Exploring Spin Distribution and Electronic Properties in FeN4-Graphene Catalysts with Edge Terminations
Abstract
:1. Introduction
2. Results
2.1. Formation and Stability of Fe(II)N4 in ZGNR and AGNR Models
2.2. Ferromagnetic and Antiferromagnetic Spin Ordering at the ZGNR Edges
2.3. Magnetic and Electronic Properties as a Function of FeN4 Location and Edge Termination
2.4. Discussion: Implication for Catalysis
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Son, Y.W.; Cohen, M.L.; Louie, S.G. Half-Metallic Graphene Nanoribbons. Nature 2006, 444, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Yazyev, O.V. Emergence of Magnetism in Graphene Materials and Nanostructures. Rep. Prog. Phys. 2010, 73, 056501. [Google Scholar] [CrossRef]
- Yazyev, O.V. A Guide to the Design of Electronic Properties of Graphene Nanoribbons. Acc. Chem. Res. 2013, 46, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
- Ejg, S.; Ayuela, A.; Sánchez-Portal, D. First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties. New J. Phys. 2010, 12, 053012. [Google Scholar] [CrossRef]
- Gao, S.; Yang, L. Edge-Insensitive Magnetism and Half Metallicity in Graphene Nanoribbons. J. Phys. Condens. Matter 2018, 30, 48LT01. [Google Scholar] [CrossRef] [PubMed]
- Ota, N.; Gorjizadeh, N.; Kawazoe, Y. Multiple Spin State Analysis in Radical Carbon Edge and Oxygen Edge Graphene-like Molecules. J. Magn. Soc. Jpn. 2011, 35, 414–419. [Google Scholar] [CrossRef]
- Ota, N.; Gorjizadeh, N.; Kawazoe, Y. Multiple Spin State Analysis of Magnetic Nano Graphene. J. Magn. Soc. Jpn. 2011, 35, 360–365. [Google Scholar] [CrossRef]
- Popov, Z.I.; Mikhaleva, N.S.; Visotin, M.A.; Kuzubov, A.A.; Entani, S.; Naramoto, H.; Sakai, S.; Sorokin, P.B.; Avramov, P.V. The Electronic Structure and Spin States of 2D Graphene/VX2 (X = S, Se) Heterostructures. Phys. Chem. Chem. Phys. 2016, 18, 33047–33052. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.; Hobza, P. Understanding the Spin-Dependent Electronic Properties of Symmetrically Far-Edge Doped Zigzag Graphene Nanoribbon from a First Principles Study. RSC Adv. 2017, 7, 46604–46614. [Google Scholar] [CrossRef]
- Wu, F.; Kan, E.; Xiang, H.; Wei, S.H.; Whangbo, M.H.; Yang, J. Magnetic States of Zigzag Graphene Nanoribbons from First Principles. Appl. Phys. Lett. 2009, 94, 223105. [Google Scholar] [CrossRef]
- Zhang, W.X.; He, C.; Li, T.; Gong, S.B. Tuning Electronic and Magnetic Properties of Zigzag Graphene Nanoribbons with a Stone-Wales Line Defect by Position and Axis Tensile Strain. RSC Adv. 2015, 5, 33407–33413. [Google Scholar] [CrossRef]
- Brede, J.; Merino-Díez, N.; Berdonces, A.; Sanz, S.; Domínguez-Celorrio, A.; Lobo-Checa, J.; Vilas-Varela, M.; Peña, D.; Frederiksen, T.; Pascual, J.I.; et al. Detecting the Spin-Polarization of Edge States in Graphene Nanoribbons. Nat. Commun. 2023, 14, 6677. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, B.; Švec, M.; Hapala, P.; Redondo, J.; Krejčí, O.; Lo, R.; Manna, D.; Sarmah, A.; Nachtigallová, D.; Tuček, J.; et al. Non-Covalent Control of Spin-State in Metal-Organic Complex by Positioning on N-Doped Graphene. Nat. Commun. 2018, 9, 2831. [Google Scholar] [CrossRef]
- Kinikar, A.; Xu, X.; Di Giovannantonio, M.; Gröning, O.; Eimre, K.; Pignedoli, C.A.; Müllen, K.; Narita, A.; Ruffieux, P.; Fasel, R. On-Surface Synthesis of Edge-Extended Zigzag Graphene Nanoribbons. Adv. Mater. 2023, 35, 2306311. [Google Scholar] [CrossRef]
- Bundaleska, N.; Dias, A.; Bundaleski, N.; Felizardo, E.; Henriques, J.; Tsyganov, D.; Abrashev, M.; Valcheva, E.; Kissovski, J.; Ferraria, A.M.; et al. Prospects for Microwave Plasma Synthesized N-Graphene in Secondary Electron Emission Mitigation Applications. Sci. Rep. 2020, 10, 13013. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Tanaka, H.; Kubo, S.; Sato, S. Unveiling Bonding States and Roles of Edges in Nitrogen-Doped Graphene Nanoribbon by X-Ray Photoelectron Spectroscopy. Carbon 2021, 185, 342–367. [Google Scholar] [CrossRef]
- Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.; Gan, L.; Kang, F. Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N4 Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Adv. Funct. Mater. 2019, 29, 1906174. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Katsnelson, M.I. Chemical Functionalization of Graphene with Defects. Nano Lett. 2008, 8, 4374–4379. [Google Scholar] [CrossRef]
- Liao, M.S.; Scheiner, S. Electronic Structure and Bonding in Metal Porphyrins, Metal = Fe, Co, Ni, Cu, Zn. J. Chem. Phys. 2002, 117, 205–219. [Google Scholar] [CrossRef]
- Yu, G.; Lü, X.; Jiang, L.; Gao, W.; Zheng, Y. Structural, Electronic and Magnetic Properties of Transition-Metal Embedded Zigzag-Edged Graphene Nanoribbons. J. Phys. D Appl. Phys. 2013, 46, 375303. [Google Scholar] [CrossRef]
- Kattel, S. Magnetic Properties of 3d Transition Metals and Nitrogen Functionalized Armchair Graphene Nanoribbon. RSC Adv. 2013, 3, 21110–21117. [Google Scholar] [CrossRef]
- Jiang, R.; Qiao, Z.; Xu, H.; Cao, D. Novel 2D Carbon Material T-Graphene Supported 3d Transition Metal Single Atoms as Efficient Oxygen Reduction Catalysts. Nanoscale 2023, 15, 16775–16783. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Zhao, J.X.; Wu, H.; Cai, Q.H.; Wang, X.G.; Wang, X.Z. Chemical Functionalization of Pyridine-like and Porphyrin-like Nitrogen-Doped Carbon (CNx) Nanotubes with Transition Metal (TM) Atoms: A Theoretical Study. Theor. Chem. Acc. 2010, 127, 727–733. [Google Scholar] [CrossRef]
- Chan, K.T.; Neaton, J.B.; Cohen, M.L. First-Principles Study of Metal Adatom Adsorption on Graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 235430. [Google Scholar] [CrossRef]
- Longo, R.C.; Carrete, J.; Ferrer, J.; Gallego, L.J. Structural, Magnetic, and Electronic Properties of Nin and Fen Nanostructures (N = 1–4) Adsorbed on Zigzag Graphene Nanoribbons. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 115418. [Google Scholar] [CrossRef]
- Zheng, S.; Yan, X.; Yang, Y.; Xu, J. Identifying Structure-Property Relationships through SMILES Syntax Analysis with Self-Attention Mechanism. J. Chem. Inf. Model. 2019, 59, 914–923. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. Spin Gapless Semiconductor-Metal-Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons. ACS Nano 2009, 3, 1952–1958. [Google Scholar] [CrossRef]
- Holby, E.F.; Taylor, C.D. Control of Graphene Nanoribbon Vacancies by Fe and N Dopants: Implications for Catalysis. Appl. Phys. Lett. 2012, 101, 064102. [Google Scholar] [CrossRef]
- Luo, F.; Roy, A.; Silvioli, L.; Cullen, D.A.; Zitolo, A.; Sougrati, M.T.; Oguz, I.C.; Mineva, T.; Teschner, D.; Wagner, S.; et al. Author Correction: P-Block Single-Metal-Site Tin/Nitrogen-Doped Carbon Fuel Cell Cathode Catalyst for Oxygen Reduction Reaction (Nature Materials, (2020), 19, 11, (1215-1223), 10.1038/S41563-020-0717-5). Nat. Mater. 2023, 22, 146. [Google Scholar] [CrossRef]
- Kaiser, S.K.; Chen, Z.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120, 11703–11809. [Google Scholar] [CrossRef]
- Kattel, S.; Atanassov, P.; Kiefer, B. A Density Functional Theory Study of Oxygen Reduction Reaction on Non-PGM Fe-Nx-C Electrocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 13800–13806. [Google Scholar] [CrossRef]
- Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of Catalytic Sites for Oxygen Reduction in Iron- and Nitrogen-Doped Graphene Materials. Nat. Mater. 2015, 14, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J.; Jia, Q.; Stamatin, S.; Harrington, G.F.; Lyth, S.M.; Krtil, P.; Mukerjee, S.; et al. Identification of Catalytic Sites in Cobalt-Nitrogen-Carbon Materials for the Oxygen Reduction Reaction. Nat. Commun. 2017, 8, 957. [Google Scholar] [CrossRef]
- Ju, W.; Bagger, A.; Hao, G.P.; Varela, A.S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding Activity and Selectivity of Metal-Nitrogen-Doped Carbon Catalysts for Electrochemical Reduction of CO2. Nat. Commun. 2017, 8, 944. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, Y.; Yang, W.; Liu, N.; Chen, X. The Relationship between the Local Environment, N-Type, Spin State and Catalytic Functionality of Carbon-Hosted FeII/III-N4 for the Conversion of CO2 to CO. Phys. Chem. Chem. Phys. 2023, 25, 18889–18902. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Li, Q.K.; Cheng, J.; Liu, L.; Yan, Q.; Wu, Y.; Zhang, X.H.; Wang, Z.Y.; Qiu, Q.; Luo, Y. Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709. [Google Scholar] [CrossRef] [PubMed]
- Kattel, S.; Wang, G. A Density Functional Theory Study of Oxygen Reduction Reaction on Me-N 4 (Me = Fe, Co, or Ni) Clusters between Graphitic Pores. J. Mater. Chem. A Mater. 2013, 1, 10790–10797. [Google Scholar] [CrossRef]
- Fei, H.; Dong, J.; Feng, Y.; Allen, C.S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H.; et al. General Synthesis and Definitive Structural Identification of MN4C4 Single-Atom Catalysts with Tunable Electrocatalytic Activities. Nat. Catal. 2018, 1, 63–72. [Google Scholar] [CrossRef]
- Ma, J.; Wang, L.; Deng, Y.; Zhang, W.; Wu, T.; Song, Y. Mass production of high-performance single atomic FeNC electrocatalysts via sequenced ultrasonic atomization and pyrolysis process. Sci. China Mater. 2021, 64, 631–641. [Google Scholar] [CrossRef]
- Saputro, A.G.; Kasai, H. Oxygen Reduction Reaction on Neighboring Fe-N4 and Quaternary-N Sites of Pyrolized Fe/N/C Catalyst. Phys. Chem. Chem. Phys. 2015, 17, 3059–3071. [Google Scholar] [CrossRef]
- Sougrati, M.T.; Goellner, V.; Schuppert, A.K.; Stievano, L.; Jaouen, F. Probing Active Sites in Iron-Based Catalysts for Oxygen Electro-Reduction: A Temperature-Dependent 57Fe Mössbauer Spectroscopy Study. Catal. Today 2016, 262, 110–120. [Google Scholar] [CrossRef]
- Mineva, T.; Matanovic, I.; Atanassov, P.; Sougrati, M.T.; Stievano, L.; Clémancey, M.; Kochem, A.; Latour, J.M.; Jaouen, F. Understanding Active Sites in Pyrolyzed Fe-N-C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and 57Fe Mössbauer Spectroscopy. ACS Catal. 2019, 9, 9359–9371. [Google Scholar] [CrossRef]
- Li, J.; Sougrati, M.T.; Zitolo, A.; Ablett, J.M.; Oğuz, I.C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I.; et al. Identification of Durable and Non-Durable FeNx Sites in Fe–N–C Materials for Proton Exchange Membrane Fuel Cells. Nat. Catal. 2021, 4, 10–19. [Google Scholar] [CrossRef]
- Szakacs, C.E.; Lefèvre, M.; Kramm, U.I.; Dodelet, J.P.; Vidal, F. A Density Functional Theory Study of Catalytic Sites for Oxygen Reduction in Fe/N/C Catalysts Used in H2/O2 Fuel Cells. Phys. Chem. Chem. Phys. 2014, 16, 13654–13661. [Google Scholar] [CrossRef]
- Kramm, U.I.; Abs-Wurmbach, I.; Herrmann-Geppert, I.; Radnik, J.; Fiechter, S.; Bogdanoff, P. Influence of the Electron-Density of FeN[Sub 4]-Centers Towards the Catalytic Activity of Pyrolyzed FeTMPPCl-Based ORR-Electrocatalysts. J. Electrochem. Soc. 2011, 158, B69. [Google Scholar] [CrossRef]
- Wagner, S.; Auerbach, H.; Tait, C.E.; Martinaiou, I.; Kumar, S.C.N.; Kübel, C.; Sergeev, I.; Wille, H.C.; Behrends, J.; Wolny, J.A.; et al. Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear- and Electron-Resonance Techniques. Angew. Chem. Int. Ed. 2019, 58, 10486–10492. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Liu, L.; Yan, Q.; Li, Q.K.; Wang, Y.; Deng, M.; Qiu, Q. Strong Current Polarization and Perfect Negative Differential Resistance in Few-FeN4-Embedded Zigzag Graphene Nanoribbons. Phys. Chem. Chem. Phys. 2017, 19, 2674–2678. [Google Scholar] [CrossRef]
- Wu, L.; Cao, X.; Hu, W.; Ji, Y.; Zhu, Z.Z.; Li, X.F. Improving the Oxygen Reduction Reaction Activity of FeN4-Graphene via Tuning Electronic Characteristics. ACS Appl. Energy Mater. 2019, 2, 6634–6641. [Google Scholar] [CrossRef]
- Cervantes-Sodi, F.; Csányi, G.; Piscanec, S.; Ferrari, A.C. Edge-Functionalized and Substitutionally Doped Graphene Nanoribbons: Electronic and Spin Properties. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 165427. [Google Scholar] [CrossRef]
- Holby, E.F.; Wu, G.; Zelenay, P.; Taylor, C.D. Structure of Fe − N. J. Phys. Chem. C 2014, 118, 14388–14393. [Google Scholar]
- Yu, S.S.; Zheng, W.T.; Wen, Q.B.; Jiang, Q. First Principle Calculations of the Electronic Properties of Nitrogen-Doped Carbon Nanoribbons with Zigzag Edges. Carbon 2008, 46, 537–543. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, W.; Sun, L.; Krasheninnikov, A. V Gold-Embedded Zigzag Graphene Nanoribbons as Spin Gapless Semiconductors. Phys. Rev. B 2012, 86, 195418. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J.K. Theoretical Surface Science and Catalysis—Calculations and Concepts. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2000; Volume 45, pp. 71–129. ISBN 0360-0564. [Google Scholar]
- Groome, C.; Ngo, H.; Li, J.; Wang, C.S.; Wu, R.; Ragan, R. Influence of Magnetic Moment on Single Atom Catalytic Activation Energy Barriers. Catal. Lett. 2022, 152, 1347–1357. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Erratum: Generalized Gradient Approximation Made Simple (Physical Review Letters (1996) 77 (3865)). Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Tang, S.; Case, D.A. Vibrational Averaging of Chemical Shift Anisotropies in Model Peptides. J. Biomol. NMR 2007, 38, 255–266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
FeN4 Position | A1 | B | B1 | C | C1 |
---|---|---|---|---|---|
μTotal | −2.00 | 2.02 | −1.97 | −0.09 | 4.00 |
μFe | −2.04 | 1.99 | −2.10 | −2.02 | 2.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oguz, I.C.; Jaouen, F.; Mineva, T. Exploring Spin Distribution and Electronic Properties in FeN4-Graphene Catalysts with Edge Terminations. Molecules 2024, 29, 479. https://doi.org/10.3390/molecules29020479
Oguz IC, Jaouen F, Mineva T. Exploring Spin Distribution and Electronic Properties in FeN4-Graphene Catalysts with Edge Terminations. Molecules. 2024; 29(2):479. https://doi.org/10.3390/molecules29020479
Chicago/Turabian StyleOguz, Ismail Can, Frederic Jaouen, and Tzonka Mineva. 2024. "Exploring Spin Distribution and Electronic Properties in FeN4-Graphene Catalysts with Edge Terminations" Molecules 29, no. 2: 479. https://doi.org/10.3390/molecules29020479
APA StyleOguz, I. C., Jaouen, F., & Mineva, T. (2024). Exploring Spin Distribution and Electronic Properties in FeN4-Graphene Catalysts with Edge Terminations. Molecules, 29(2), 479. https://doi.org/10.3390/molecules29020479