Application of the Bland–Altman and Receiver Operating Characteristic (ROC) Approaches to Study Isotope Effects in Gas Chromatography–Mass Spectrometry Analysis of Human Plasma, Serum and Urine Samples
Abstract
:1. Introduction
2. Methods
2.1. GC-MS Analyses in Human Plasma, Serum and Urine Samples
2.2. Calculations
2.3. Statistical Analyses and Data Presentation
3. Results
3.1. Bland–Altman and ROC Approaches to Study Isotope Effects in GC-MS in Biological Samples
3.2. Isotope Effects as a Measure of Matrix Effects in GC-MS: Proof-of-Concept Studies
3.2.1. GC-MS Analysis of Dimethyl Amine
- (1)
- A total of 10 µL of a 1 mM d6-DMA solution was introduced into autosampler glass vials;
- (2)
- A total of 10 µL of U, B, C or W was added (B, C and W contained d0-DMA at 0, 100 and 500 µM);
- (3)
- A total of 90 µL of W was added;
- (4)
- A total of 100 µL of 20 mM Na2CO3 was added.
3.2.2. GC-MS Analysis of Metformin
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biemann, K. Mass Spectrometry—Organic Chemical Applications; McGraw Hill: New York, NY, USA, 1962; p. 204. [Google Scholar]
- Lehmann, W.D. A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom. Rev. 2017, 36, 58–85. [Google Scholar] [CrossRef]
- Turowski, M.; Yamakawa, N.; Meller, J.; Kimata, K.; Ikegami, T.; Hosoya, K.; Tanaka, N.; Thornton, E.R. Deuterium isotope effects on hydrophobic interactions: The importance of dispersion interactions in the hydrophobic phase. J. Am. Chem. Soc. 2003, 125, 13836–13849. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Tsikas, D. Mass Spectrometry-Based Evaluation of the Bland-Altman Approach: Review, Discussion, and Proposal. Molecules 2023, 28, 4905. [Google Scholar] [CrossRef]
- Gucciardi, A.; Cogo, P.E.; Traldi, U.; Eaton, S.; Darch, T.; Simonato, M.; Ori, C.; Carnielli, V.P. Simplified method for microlitre deuterium measurements in water and urine by gas chromatography-high-temperature conversion-isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2097–2103. [Google Scholar] [CrossRef]
- Wong, W.W.; Roberts, S.B.; Racette, S.B.; Das, S.K.; Redman, L.M.; Rochon, J.; Bhapkar, M.V.; Clarke, L.L.; Kraus, W.E. The doubly labeled water method produces highly reproducible longitudinal results in nutrition studies. J. Nutr. 2014, 144, 777–783. [Google Scholar] [CrossRef]
- Wong, W.W.; Clarke, L.L. Accuracy of δ(18)O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 2252–2256. [Google Scholar] [CrossRef]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef]
- Tom, F. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Tsikas, D. A critical review and discussion of analytical methods in the L-arginine/nitric oxide area of basic and clinical research. Anal. Biochem. 2008, 379, 139–163. [Google Scholar] [CrossRef]
- Tsikas, D. Urinary Dimethylamine (DMA) and Its Precursor Asymmetric Dimethylarginine (ADMA) in Clinical Medicine, in the Context of Nitric Oxide (NO) and Beyond. J. Clin. Med. 2020, 9, 1843. [Google Scholar] [CrossRef]
- Tsikas, D. Simultaneous derivatization and quantification of the nitric oxide metabolites nitrite and nitrate in biological fluids by gas chromatography/mass spectrometry. Anal. Chem. 2000, 72, 4064–4072. [Google Scholar] [CrossRef]
- Tsikas, D.; Wolf, A.; Mitschke, A.; Gutzki, F.M.; Will, W.; Bader, M. GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. J. Chromatogr. B 2010, 878, 2582–2592. [Google Scholar] [CrossRef]
- Tsikas, D.; Schubert, B.; Gutzki, F.M.; Sandmann, J.; Frölich, J.C. Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J. Chromatogr. B 2003, 798, 87–99. [Google Scholar] [CrossRef]
- Tsikas, D.; Thum, T.; Becker, T.; Pham, V.V.; Chobanyan, K.; Mitschke, A.; Beckmann, B.; Gutzki, F.M.; Bauersachs, J.; Stichtenoth, D.O. Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: Evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J. Chromatogr. B 2007, 851, 229–239. [Google Scholar] [CrossRef]
- Mikuteit, M.; Baskal, B.; Klawitter, S.; Dopfer-Jablonka, A.; Behrens, G.M.N.; Müller, F.; Schröder, D.; Klawonn, F.; Steffens, S.; Tsikas, D. Amino acids, post-translational modifications, nitric oxide, and oxidative stress in serum and urine of long COVID and ex COVID human subjects. Amino Acids 2023, 55, 1173–1188. [Google Scholar] [CrossRef]
- Bollenbach, A.; Schutte, A.E.; Kruger, R.; Tsikas, D. An Ethnic Comparison of Arginine Dimethylation and Cardiometabolic Factors in Healthy Black and White Youth: The ASOS and African-PREDICT Studies. J. Clin. Med. 2020, 9, 844. [Google Scholar] [CrossRef]
- Baskal, S.; Bollenbach, A.; Henzi, B.; Hafner, P.; Fischer, D.; Tsikas, D. Stable-Isotope Dilution GC-MS Measurement of Metformin in Human Serum and Urine after Derivatization with Pentafluoropropionic Anhydride and Its Application in Becker Muscular Dystrophy Patients Administered with Metformin, l-Citrulline, or Their Combination. Molecules 2022, 27, 3850. [Google Scholar] [CrossRef]
- Carlson, R.V.; Boyd, K.M.; Webb, D.J. The revision of the Declaration of Helsinki: Past, present and future. Br. J. Clin. Pharmacol. 2004, 57, 695–713. [Google Scholar] [CrossRef]
- Hanff, E.; Eisenga, M.F.; Beckmann, B.; Bakker, S.J.L.; Tsikas, D. Simultaneous Pentafluorobenzyl Derivatization and GC-ECNICI-MS Measurement of Nitrite and Malondialdehyde in Human Urine: Close Positive Correlation between These Disparate Oxidative Stress Biomarkers. J. Chromatogr. B 2017, 1043, 167–175. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: A method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem. 1998, 70, 882–889. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Matuszewski, B.K. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J. Chromatogr. B 2006, 830, 293–300. [Google Scholar] [CrossRef]
- Cortese, M.; Gigliobianco, M.R.; Magnoni, F.; Censi, R.; Di Martino, P.D. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020, 25, 3047. [Google Scholar] [CrossRef]
- Panuwet, P.; Hunter, R.E., Jr.; D’Souza, P.E.; Chen, X.; Radford, S.A.; Cohen, J.R.; Marder, M.E.; Kartavenka, K.; Ryan, P.B.; Barr, D.B. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. [Google Scholar] [CrossRef]
- Erney, D.R.; Gillespie, A.M.; Gilvydis, D.M.; Poole, C.F. Explanation of the Matrix-Induced Chromatographic Response Enhancement of Organophosphorus Pesticides during Open-Tubular Column Gas-Chromatography with Splitless or Hot on-Column Injection and Flame Photometric Detection. J. Chromatogr. A 1993, 638, 57–63. [Google Scholar] [CrossRef]
- Schenck, F.J.; Lehotay, S.J. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food? J. Chromatogr. A 2000, 868, 51–61. [Google Scholar] [CrossRef]
- Hajslova, J.; Zrostlikova, J. Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices. J. Chromatogr. A 2003, 1000, 181–197. [Google Scholar] [CrossRef]
- Yu, S.; Xu, X.M. Study of matrix-induced effects in multi-residue determination of pesticides by online gel permeation chromatography-gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 963–977. [Google Scholar] [CrossRef]
- Colby, B.N.; McCaman, M.W. A comparison of calculation procedures for isotope dilution determinations using gas chromatography mass spectrometry. Biomed. Mass Spectrom. 1979, 6, 225–230. [Google Scholar] [CrossRef]
- Berg, T.; Strand, D.H. C-13 labelled internal standards-A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A 2011, 1218, 9366–9374. [Google Scholar] [CrossRef] [PubMed]
- Datta, K.; LaRue, R.; Permpalung, N.; Das, S.; Zhang, S.; Steinke, M.; Bushkin, Y.; Nosanchuk, J.D.; Marr, K.A. Development of an Interferon-Gamma Release Assay (IGRA) to Aid Diagnosis of Histoplasmosis. J. Clin. Microbiol. 2022, 60, e0112822. [Google Scholar] [CrossRef] [PubMed]
- Benchekroun, Y.; Dautraix, S.; Désage, M.; Brazier, J.L. Isotopic effects on retention times of caffeine and its metabolites 1,3,7-trimethyluric acid, theophylline, theobromine and paraxanthine. J. Chromatogr. B 1997, 688, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Laidler, K.J. Chemical Kinetics, 3rd ed.; Harper & Row: New York, NY, USA, 1987; ISBN 978-0-06-043862-3. [Google Scholar]
Analyte | Derivative | m/z | Retention Time (min) | IE | Δ (s) | PAR | Spearman PAR vs. δ |
---|---|---|---|---|---|---|---|
14N-Nitrite-U | PFB | 46 | 4.517 (0.05) | 1.00000 (0.05) | 0.07839 (115) | 0.227 ± 0.232 | none |
15N-Nitrite-U | PFB | 47 | 4.516 (0.00) | ||||
14N-Nitrate-U | PFB | 62 | 4.325 (0.02) | 1.00000 (0.05) | 0.10450 (165) | 0.947 ± 0.575 | r = 0.265 p = 0.037 |
15N-Nitrate-U | PFB | 63 | 4.323 (0.05) | ||||
14N-Nitrite-P | PFB | 46 | 4.521 (0.02) | 1.00000 (0.03) | 0.0228 (342) | 0.234 ± 0.175 | r = 0.217 p = 0.030 |
15N-Nitrite-P | PFB | 47 | 4.520 (0.03) | ||||
14N-Nitrate-P | PFB | 62 | 4.328 (0.06) | 1.00100 (0.06) | 0.1794 (82) | 0.69 ± 0.42 | none |
15N-Nitrate-P | PFB | 63 | 4.325 (0.01) | ||||
1H-Creatinine-U | PFB | 112 | 6.913 (0.02) | 1.00100 (0.02) | 0.6022 (13) | 0.602 ± 0.081 | r = 0.316 p = 0.019 |
2H3-Creatinine-U | PFB | 115 | 6.903 (0.01) | ||||
1H-Arg-P | d0Me-PFP | 586 | 5.729 (0.05) | 1.00200 (0.03) | 0.699 (13) | 2.14 ± 1.27 | none |
2H3-Arg-P | d3Me-PFP | 589 | 5.718 (0.05) | ||||
1H-ADMA-P | d0Me-PFP | 634 → 378 | 10.85 (0.02) | 1.00100 (0.02) | 0.9168 (12) | 0.493 ± 0.96 | none |
2H3-ADMA-P | d3Me-PFP | 637 → 378 | 10.84 (0.02) | ||||
1H-ADMA-U | d0Me-PFP | 634 → 378 | 10.97 (0.09) | 1.00100 (0.02) | 0.8538 (13) | 2.35 ± 1.26 | none |
2H3-ADMA-U | d3Me-PFP | 637 → 378 | 10.95 (0.09) | ||||
1H-DMA-U | PFBz | 240 | 3.520 (0.17) | 1.007 (0.14) | 1.502 (20) | 0.436 ± 0.348 | r = −0.183 p = 0.041 |
2H6-DMA-U | PFBz | 246 | 3.495 (0.17) |
(A) Bland–Altman | (B) ROC | ||||
---|---|---|---|---|---|
Analyte | δ (%) | SD (%) | 95% Lowest LOA | 95% Highest LOA | AUC (Mean ± SE) |
DMA-U (n = 62) | 0.714 | 0.143 | 0.4333 | 0.9946 | 0.9951 ± 0.0024 p < 0.0001 |
Arginine-P (n = 100) | 0.2035 | 0.02725 | 0.1501 | 0.2570 | 0.9932 ± 0.0054 p < 0.0001 |
Creatinine-U (n = 55) | 0.1453 | 0.01949 | 0.1071 | 0.1835 | 1.000 ± 0.000 p < 0.0001 |
ADMA-P (n = 50) | 0.1409 | 0.01698 | 0.1076 | 0.1742 | 1.000 ± 0.000 p < 0.0001 |
ADMA-U (n = 52) | 0.1298 | 0.01630 | 0.0979 | 0.1618 | 0.8299 ± 0.0384 p < 0.0001 |
Nitrate-P (n = 100) | 0.06909 | 0.05674 | −0.0421 | 0.1803 | 0.7951 ± 0.033 p < 0.0001 |
Nitrate-U (n = 62) | 0.04029 | 0.04625 | −0.0504 | 0.1309 | 0.7177 ± 0.0469 p < 0.0001 |
Nitrite-U (n = 52) | 0.02891 | 0.04768 | −0.0646 | 0.1224 | 0.6371 ± 0.050 p = 0.008 |
Nitrite-P (n = 100) | 0.00841 | 0.02879 | −0.0480 | 0.0648 | 0.5414 ± 0.041 p = 0.311 |
Analyte | Retention Time (min) | Wilcoxon Test (tR) | IE | Wilcoxon Test (IE) (U vs. S) | δ(s) | Wilcoxon Test (δ) (U vs. S) | AUC (tR) | AUC (IE) (U vs. S) | AUC (δ) (U vs. S) | Bland–Altman Percentage (tR) | Bland–Altman Percentage (IE) (U vs. S) | Bland–Altman Percentage (δ) (U vs. S) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
14N-Nitrate-U | 3.183 (0.18) | p < 0.0001 | 1.0010 (0.14) | Nitrate p < 0.0001 | 0.1482 (176) | Nitrate p < 0.0001 | 0.6037 ± 0.0432 p = 0.0196 | Nitrate 0.8131 ± 0.0352 p < 0.0001 | Nitrate 0.7894 ± 0.0352 p < 0.0001 | 0.078 ± 0.136 | Nitrate −0.228 ± 0.257 | Nitrate −128 ± 126 |
15N-Nitrate-U | 3.180 (0.18) | |||||||||||
14N-Nitrite-U | 3.398 (0.20) | p < 0.0001 | 1.0010 (0.17) | 0.3025 (117) | 0.6874 ± 0.0271 p < 0.0001 | 0.149 ± 0.174 | ||||||
15N-Nitrite-U | 3.393 (0.19) | |||||||||||
14N-Nitrate-S | 3.203 (0.16) | p < 0.0001 | 1.0030 (0.20) | Nitrite p = 0.0036 | 0.5859 (67) | Nitrite p < 0.0001 | 0.8756 ± 0.0432 p < 0.0001 | Nitrite 0.6184 ± 0.0437 p = 0.0077 | Nitrite 0.6485 ± 0.0422 p = 0.0008 | 0.305 ± 0.203 | Nitrite 0.099 ± 0.200 | Nitrite 99 ± 159 |
15N-Nitrate-S | 3.193 (0.03) | |||||||||||
14N-Nitrite-S | 3.408 (0.13) | p = 0.0005 | 1.0000 (0.12) | 0.0988 (245) | 0.5814 ± 0.0434 p = 0.652 | 0.048 ± 0.118 | ||||||
15N-Nitrite-S | 3.406 (0.15) | |||||||||||
1H-Creatinine-U | 7.133 (0.07) | p < 0.0001 | 1.0060 (0.11) | Creatinine p < 0.0001 | 2.675 (18) | Creatinine p < 0.0001 | 0.9959 ± 0.0047 p < 0.0001 | Creatinine 0.8727 ± 0.0263 p < 0.0001 | Creatinine 0.8694 ± 0.0268 p < 0.0001 | 0.627 ± 0.114 | Creatinine 0.217 ± 0.195 | Creatinine 47 ± 51 |
2H3-Creatinine-U | 7.089 (0.10) | |||||||||||
1H-Creatinine-S | 7.130 (0.02) | p < 0.0001 | 1.0040 (0.17) | 1.751 (41) | 0.9943 ± 0.0066 p < 0.0001 | 0.412 ± 0.167 | ||||||
2H3-Creatinine-S | 7.101 (0.17) |
Analyte, Matrix | Retention Time (min) | W or M-W Test (tR) | IE | M-W Test (IE) | δ(s) | M-W Test (δ) | Bland–Altman (δ) | AUC (δ) |
---|---|---|---|---|---|---|---|---|
d0-DMA-U | 7.166 (0.12) | p < 0.0001 | 1.004 (0.06) | 1.765 (16) | ||||
d6-DMA-U | 7.136 (0.16) | |||||||
d0-DMA-B | 7.154 (0.07) | p < 0.0001 | 1.004 (0.04) | U vs. B 0.1863 | 1.690 (10) | U vs. B p < 0.0001 | U vs. B 5.896 (15) % (−24–36) | U vs. B 0.7287 ± 0.0594 p < 0.0001 |
d6-DMA-B | 7.125 (0.079 | |||||||
d0-DMA-C | 7.155 (0.07) | p < 0.0001 | 1.004 (0.08) | U vs. C 0.3131 | 1.891 (18) | U vs. C p = 0.2984 | U vs. C −4.076 (21) % (−45–36) | U vs. C 0.5577 ± 0.0590 p = 0.3173 |
d6-DMA-C | 7.123 (0.07) | |||||||
d0-DMA-W | 7.118 (0.06) | p < 0.0001 | 1.004 (0.04) | U vs. W 0.1413 | 1.715 (10) | U vs. W p = 0.0017 | U vs. W 4.493 (14) % (−24–33) | U vs. W 0.6681 ± 0.0621 p = 0.0036 |
d6-DMA-W | 7.090 (0.02) |
Analyte-Matrix | tR (min) | W Test (tR) | IE | M-W Test (IE) | δ(s) | M-W Test (δ) | tR Bland–Altman | tR ROC | IE U vs. S | δ U vs. S |
---|---|---|---|---|---|---|---|---|---|---|
d0-METF-U | 3.628 (0.22) | p = 0.0002 | 1.014 (0.42) | U vs. S p < 0.0001 | 3.046 (30) | U vs. S p = 0.0003 | U 1.409 (0.4157) % (0.59–2.22) | U 1.000 ± 0.000% (1 to 1) p < 0.0001 | Bland–Altman 0.4889 (0.4291) % (−0.35–1.33) | Bland–Altman 39 (31) % (−23–101) |
d6-METF-U | 3.589 (0.23) | |||||||||
d0-METF-S | 3.630 (0.00) | p = 0.0005 | 1.009 (0.11) | 1.90 (12) | S 0.8762 ± 0.1083% (0.66–1.09) | S 1.000 ± 0.000% (1 to 1) p < 0.0001 | ROC 0.9679 ± 0.0297 p < 0.0001 | ROC 0.8846 ± 0.0709 p = 0.0011 | ||
d6-METF-S | 3.598 (0.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsikas, D. Application of the Bland–Altman and Receiver Operating Characteristic (ROC) Approaches to Study Isotope Effects in Gas Chromatography–Mass Spectrometry Analysis of Human Plasma, Serum and Urine Samples. Molecules 2024, 29, 365. https://doi.org/10.3390/molecules29020365
Tsikas D. Application of the Bland–Altman and Receiver Operating Characteristic (ROC) Approaches to Study Isotope Effects in Gas Chromatography–Mass Spectrometry Analysis of Human Plasma, Serum and Urine Samples. Molecules. 2024; 29(2):365. https://doi.org/10.3390/molecules29020365
Chicago/Turabian StyleTsikas, Dimitrios. 2024. "Application of the Bland–Altman and Receiver Operating Characteristic (ROC) Approaches to Study Isotope Effects in Gas Chromatography–Mass Spectrometry Analysis of Human Plasma, Serum and Urine Samples" Molecules 29, no. 2: 365. https://doi.org/10.3390/molecules29020365
APA StyleTsikas, D. (2024). Application of the Bland–Altman and Receiver Operating Characteristic (ROC) Approaches to Study Isotope Effects in Gas Chromatography–Mass Spectrometry Analysis of Human Plasma, Serum and Urine Samples. Molecules, 29(2), 365. https://doi.org/10.3390/molecules29020365