Screening of Secondary Metabolites Produced by Nigrospora sphaerica Associated with the Invasive Weed Cenchrus ciliaris Reveals Two New Structurally Related Compounds
Abstract
:1. Introduction
2. Results
2.1. Demonstration of Phytotoxicity in a Culture Filtrate Extract of Nigrospora sphaerica
2.2. Isolation and Characterization of Metabolites from Culture Filtrate Extract
2.3. GC-MS Analysis of Mycelial Crude Extract
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Fungal Isolation and Culture Conditions
4.3. Extraction of Culture Filtrates and Mycelium
4.4. Isolation of Metabolites from Culture Filtrate Extract
4.5. Acetylation of Nigrosphaeritriol (1)
4.6. Acetylation of Nigrosphaerilactol (2)
4.7. Reaction of Nigrosphaerilactone (3) with p-Bromobenzoyl Chloride
4.8. GC-MS Analysis
4.9. Crystallographic Structure Determination of 8-O-p-Bromobenzoylnigrosphaerilactone (18)
4.10. Seed Germination and Seedling Growth Bioassay
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seiber, J.N.; Coats, J.; Duke, S.O.; Gross, A.D. Biopesticides: State of the art and future opportunities. J. Agric. Food Chem. 2014, 62, 11613–11619. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sandín-España, P.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides from natural products: Current development, legislative framework, and future trends. BioResources 2016, 11, 5618–5640. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.Z.; Ismail, I.M.I. Pesticide contamination and human health risk factor. In Modern Age Environmental Problems and Their Remediation; Springer: Cham, Switzerland, 2017; pp. 1–237. ISBN 9783319645018. [Google Scholar]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Hashimi, M.H.; Hashimi, R.; Ryan, Q. Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. Asian Plant Res. J. 2020, 5, 37–47. [Google Scholar] [CrossRef]
- Liu, X.; Cao, A.; Yan, D.; Ouyang, C.; Wang, Q.; Li, Y. Overview of mechanisms and uses of biopesticides. Int. J. Pest Manag. 2021, 67, 65–72. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 2833. [Google Scholar] [CrossRef]
- Cheng, L.; DiTommaso, A.; Kao-Kniffin, J. Opportunities for microbiome suppression of weeds using regenerative agricultural technologies. Front. Soil Sci. 2022, 2, 838595. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Kumar Ahirwar, N.; Singh, R.; Chaurasia, S.; Chandra, R.; Prajapati, S.; Ramana, S. Effective role of beneficial microbes in achieving the sustainable agriculture and eco-friendly environment development goals: A review. Front. Environ. Microbiol. 2019, 5, 111. [Google Scholar] [CrossRef]
- Khursheed, A.; Rather, M.A.; Jain, V.; Wani, A.R.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef]
- Maciel, R.M.A.; de Freitas Bueno, A. The role of integrated pest management for sustainable food production: The soybean example. In Biodiversity, Functional Ecosystems and Sustainable Food Production; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 117–139. ISBN 9783031074349. [Google Scholar]
- Yaduraju, N.T.; Sharma, A.R.; Rao, A.N. Weeds in Indian agriculture: Problems and prospects to become self sufficient. Indian Farming 2015, 65, 2–6. [Google Scholar]
- Rao, A.N.; Singh, R.G.; Mahajan, G.; Wani, S.P. Weed research issues, challenges, and opportunities in India. Crop Prot. 2020, 134, 104451. [Google Scholar] [CrossRef]
- González Giro, Z.; Pedraza Olivera, R.; Lamadrid Mandado, R.; Hu, J.; Font Vila, L.; Sleutel, S.; Fievez, V.; De Neve, S. Invasive woody plants in the tropics: A delicate balance between control and harnessing potential benefits. A review. Agron. Sustain. Dev. 2023, 43, 2833. [Google Scholar] [CrossRef]
- Radosevich, S.R.; Holt, J.S.; Ghersa, C.M. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 9780471767794. [Google Scholar]
- Jarnevich, C.S.; Young, N.E.; Cullinane Thomas, C.; Grissom, P.; Backer, D.; Frid, L. Assessing ecological uncertainty and simulation model sensitivity to evaluate an invasive plant species’ potential impacts to the landscape. Sci. Rep. 2020, 10, 19069. [Google Scholar] [CrossRef]
- Gerst, K.L.; Crimmins, T.M.; Posthumus, E.; Marsh, R.L.; Switzer, J.; Wallace, C. The USA national phenology network’s buffelgrass green-up forecast map products. Ecol. Solut. Evid. 2021, 2, e12109. [Google Scholar] [CrossRef]
- Masi, M.; Freda, F.; Sangermano, F.; Calabrò, V.; Cimmino, A.; Cristofaro, M.; Meyer, S.; Evidente, A. Radicinin, a fungal phytotoxin as a target-specific bioherbicide for invasive buffelgrass (Cenchrus ciliaris) control. Molecules 2019, 24, 1086. [Google Scholar] [CrossRef]
- Berestetskiy, A. Modern approaches for the development of new herbicides based on natural compounds. Plants 2023, 12, 234. [Google Scholar] [CrossRef]
- Masi, M.; Meyer, S.; Górecki, M.; Mandoli, A.; Di Bari, L.; Pescitelli, G.; Cimmino, A.; Cristofaro, M.; Clement, S.; Evidente, A. Pyriculins A and B, two monosubstituted hex-4-ene-2,3-diols and other phytotoxic metabolites produced by Pyricularia grisea isolated from buffelgrass (Cenchrus ciliaris). Chirality 2017, 29, 726–736. [Google Scholar] [CrossRef]
- Siciliano, A.; Zorrilla, J.G.; Saviano, L.; Cimmino, A.; Guida, M.; Masi, M.; Meyer, S. Insights into the ecotoxicology of radicinin and (10S,11S)-(−)-epi-pyriculol, fungal metabolites with potential application for buffelgrass (Cenchrus ciliaris) biocontrol. Toxins 2023, 15, 405. [Google Scholar] [CrossRef]
- Masi, M.; Meyer, S.; Clement, S.; Pescitelli, G.; Cimmino, A.; Cristofaro, M.; Evidente, A. Chloromonilinic acids C and D, phytotoxic tetrasubstituted 3-chromanonacrylic acids isolated from Cochliobolus australiensis with potential herbicidal activity against buffelgrass (Cenchrus ciliaris). J. Nat. Prod. 2017, 80, 2771–2777. [Google Scholar] [CrossRef]
- Félix, C.; Salvatore, M.M.; DellaGreca, M.; Ferreira, V.; Duarte, A.S.; Salvatore, F.; Naviglio, D.; Gallo, M.; Alves, A.; Esteves, A.C.; et al. Secondary metabolites produced by grapevine strains of Lasiodiplodia theobromae grown at two different temperatures. Mycologia 2019, 111, 466–476. [Google Scholar] [CrossRef]
- Masi, M.; Nocera, P.; Boari, A.; Zonno, M.C.; Pescitelli, G.; Sarrocco, S.; Baroncelli, R.; Vannacci, G.; Vurro, M.; Evidente, A. Secondary metabolites produced by Colletotrichum lupini, the causal agent of anthachnose of lupin (Lupinus spp.). Mycologia 2020, 112, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xie, Z.; Wu, M.; Li, X.; Li, W.; Ding, W.; She, Z.; Li, C. New antimicrobial cyclopentenones from Nigrospora sphaerica ZMT05, a fungus derived from Oxya chinensis thunber. J. Agric. Food Chem. 2018, 66, 5368–5372. [Google Scholar] [CrossRef] [PubMed]
- Kiegiel, K.; Bałakier, T.; Kwiatkowski, P.; Jurczak, J. Diastereoselective allylation of N-glyoxyloyl-(2R)-bornane-10,2-sultam and (1R)-8-phenylmenthyl glyoxylate: Synthesis of (2S,4S)-2-hydroxy-4-hydroxymethyl-4-butanolide. Tetrahedron Asymmetry 2004, 15, 3869–3878. [Google Scholar] [CrossRef]
- Bohlmann, F.; Zdero, C. Neue cadinan-derivate aus Heterotheca subaxillaris. Phytochemistry 1979, 18, 1185–1187. [Google Scholar] [CrossRef]
- NIST 20. Available online: https://www.nist.gov/srd/nist-standard-reference-database-1a (accessed on 13 December 2023).
- Wang, M.; Liu, F.; Crous, P.W.; Cai, L. Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia Mol. Phylogeny Evol. Fungi 2017, 39, 118–142. [Google Scholar] [CrossRef]
- Xu, T.; Song, Z.; Hou, Y.; Liu, S.; Li, X.; Yang, Q.; Wu, S. Secondary metabolites of the genus Nigrospora from terrestrial and marine habitats: Chemical diversity and biological activity. Fitoterapia 2022, 161, 105254. [Google Scholar] [CrossRef]
- Choi, G.J.; Kim, J.-C.; Shon, M.J.; Kim, H.T.; Cho, K.Y. Phytotoxin production of Nigrospora sphaerica pathogenic on turfgrasses. Plant Pathol. J. 2000, 16, 137–141. [Google Scholar]
- Mira, Y.; Castañeda, D.; Morales, J.; Patiño, L. Phytopathogenic fungi with potential as biocontrol agents for weeds of importance in crops of Antioquia, Colombia. Egypt. J. Biol. Pest Control 2021, 31, 122. [Google Scholar] [CrossRef]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, M.M.; Alves, A.; Andolfi, A. Secondary metabolites of Lasiodiplodia theobromae: Distribution, chemical diversity, bioactivity, and implications of their occurrence. Toxins 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.K. Phytotoxic responses of soybean (Glycine max L.) to botryodiplodin, a toxin produced by the charcoal rot. Toxins 2020, 12, 25. [Google Scholar] [CrossRef]
- Renauld, F.; Moreau, S.; Lablache-Combier, A.; Tiffon, B. Botryodiplodin: A mycotoxin from Penicillium roqueforti: Reaction with amino-pyrimidines, amino-purines and 2′-deoxynucleosides. Tetrahedron 1985, 41, 955–962. [Google Scholar] [CrossRef]
- Cabedo, N.; López-Gresa, M.P.; Primo, J.; Ciavatta, M.L.; González-Mas, M.C. Isolation and structural elucidation of eight new related analogues of the mycotoxin (−)-botryodiplodin from Penicillium coalescens. J. Agric. Food Chem. 2007, 55, 6977–6983. [Google Scholar] [CrossRef] [PubMed]
- Marković, A.K.; Torić, J.; Barbarić, M.; Brala, C.J. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef]
- Chung, D.; Kim, S.Y.; Ahn, J.H. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci. Rep. 2017, 7, 2578. [Google Scholar] [CrossRef]
- Tonato, D.; Marcuz, C.; Vendruscolo, R.G.; Bevilacqua, C.; Jacques, R.J.S.; Wagner, R.; Kuhn, R.C.; Mazutti, M.A. Production of polyunsaturated fatty acids by microorganisms isolated in the Brazilian Pampa biome. Braz. J. Chem. Eng. 2018, 35, 835–846. [Google Scholar] [CrossRef]
- Tonato, D.; Luft, L.; Confortin, T.C.; Zabot, G.L.; Mazutti, M.A. Enhancement of fatty acids in the oil extracted from the fungus Nigrospora sp. by supercritical CO2 with ethanol as a cosolvent. J. Supercrit. Fluids 2019, 146, 180–188. [Google Scholar] [CrossRef]
- Peng, X.; Chen, H. Rapid estimation of single cell oil content of solid-state fermented mass using near-infrared spectroscopy. Bioresour. Technol. 2008, 99, 8869–8872. [Google Scholar] [CrossRef]
- Pupin, A.M.; Messias, C.L.; Piedrabuena, A.E.; Roberts, D.W. Total lipids and fatty acids of strains of Metarhizium anisopliae. Braz. J. Microbiol. 2000, 31, 121–128. [Google Scholar] [CrossRef]
- Devi, P.; Divya Shridhar, M.P.; D’Souza, L.; Naik, C.G. Cellular fatty acid composition of marine-derived fungi. Indian J. Mar. Sci. 2006, 35, 359–363. [Google Scholar]
- Kikukawa, H.; Sakuradani, E.; Nishibaba, Y.; Okuda, T.; Ando, A.; Shima, J.; Shimizu, S.; Ogawa, J. Production of cis-11-eicosenoic acid by Mortierella fungi. J. Appl. Microbiol. 2015, 118, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Kordowska-Wiater, M. Production of arabitol by yeasts: Current status and future prospects. J. Appl. Microbiol. 2015, 119, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Galdiero, E.; Salvatore, M.M.; Maione, A.; de Alteriis, E.; Andolfi, A.; Salvatore, F.; Guida, M. GC-MS-based metabolomics study of single-and dual-species biofilms of Candida albicans and Klebsiella pneumoniae. Int. J. Mol. Sci. 2021, 22, 3496. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, Y.; Razack, S.A.; Ponpandian, L.N.; Zhang, G.; Yun, J.; Huang, J.; Lee, D.; Li, X.; Dou, Y.; Qi, X. Microbial hosts for production of d-arabitol: Current state-of-art and future prospects. Trends Food Sci. Technol. 2022, 120, 100–110. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Software for Area Detector Absorptions and Other Corrections, Version 2.03; University of Göttingen: Göttingen, Germany, 2002. [Google Scholar]
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- MacRae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
1 | 16 | |||
---|---|---|---|---|
Position | δC c | δH (J in Hz) | HMBC c | δH (J in Hz) |
1 | 66.2 | 3.55 (1H) dd (10.7, 6.1) 3.51 (1H) dd (10.7, 5.9) | H-3, H3C-2′ | 4.03 (1H) dd (10.7, 6.0) 4.14 (1H) dd (10.7, 6.0) |
2 | 34.0 | 2.05 (1H) m | H2C-1, H-3, H-4, H2C-1′, H3C-2′ | 2.17 (1H) m |
3 | 48.7 | 1.60 (1H) m | H2C-1, H-4, H3C-5, H2C-1′, H3C-2′ | 1.95 (1H) m |
4 | 67.1 | 3.90 (1H) quint (6.4) | H3C-5, H2C-1′ | 5.13 (1H) quint (6.4) |
5 | 20.1 | 1.24 (3H) d (6.4) | H-3, H-4 | 1.27 (3H) d (6.4) |
1′ | 59.7 | 3.62 (2H) m | H-3, H-4 | 4.12 (2H) m |
2′ | 12.3 | 0.98 (3H) d (7.1) | H2C-1, H-3 | 0.99 (3H) d (7.1) |
C-OAc d | 2.10 (3H) s | |||
C-OAc d | 2.08 (3H) s | |||
C-OAc d | 2.07 (3H) s |
2A | 2B | |||||
---|---|---|---|---|---|---|
Position | δC c | δH (J in Hz) | HMBC c | δC c | δH (J in Hz) | HMBC c |
2 | 99.8 | 5.58 (1H) d (4.6) | H-4, H-5 | 101.3 | 5.51 (1H) d (2.8) | H-5 |
3 | 57.2 | 1.67 (1H) m | H-4, H-7 | 62.1 | 1.66 (1H) m | H-4, H-7 |
4 | 32.1 | 2.54 (1H) m | H-3, H-6 | 36.0 | 2.08 (1H) m | H-3, H-6 |
5 | 74.6 | 4.29 (1H) t (8.3) 3.47 (1H) t (8.3) | H-2, H-3, H-8 | 73.7 | 4.04 (1H) t (9.2) 3.68 (1H) t (9.2) | H-2, H-3 |
6 | 65.7 | 4.00 (1H) m | H-2 | 68.0 | 3.83 (1H) m | H-2 |
7 | 22.6 | 1.38 (3H) d (6.5) | H-3, H-6 | 22.6 | 1.31 (3H) d (6.3) | H-3, H-6 |
8 | 16.8 | 1.09 (3H) d (6.6) | H-3, H-4, H-5 | 16.8 | 1.13 (3H) d (6.4) | H-3, H-4, H-5 |
Name | Retention Time (Min) | Retention Index | Area % | |
---|---|---|---|---|
Glycerol (3TMS) | 7.74 | 1287 | 23.732 | |
Arabitol (5 TMS) | 12.228 | 1746 | 17.01 | |
C14:0 TMS | Myristic acid (TMS) | 12.751 | 1850 | 1.243 |
C16:0 EE | Palmitic acid (EE) | 13.357 | 1994 | 2.302 |
C16:0 TMS | Palmitic acid (TMS) | 13.545 | 2045 | 5.272 |
18:1n-9 EE | Oleic acid (EE) | 14.004 | 2173 | 5.651 |
C18:2n-6 TMS | Linoleic acid (TMS) | 14.157 | 2210 | 5.058 |
C18:1n-9 TMS | Oleic acid (TMS) | 14.31 | 2225 | 7.519 |
C18:0 TMS | Stearic acid (TMS) | 14.339 | 2240 | 11.689 |
C20:1n-9 TMS | Gondoic acid (TMS) | 14.969 | 2420 | 2.678 |
C20:0 TMS | Arachidic acid (TMS) | 15.069 | 2442 | 4.294 |
1-Monopalmitoylglycerol (2TMS) | 15.839 | 2592 | 1.228 | |
C22:0 TMS | Behenic acid (TMS) | 16.121 | 2637 | 4.089 |
1-Monooleoylglycerol (2TMS) | 17.068 | 2769 | 4.904 | |
C24:0 TMS | Lignoceric acid (TMS) | 17.68 | 2838 | 3.331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvatore, M.M.; Russo, M.T.; Meyer, S.; Tuzi, A.; Della Greca, M.; Masi, M.; Andolfi, A. Screening of Secondary Metabolites Produced by Nigrospora sphaerica Associated with the Invasive Weed Cenchrus ciliaris Reveals Two New Structurally Related Compounds. Molecules 2024, 29, 438. https://doi.org/10.3390/molecules29020438
Salvatore MM, Russo MT, Meyer S, Tuzi A, Della Greca M, Masi M, Andolfi A. Screening of Secondary Metabolites Produced by Nigrospora sphaerica Associated with the Invasive Weed Cenchrus ciliaris Reveals Two New Structurally Related Compounds. Molecules. 2024; 29(2):438. https://doi.org/10.3390/molecules29020438
Chicago/Turabian StyleSalvatore, Maria Michela, Maria Teresa Russo, Susan Meyer, Angela Tuzi, Marina Della Greca, Marco Masi, and Anna Andolfi. 2024. "Screening of Secondary Metabolites Produced by Nigrospora sphaerica Associated with the Invasive Weed Cenchrus ciliaris Reveals Two New Structurally Related Compounds" Molecules 29, no. 2: 438. https://doi.org/10.3390/molecules29020438
APA StyleSalvatore, M. M., Russo, M. T., Meyer, S., Tuzi, A., Della Greca, M., Masi, M., & Andolfi, A. (2024). Screening of Secondary Metabolites Produced by Nigrospora sphaerica Associated with the Invasive Weed Cenchrus ciliaris Reveals Two New Structurally Related Compounds. Molecules, 29(2), 438. https://doi.org/10.3390/molecules29020438