Synthesis of Indenones via Persulfate Promoted Radical Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Preparation of the Starting Materials
3.3. General Procedure for the Synthesis of 3a
3.4. Characterization Data of Products
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, J.H.; Shin, M.S.; Jung, S.H.; Kim, J.A.; Kim, H.M.; Kim, S.H.; Kang, S.K.; Kim, K.R.; Rhee, S.D.; Park, S.D.; et al. Synthesis and structure–activity relationship of novel indene N-oxide derivatives as potent peroxisome proliferator activated receptor γ (PPARγ) agonists. Bioorg. Med. Chem. Lett. 2007, 17, 5239–5244. [Google Scholar] [CrossRef] [PubMed]
- Vasilyev, A.V.; Walspurger, S.; Pale, P.; Sommer, J. A new, fast and efficient synthesis of 3-aryl indenones: Intramolecular cyclization of 1, 3-diarylpropynones in superacids. Tetrahedron Lett. 2004, 45, 3379–3381. [Google Scholar] [CrossRef]
- Morrell, A.; Placzek, M.; Parmley, S.; Grella, B.; Antony, S.; Pommier, Y.; Cushman, M. Optimization of the indenone ring of indenoisoquinoline topoisomerase I inhibitors. J. Med. Chem. 2007, 50, 4388–4404. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, K.; Lv, Q.; Chen, X.; Qu, L.; Yu, B. Recent applications of radical cascade reaction in the synthesis of functionalized 1-indenones. Chin. Chem. Lett. 2019, 30, 1361–1368. [Google Scholar] [CrossRef]
- Larock, R.C.; Tian, Q.; Pletnev, A. Carbocycle synthesis via carbopalladation of nitriles. J. Am. Chem. Soc. 1999, 121, 3238–3239. [Google Scholar] [CrossRef]
- Jiang, B.; Huang, M.; Hao, W.; Li, G.; Tu, S. Recent advances in radical transformations of internal alkynes. Chem. Commun. 2018, 54, 10791–10811. [Google Scholar]
- Yang, W.C.; Zhang, M.M.; Feng, J.G. Recent advances in the construction of spiro compounds via radical dearomatization. Adv. Synth. Catal. 2020, 362, 4446–4461. [Google Scholar] [CrossRef]
- Xu, G.-Q.; Xu, P.-F. Visible light organic photoredox catalytic cascade reactions. Chem. Commun. 2021, 57, 12914–12935. [Google Scholar] [CrossRef]
- Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. Cyclization Cascades via N-Amidyl Radicals toward Highly Functionalized Heterocyclic Scaffolds. J. Am. Chem. Soc. 2015, 137, 964–973. [Google Scholar] [CrossRef]
- Tang, B.; Liu, Y.; Lian, Y.; Liu, H. Radical Annulation using a Radical Reagent as a Two-Carbon Unit. Org. Biomol. Chem. 2022, 20, 9272–9281. [Google Scholar] [CrossRef]
- Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Recent advances in tandem selenocyclization and tellurocyclization with alkenes and alkynes. Org. Chem. Front. 2020, 7, 3100–3119. [Google Scholar] [CrossRef]
- Jiang, L.-L.; Qiu, H.; Zhou, Y.; Wang, L.-T.; Yang, W.-H.; Deng, C.; Wei, W.-T. Copper-catalyzed 1,2,2-trifunctionalization of maleimides with 1,7-enynes and oxime esters via radical relay/1,5-hydrogen-atom transfer. Org. Chem. Front. 2023, 10, 6096–6102. [Google Scholar] [CrossRef]
- Yang, W.; Chen, C.; Li, J.; Wang, Z. Radical denitrogenative transformations of polynitrogen heterocycles: Building C–N bonds and beyond. Chin. J. Catal. 2021, 42, 1865–1875. [Google Scholar] [CrossRef]
- Liao, J.; Yang, X.; Ouyang, L.; Lai, Y.; Huang, J.; Luo, R. Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Org. Chem. Front. 2021, 8, 1345–1363. [Google Scholar] [CrossRef]
- Zhang, M.-M.; Sun, Y.; Wang, W.-W.; Chen, K.-K.; Yang, W.-C.; Wang, L. Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates. Org. Biomol. Chem. 2021, 19, 3844–3849. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chen, X.-L.; Zhang, Y.-L.; Li, K.; Huang, X.-Q.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. Metal-free sulfonyl radical-initiated cascade cyclization to access sulfonated indolo[1,2-a]quinolines. Chem. Commun. 2019, 55, 12615–12618. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, S.-P.; Yang, W.-C. Divergent Construction of Thiochromanes and N-Arylbutanamides via Arylthiodifluoromethyl Radical-Triggered Cascade of Alkenes. J. Org. Chem. 2023, 88, 13279–13290. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Zhou, S.-F.; Cui, X. Metal-Free Sulfonylative Spirocyclization of Indolyl-ynones via Insertion of Sulfur Dioxide: Access to Sulfonated Spiro[cyclopentenone-1,3′-indoles]. Org. Lett. 2021, 23, 7992–7995. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Zeng, F.L.; Zhu, H.L.; Liu, Y.; Lv, Q.Y.; Chen, X.L.; Peng, L.; Yu, B. A Metal-Free Visible-Light-Promoted Phosphorylation/Cyclization Reaction in Water towards 3-Phosphorylated Benzothiophenes. Org. Chem. Front. 2020, 7, 1884–1889. [Google Scholar] [CrossRef]
- Manna, S.; Prabhu, K.R. Visible-Light-Mediated Vicinal Difunctionalization of Activated Alkynes with Boronic Acids: Substrate-Controlled Rapid Access to 3-Alkylated Coumarins and Unsaturated Spirocycles. Org. Lett. 2023, 25, 810–815. [Google Scholar] [CrossRef]
- Song, H.-Y.; Xiao, F.; Jiang, J.; Wu, C.; Ji, H.-T.; Lu, Y.-H.; Wang, K.-L.; He, W.-M. External photocatalyst-free C-H alkylation of N-sulfonyl ketimines with alkanes under visible light. Chin. Chem. Lett. 2023, 34, 108509. [Google Scholar] [CrossRef]
- Yang, D.; Yan, Q.; Zhu, E.; Lv, J.; He, W.-M. Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. Chin. Chem. Lett. 2022, 33, 1798–1816. [Google Scholar] [CrossRef]
- Yang, W.; Sun, Y.; Bao, X.; Zhang, S.; Shen, L. A general electron donor–acceptor complex enabled cascade cyclization of alkynes to access sulfur-containing heterocycle. Green Chem. 2023, 25, 3111–3116. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Shen, L.-Y.; Yang, W.-C.; Meng, F.; Li, P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org. Chem. Front. 2022, 9, 853–873. [Google Scholar] [CrossRef]
- Yang, W.; Yang, S.; Li, P.; Wang, L. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions. Chem. Commun. 2015, 51, 7520–7523. [Google Scholar] [CrossRef]
- Yang, W.-C.; Shen, L.-Y.; Li, J.N.; Feng, J.-G.; Li, P. Oxidative Cyclization of Aryl Ynones with NaNO2 for the Divergent Synthesis of NO2-Containing Spiro[5.5]trienones, Indenones and Thioflavones. Adv. Synth. Catal. 2022, 364, 3651–3656. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Struwe, J.; Feng, J.; Zhu, G.; Ackermann, L. Electrooxidative Dearomatization of Biaryls: Synthesis of Tri- and Difluoromethylated Spiro[5.5] trienones. Chem. Sci. 2021, 12, 10092–10096. [Google Scholar] [CrossRef]
- Yang, W.-C.; Zhang, M.-M.; Sun, Y.; Chen, C.-Y.; Wang, L. Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF3: Access to SCF3-Containing Spiro[5,5] trienones. Org. Lett. 2021, 23, 6691–6696. [Google Scholar] [CrossRef]
- Xia, D.; Duan, X.-F. Alkylative Dearomatization by Using an Unactivated Aryl Nitro Group as a Leaving Group: Access to Diversified Alkylated Spiro[5.5]trienones. Org. Lett. 2021, 23, 2548–2552. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Hu, B.; Ji, M.; Ye, S.; Zhu, G. Synthesis of Difluoromethylated and Phosphorated Spiro[5.5]-trienones via Dearomative Spirocyclization of Biaryl Ynones. Org. Lett. 2018, 20, 2988–2992. [Google Scholar] [CrossRef]
- Chen, S.; Yan, Q.; Fan, J.; Guo, C.; Li, L.; Liu, Z.Q.; Li, Z. Photo-induced spirocyclization of biaryl ynones with ammonium thiocyanate: Access to thiocyanate-featured spiro[5,5]trienones. Green Chem. 2023, 25, 153–160. [Google Scholar] [CrossRef]
- Yang, W.-C.; Sun, Y.; Shen, L.-Y.; Xie, X.; Yu, B. Photoinduced cyclization of aryl ynones with 4-alkyl-DHPs for the divergent synthesis of indenones, thioflavones and spiro[5.5] trienones. Mol. Catal. 2023, 535, 112819. [Google Scholar] [CrossRef]
- Zhang, M.M.; Shen, L.Y.; Dong, S.; Li, B.; Meng, F.; Si, W.J.; Yang, W.C. DTBP-Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro[5.5] trienones through C (sp3)−H Bond Functionalization. Eur. J. Org. Chem. 2021, 2021, 4465–4468. [Google Scholar] [CrossRef]
- Li, J.N.; Li, Z.J.; Shen, L.Y.; Li, P.; Zhang, Y.; Yang, W.C. Synthesis of polychloromethylated and halogenated spiro[5,5]trienones via dearomative spirocyclization of biaryl ynones. Org. Biomol. Chem. 2022, 20, 6659–6666. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zheng, Y.; Yang, H.; Yang, Q.Y.; Wu, L.Y.; Zhou, N. Iron-Catalyzed Silylation and Spirocyclization of Biaryl-Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv. Synth. Catal. 2022, 364, 1537–1542. [Google Scholar] [CrossRef]
- Xia, D.; Shen, L.Y.; Zhang, Y.; Yang, W.C. Radical spirocyclization of biaryl ynones for the construction of NO2-containing spiro[5.5]trienones. New J. Chem. 2022, 46, 20061–20064. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, X.; Zhou, S.F.; Cui, X. Visible light-induced selenylative spirocyclization of biaryl ynones toward the formation of selenated spiro[5.5]trienones. Org. Biomol. Chem. 2022, 20, 5779–5783. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Guo, C.; Yan, Q.; Zhou, H.; Wang, Y.; Liu, Z.-Q.; Li, Z. Nitro-Spirocyclization of Biaryl Ynones with tert-Butyl Nitrite: Access to NO2-Substituted Spiro[5.5]trienones. J. Org. Chem. 2023, 88, 4854–4862. [Google Scholar] [CrossRef]
- Raji Reddy, C.; Kolgave, D.H.; Ajaykumar, U.; Ramesh, R. Copper(II)-catalyzed oxidative ipsoannulation of N-arylpropiolamides and biaryl ynones with 1,3-diketones: Construction of diketoalkyl spiro-trienones. Org. Biomol. Chem. 2022, 20, 6879–6889. [Google Scholar] [CrossRef]
- Reddy, C.R.; Ajaykumar, U.; Patil, A.D.; Ramesh, R. ipso-Cyclization of unactivated biaryl ynones leading to thio-functionalized spirocyclic enones. Org. Biomol. Chem. 2023, 21, 6379–6388. [Google Scholar] [CrossRef]
- Samanta, S.; Sarkar, D. Photoredox-Catalyzed Thiocyanative Cyclization of Biaryl Ynones to Thiocyanated Spiro[5.5]trienones: An External-Oxidant- and Transition-Metal-Free Approach. ChemPhotoChem. 2023, 7, e202200335. [Google Scholar] [CrossRef]
- Goulart, H.A.; Bartz, R.H.; Peglow, T.J.; Barcellos, A.M.; Cervo, R.; Cargnelutti, R.; Jacob, R.G.; Lenardão, E.J.; Perin, G. Synthesis of Seleno-Dibenzocycloheptenones/Spiro[5.5]Trienones by Radical Cyclization of Biaryl Ynones. J. Org. Chem. 2022, 87, 4273–4283. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Duan, X.-F. Tandem vinyl radical Minisci-type annulation on pyridines: One-pot expeditious access to azaindenones. Chem. Commun. 2021, 57, 13570–13573. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Ran, Y.; Liu, G.; Liu, P.; Liu, X. Transition-metal-Free Radical Relay Cyclization of Vinyl Azides with 1,4-Dihydropyridines Involving a 1,5-Hydrogen-Atom Transfer: Access to α-Tetralone Scaffolds. Org. Chem. Front. 2020, 7, 3638–3647. [Google Scholar] [CrossRef]
- Jing, Q.; Qiao, F.; Sun, J.; Wang, J.; Zhou, M. Persulfate promoted carbamoylation of N-arylacrylamides and N-arylcinnamamides with 4-carbamoyl-Hantzsch esters. Org. Biomol. Chem. 2023, 21, 7530–7534. [Google Scholar] [CrossRef]
- Liu, X.; Liu, R.; Dai, J.; Cheng, X.; Li, G. Application of Hantzsch ester and Meyer nitrile in radical alkynylation reactions. Org. Lett. 2018, 20, 6906–6909. [Google Scholar] [CrossRef]
Entry | Oxidant | Solvent | Yield (%) b |
---|---|---|---|
1 | Na2S2O8 | acetone | 39 |
2 | Na2S2O8 | MeCN | 67 |
3 | Na2S2O8 | AcOEt | 56 |
4 | Na2S2O8 | MeCN/H2O (3:1) | 78 |
5 | Na2S2O8 | MeCN/H2O (2:1) | 70 |
6 | Na2S2O8 | MeCN/H2O (4:1) | 55 |
7 | Na2S2O8 | AcOEt/H2O (3:1) | 61 |
8 | K2S2O8 | MeCN/H2O (3:1) | 65 |
9 | (NH4)2S2O8 | MeCN/H2O (3:1) | 48 |
10 | TBHP | MeCN/H2O (3:1) | 22 |
11 | DTBP | MeCN/H2O (3:1) | 27 |
12 c | Na2S2O8 | MeCN/H2O (3:1) | 77 |
13 d | Na2S2O8 | MeCN/H2O (3:1) | 51 |
14 e | Na2S2O8 | MeCN/H2O (3:1) | 63 |
15 | - | MeCN/H2O (3:1) | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yu, L. Synthesis of Indenones via Persulfate Promoted Radical Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines. Molecules 2024, 29, 458. https://doi.org/10.3390/molecules29020458
Wang W, Yu L. Synthesis of Indenones via Persulfate Promoted Radical Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines. Molecules. 2024; 29(2):458. https://doi.org/10.3390/molecules29020458
Chicago/Turabian StyleWang, Wanwan, and Lei Yu. 2024. "Synthesis of Indenones via Persulfate Promoted Radical Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines" Molecules 29, no. 2: 458. https://doi.org/10.3390/molecules29020458
APA StyleWang, W., & Yu, L. (2024). Synthesis of Indenones via Persulfate Promoted Radical Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines. Molecules, 29(2), 458. https://doi.org/10.3390/molecules29020458