Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity
2.3. Antifungal Activity
2.4. Preliminary Analysis of Structure-Activity Relationship (SAR)
3. Materials and Methods
3.1. Materials and Instruments
3.2. Bacterial and Fungal Strains
3.3. Chemical Synthesis
3.3.1. General Procedure for the Preparation of Intermediate 2a
3.3.2. General Procedure for the Preparation of Intermediate 3a
3.3.3. General Procedure for the Preparation of Intermediate 4a
3.3.4. General Procedure for the Preparation of Target Compound 5a
3.4. Antibacterial Activity Test In Vitro
3.5. Antifungal Activity Test In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, L.; Chi, J.; Xiao, L.; Li, J.; Tang, Z.; Tan, S.; Li, P. Novel thiochromanone derivatives containing a sulfonyl hydrazone moiety: Design, synthesis, and bioactivity evaluation. Molecules 2021, 26, 2925. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Gao, Y.; Nie, X.; Tuong, T.; Li, D.; Gao, J. Antifungal activity of griseofulvin derivatives against phytopathogenic fungi in vitro and in vivo and three-dimensional quantitative structure-activity relationship analysis. J. Agric. Food Chem. 2019, 67, 6125–6132. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Han, F.; He, M.; Hu, D.; He, J.; Yang, S.; Song, B. Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety. J. Agric. Food Chem. 2012, 60, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; He, F.; Zhang, W.; Wang, Y.; Yu, L.; Wu, J. Fluorinated or brominated meta-diamides as the new scaffolds for the treatment of rice bacterial leaf blight. Food Energy Secur. 2023, 12, e449. [Google Scholar] [CrossRef]
- Wang, P.; Fang, H.; Shao, W.; Zhou, J.; Chen, Z.; Song, B.; Yang, S. Synthesis and biological evaluation of pyridinium-functionalized carbazole derivatives as promising antibacterial agents. Bioorg. Med. Chem. Lett. 2017, 27, 4294–4297. [Google Scholar] [CrossRef] [PubMed]
- Snigdha, M.; Prasath, D. Transcriptomic analysis to reveal the differentially expressed miRNA targets and their miRNAs in response to Ralstonia solanacearum in ginger species. BMC Plant Biol. 2021, 21, 355. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, X.; Li, J.; Zhu, F. Dimethachlon resistance in Sclerotinia sclerotiorum in China. Plant Dis. 2014, 98, 1221–1226. [Google Scholar] [CrossRef]
- Cheng, Q.; Jia, W.; Hu, C.; Shi, G.; Yang, D.; Cai, M.; Zhan, T.; Tang, Y.; Zhou, Y.; Sun, X.; et al. Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium. Environ. Pollut. 2020, 265, 114827. [Google Scholar] [CrossRef]
- Liu, R.; Li, Z.; Liu, S.; Zheng, J.; Zhu, P.; Cheng, B.; Yu, R.; Geng, H. Synthesis, structure–activity relationship, and mechanism of a series of diarylhydrazide compounds as potential antifungal agents. J. Agric. Food Chem. 2023, 71, 6803–6817. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S.; Qian, P.; Li, Y.; Ren, W.; Deng, H.; Jiang, L. Synthesis and fungicidal activity of novel benzimidazole derivatives bearing pyrimidine-thioether moiety against Botrytis cinerea. Pest Manag. Sci. 2021, 77, 5529–5536. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Shi, J.; Wang, Z.; Hu, D.; Song, B. Novel cinnamic acid derivatives containing the 1,3,4-oxadiazole moiety: Design, synthesis, antibacterial activities, and mechanisms. J. Agric. Food Chem. 2021, 69, 11804–11815. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Zhao, Z.; Li, J.; Yang, G.; Liu, Y.; Dai, L.; Zhang, Z.; Yang, Z.; Miao, X.; Yang, C.; et al. Insecticidal and antifungal activities of Rheum palmatum L. anthraquinones and structurally related compounds. Ind. Crops Prod. 2019, 137, 508–520. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, J.; Yin, X.; Yan, Y.; Wang, Y.; Shang, X.; Liu, Y.; Zhao, Z.; Peng, J.; Liu, H. Design, synthesis and antifungal evaluation of novel quinoline derivatives inspired from natural quinine alkaloids. J. Agric. Food Chem. 2019, 67, 11340–11353. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gan, X.; Wang, Y.; Li, S.; Yi, C.; Chen, J.; He, F.; Yang, Y.; Hu, D.; Song, B. Novel 1,3,4-oxadiazole derivatives containing a cinnamic acid moiety as potential bactericide for rice bacterial diseases. Int. J. Mol. Sci. 2019, 20, 1020. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; MacMillan, J.B. Thiasporines A-C, thiazine and thiazole derivatives from a marine-derived Actinomycetospora chlora. J. Nat. Prod. 2015, 78, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Shi, J.; Deng, X.; Yu, T.; Hu, Y.; Hu, R.; Lei, Y.; Yu, L.; Zhu, X.; Li, J. Design, synthesis, and antifungal activity of some novel phenylthiazole derivatives containing an acylhydrazone moiet. Molecules 2023, 28, 7084. [Google Scholar] [CrossRef]
- Shi, J.; Tian, Y.; Chen, S.; Liao, C.; Mao, G.; Deng, X.; Yu, L.; Zhu, X.; Li, J. Design, synthesis and antifungal evaluation of phenylthiazole-1,3,4-oxadiazole thione (ketone) derivatives inspired by natural thiasporine A. Pest Manag. Sci. 2023, 79, 3439–3450. [Google Scholar] [CrossRef]
- Krchnak, V.; Holladay, M. Solid phase heterocyclic chemistry. Chem. Rev. 2002, 102, 61–92. [Google Scholar] [CrossRef]
- Wang, X.; Duan. W.; Lin, G.; Chen, M.; Lei, F. Synthesis, antifungal activity and 3D-QSAR study of novel nopol-based 1,3,4-thiadiazole–thioether compounds. Res. Chem. Intermed. 2021, 47, 4029–4049. [Google Scholar] [CrossRef]
- Chen, J.; Yi, C.; Wang, S.; Wu, S.; Li, S.; Hu, D.; Song, B. Novel amide derivatives containing 1,3,4-thiadiazole moiety: Design, synthesis, nematocidal and antibacterial activities. Bioorg. Med. Chem. Lett. 2019, 29, 1203–1210. [Google Scholar] [CrossRef]
- Dai, H.; Li, G.; Chen, J.; Shi, Y.; Ge, S.; Fan, C.; He, B. Synthesis and biological activities of novel 1,3,4-thiadiazole-containing pyrazole oxime derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 3818–3821. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Madkour, H.; Salem, M.; Mohamed, A.; Aly, A. Design, synthesis and insecticidal activity of new 1,3,4-thiadiazole and 1,3,4-thiadiazolo[3,2-a] pyrimidine derivatives under solvent-free conditions. Synth. Commun. 2021, 51, 2644–2660. [Google Scholar] [CrossRef]
- Ramiz, M.; Abdel-Rahman, A. Antimicrobial activity of newly synthesized 2,5-disubstituted 1,3,4-thiadiaozle derivatives. Bull. Korean Chem. Soc. 2011, 32, 4227–4232. [Google Scholar] [CrossRef]
- Li, P.; Tian, P.; Chen, Y.; Song, X.; Xue, W.; Hu, D.; Yang, S.; Song, B. Novel bisthioether derivatives containing a 1,3,4-oxadiazole moiety: Design, synthesis, antibacterial and nematocidal activities. Pest Manag. Sci. 2018, 74, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Duan, Y.; Yu, X.; Wang, J.; Zhou, M. Photochemical degradation of bismerthiazol: Structural characterisation of the photoproducts and their inhibitory activities against Xanthomonas oryzae pv. oryzae. Pest Manag. Sci. 2016, 72, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hao, Y.; Ji, X.; Wang, Z.; Liu, Y.; Ma, D.; Li, Y.; Pang, H.; Ni, J.; Wang, Q. Optimization, structure-activity relationship, and mode of action of nortopsentin analogues containing thiazole and oxazole moieties. J. Agric. Food Chem. 2019, 67, 10018–10031. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.; Zhou, Z.; Deng, L.; Xu, Y.; Hu, L.; Liu, B.; Zhang, L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents. Eur. J. Med. Chem. 2019, 164, 352–365. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, X.; Zhang, M.; Wu, Q.; Zhou, X.; Li, J. Synthesis and fungicidal activity of 1,3,4-oxadiazol-2-yl thioether derivatives containing a phenazine-1-carboxylic acid scaffold. Nat. Prod. Res. 2019, 33, 2145–2150. [Google Scholar]
- Chen, C.; Song, B.; Yang, S.; Xu, G.; Jin, H.; Hu, D.; Li, Q.; Liu, F.; Xue, W.; Zhuo, C.; et al. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. 2007, 15, 3981–3989. [Google Scholar] [CrossRef]
- Ding, M.; Wang, S.; Wu, N.; Yan, Y.; Li, J.; Bao, X. Synthesis, structural characterization, and antibacterial and antifungal activities of novel 1,2,4-triazole thioether and thiazolo[3,2-b]-1,2,4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety. J. Agric. Food Chem. 2021, 69, 15084–15096. [Google Scholar] [CrossRef]
- Yin, X.; Ma, K.; Wang, Y.; Sun, Y.; Shang, X.; Zhao, Z.; Wang, R.; Chen, Y.; Zhu, J.; Liu, Y. Design, synthesis, and antifungal evaluation of 8-hydroxyquinoline metal complexes against phytopathogenic fungi. J. Agric. Food Chem. 2020, 68, 11096–11104. [Google Scholar] [CrossRef] [PubMed]
Compound | Inhibition Rate (%) | |||
---|---|---|---|---|
R. solanacearum | Xoo | |||
200 μg/mL | 100 μg/mL | 200 μg/mL | 100 μg/mL | |
5a | 100 | 42.45 ± 1.22 | <10 | 17.24 ± 3.22 |
5b | 100 | 92.00 ± 0.81 | 98.92 ± 0.21 | 42.24 ± 1.75 |
5c | 100 | 87.04 ± 1.88 | 34.30 ± 2.16 | <10 |
5d | 82.09 ± 1.14 | 74.37 ± 1.22 | 47.08 ± 1.03 | 13.48 ± 2.09 |
5e | 78.63 ± 0.15 | 45.96 ± 0.98 | 32.33 ± 1.01 | <10 |
5f | 47.74 ± 2.91 | 31.78 ± 0.82 | 18.70 ± 2.29 | <10 |
5g | 80.08 ± 1.42 | 48.26 ± 0.56 | 28.65 ± 0.56 | <10 |
5h | 94.87 ± 1.14 | 93.81 ± 0.89 | 76.17 ± 4.97 | 54.66 ± 0.27 |
5i | 95.40 ± 1.65 | 94.00 ± 0.16 | 80.07 ± 3.43 | 14.95 ± 1.22 |
5j | 70.57 ± 3.64 | 67.56 ± 2.12 | 45.34 ± 4.13 | 31.37 ± 2.22 |
5k | 100 | 100 | 100 | 72.63 ± 1.31 |
5l | 53.19 ± 1.37 | 33.59 ± 1.72 | 28.59 ± 1.69 | 12.09 ± 3.32 |
5m | 74.07 ± 1.19 | 71.37 ± 1.32 | 49.37 ± 4.70 | 41.59 ± 1.96 |
5n | 64.10 ± 0.74 | 53.41 ± 0.73 | 48.40 ± 2.65 | 44.61 ± 3.82 |
5o | 43.47 ± 1.93 | 35.11 ± 0.81 | <10 | <10 |
5p | 71.88 ± 1.90 | 60.60 ± 2.30 | 53.00 ± 1.71 | 41.26 ± 2.49 |
E1 | 100 | 79.77 ± 2.35 | 97.91 ± 3.29 | 53.96 ± 4.56 |
TC a | 81.77 ± 1.01 | 70.22 ± 2.11 | 94.08 ± 1.12 | 94.61 ± 2.79 |
Compound | Regression Equation | EC50 (μg/mL) | R | 95% Confidence Interval (μg/mL) |
---|---|---|---|---|
5b | y = 2.8756x + 0.3829 | 40.33 | 0.9968 | 38.8746~41.8389 |
5h | y = 0.9926x + 4.1827 | 6.66 | 0.9939 | 5.7179~7.7540 |
5i | y = 1.6460x + 3.5886 | 7.20 | 0.9876 | 5.7379~9.0397 |
5k | y = 2.0550x + 4.2855 | 2.23 | 0.9839 | 1.8839~2.6321 |
E1 | y = 2.3853x + 0.6007 | 69.87 | 0.9913 | 66.5255~73.3804 |
TC a | y = 4.0362x − 1.9266 | 52.01 | 0.9874 | 49.5261~54.6281 |
Compound | Average Inhibition Rate ± SD (%) (n = 3) | |||
---|---|---|---|---|
S. sclerotiorum | R. solani | M. oryzae | C. gloeosporioides | |
5a | 32.14 ± 2.16 | 30.65 ± 1.60 | 28.57 ± 0.26 | 28.27 ± 1.12 |
5b | 90.48 ± 0.95 | 72.32 ± 1.93 | 55.36 ± 2.00 | 52.98 ± 0.26 |
5c | 67.85 ± 0.18 | 40.78 ± 0.66 | 15.70 ± 0.60 | 16.12 ± 1.89 |
5d | 33.04 ± 1.57 | 23.21 ± 0.87 | 29.46 ± 2.12 | 26.19 ± 1.06 |
5e | 17.81 ± 1.06 | 52.85 ± 2.37 | 19.11 ± 2.08 | 33.22 ± 2.95 |
5f | 50.00 ± 1.18 | 38.69 ± 1.34 | 31.25 ± 1.81 | 25.89 ± 0.80 |
5g | <10 | 31.78 ± 2.69 | 34.13 ± 1.59 | 24.34 ± 1.51 |
5h | 82.14 ± 2.50 | 57.44 ± 0.27 | 38.99 ± 0.28 | 45.83 ± 1.47 |
5i | 83.63 ± 1.22 | 52.98 ± 1.99 | 31.85 ± 1.30 | 38.69 ± 1.16 |
5j | 69.05 ± 3.08 | 54.76 ± 1.55 | 30.95 ± 1.10 | 42.56 ± 1.29 |
5k | 59.52 ± 1.10 | 40.48 ± 1.35 | 41.96 ± 1.41 | 43.15 ± 0.99 |
5l | 32.14 ± 0.29 | 39.88 ± 1.97 | 26.49 ± 0.57 | 35.42 ± 1.64 |
5m | 50.00 ± 2.32 | 27.98 ± 5.13 | 22.02 ± 0.55 | 33.04 ± 1.49 |
5n | 55.36 ± 3.17 | 49.40 ± 1.29 | 33.63 ± 1.07 | 33.93 ± 1.96 |
5o | 23.51 ± 0.35 | 33.63 ± 1.30 | 48.51 ± 0.26 | 41.37 ± 0.27 |
5p | 80.06 ± 1.74 | 31.55 ± 1.19 | 22.62 ± 0.70 | 31.85 ± 0.31 |
TA a | 72.92 ± 2.17 | 98.51 ± 0.51 | 25.89 ± 0.80 | 26.49 ± 0.83 |
CB b | 98.21 ± 0.02 | 100 | 100 | 96.13 ± 0.55 |
Compound | Regression Equation | EC50 (μg/mL) | R | 95% Confidence Interval (μg/mL) |
---|---|---|---|---|
5b | y = 2.6485x + 5.7650 | 0.51 | 0.9909 | 0.4866~0.5434 |
5h | y = 0.8442x + 4.7364 | 2.05 | 0.9900 | 1.7718~2.3774 |
5i | y = 1.2347x + 4.2044 | 4.41 | 0.9875 | 3.9479~4.9250 |
5p | y = 1.0462x + 3.9694 | 9.66 | 0.9920 | 8.7037~10.7238 |
TA a | y = 5.3568x + 2.6885 | 27.24 | 0.9973 | 26.6736~27.8262 |
CB b | y = 3.6088x + 5.8723 | 0.57 | 0.9919 | 0.5440~0.6040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, G.; Tian, Y.; Shi, J.; Liao, C.; Huang, W.; Wu, Y.; Wen, Z.; Yu, L.; Zhu, X.; Li, J. Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety. Molecules 2024, 29, 285. https://doi.org/10.3390/molecules29020285
Mao G, Tian Y, Shi J, Liao C, Huang W, Wu Y, Wen Z, Yu L, Zhu X, Li J. Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety. Molecules. 2024; 29(2):285. https://doi.org/10.3390/molecules29020285
Chicago/Turabian StyleMao, Guoqing, Yao Tian, Jinchao Shi, Changzhou Liao, Weiwei Huang, Yiran Wu, Zhou Wen, Linhua Yu, Xiang Zhu, and Junkai Li. 2024. "Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety" Molecules 29, no. 2: 285. https://doi.org/10.3390/molecules29020285
APA StyleMao, G., Tian, Y., Shi, J., Liao, C., Huang, W., Wu, Y., Wen, Z., Yu, L., Zhu, X., & Li, J. (2024). Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety. Molecules, 29(2), 285. https://doi.org/10.3390/molecules29020285