n.m. | PLS-R (extracts (RMSECV: 2.62–5.25) RMSEP: 1.44–3.79 Flowers: RMSECV: 1.41–1.53 RMSEP:1.33–2.32) (5555–25000 nm) Smoothing and 2nd derivative (Savitzky-Golay) |
2020 | |||||
NIR (GC-MS) Risoluti R. [122] | Oil | CBD, THCA, Δ9-THC | Hand-held (Micro) Dispersive | Reflectance 6.25 nm | PLS-DA (RMSEC: 0.001–0.002 RMSECV: 0.003–0.005) (900–1700 nm) Baseline corrected, SNV |
NIR (GC-MS) Risoluti R. [108] | Dried inflorescences | CBD, THC total | Hand-held (Micro) Dispersive | Reflectance | PLS-DA PLS-R (RMSEC: 0.003–0.005 RMSEP: 0.005–0.007) (950–1650 nm) 2nd derivative, SNV Different regions of interest |
NIR (GC-FID) Duchateau C. [55] | Dried and crushed (by hand) inflorescences | CBD, THC total | Benchtop FT (1) Hand-held (Micro) Dispersive | Reflectance 8 cm−1 16 Diffuse reflectance 11 cm−1 5 | SIMCA (Instrument (1) CV ccr: 89–92 External validation ccr: 80–1 Instrument (2) CV ccr: 95–97 External validation ccr :84–93) PLS-DA (Instrument (1) CV ccr: 92–97 External validation ccr: 84–91 Instrument (2) CV ccr: 98–99 External validation ccr :88–95) k-NN (1600–2500 nm) 1st derivative, 2nd derivative, SNV |
2018 | |||||
NIR (GC-FID) Sanchez-Carnero Callado C. [118] | Dried leaves and flowers ground into a powder | CBC, CBD CBDV, CBG, CBN, Δ8-THC, Δ9-THC, THCV | Hand-held (1) Dispersive Benchtop (2) FT | Reflectance n.m. n.m. Diffuse reflectance 8 cm−1 32 | PLS-R (Instrument (1) RMSEC: 0.02–0.58 RMSEP: 0.03–1.72 Instrument (2) RMSEC: 0.02–0.49 RMESP: 0.04–1.79) (400–2498 nm) (1) (800–2500 nm) (2) Several regions of interest Normalization, 1st derivative, MSC |
Chromatographic Techniques | Spectroscopic Techniques | |||||
---|---|---|---|---|---|---|
GC | UHPLC | UHP-SFC | NIR | MIR | Raman | |
Automatization | +++ | +++ | +++ | --- | --- | --- |
Speed of analysis | -- | - | - | +++ | +++ | ++ |
Parameters of influence | temperature and flow rate | temperature and flow rate | temperature and flow rate | temperature | temperature | temperature |
Compounds/samples | decarboxylation of acidic form | +++ | +++ | no difference between acidic and neutral forms | no difference between acidic and neutral forms | no difference between acidic and neutral forms |
Separations | +++ | +++ | +++ | --- | --- | --- |
Analyte detection | +++ | +++ | +++ | classification/ prediction | classification/ prediction | classification/ prediction |
Sensitivity | +++ | +++ | +++ | -- | - | -- |
Analysis cost | --- | --- | --- | +++ | +++ | +++ |
Intuitiveness | - | - | --- | + | + | +/- |
Handling | --- | --- | --- | +++ | ++ | ++ |
Sample preparation | --- | --- | --- | +++ | +++ | ++ |
Green analytical chemistry | +/- | +/- | +/- | +++ | +++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchateau, C.; Stévigny, C.; Waeytens, J.; Deconinck, E. Chromatographic and Spectroscopic Analyses of Cannabinoids: A Narrative Review Focused on Cannabis Herbs and Oily Products. Molecules 2025, 30, 490. https://doi.org/10.3390/molecules30030490
Duchateau C, Stévigny C, Waeytens J, Deconinck E. Chromatographic and Spectroscopic Analyses of Cannabinoids: A Narrative Review Focused on Cannabis Herbs and Oily Products. Molecules. 2025; 30(3):490. https://doi.org/10.3390/molecules30030490
Chicago/Turabian StyleDuchateau, Céline, Caroline Stévigny, Jehan Waeytens, and Eric Deconinck. 2025. "Chromatographic and Spectroscopic Analyses of Cannabinoids: A Narrative Review Focused on Cannabis Herbs and Oily Products" Molecules 30, no. 3: 490. https://doi.org/10.3390/molecules30030490
APA StyleDuchateau, C., Stévigny, C., Waeytens, J., & Deconinck, E. (2025). Chromatographic and Spectroscopic Analyses of Cannabinoids: A Narrative Review Focused on Cannabis Herbs and Oily Products. Molecules, 30(3), 490. https://doi.org/10.3390/molecules30030490