Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Phenolic Compound Profiles of LS and TS
2.2. Antioxidant Properties of LS and TS
2.3. Anticholinergic Effect of LS and TS
2.4. Antibacterial Effects of LS and TS
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Preparation of Extracts
3.4. Phenolic Compound Analysis by LC-MS/MS
3.5. Ferric Reducing Power Assay
3.6. Cu2+ Reducing Assay
3.7. DPPH Radical Scavenging Assay
3.8. ABTS Radical Scavenging Assay
3.9. Anticholinergic Assay
3.10. Antibacterial Activity Using the Minimum Inhibitory Concentration (MIC) Method
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Abu-Darwish, M.S.; Tarawneh, A.H.; Cabral, C.; Gadetskaya, A.V.; Salgueiro, L.; Hosseinabadi, T.; Rajabi, S.; Chanda, W.; Sharifi-Rad, M. Thymus spp. plants-Food applications and phytopharmacy properties. Trends Food Sci. Technol. 2019, 85, 287–306. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Maksimović, M. Chemical composition and bioactivity of essential oil from Thymus species in Balkan Peninsula. Phytochem. Rev. 2015, 14, 335–352. [Google Scholar]
- Judd, W.S.; Campbell, C.S.; Kellogg, E.A.; Stevens, P.F.; Donoghue, M.J. Plant systematics: A phylogenetic approach. Ecol. Mediterránea 1999, 25, 215. [Google Scholar]
- González-Tejero, M.R.; Casares-Porcel, M.; Sánchez-Rojas, C.P.; Ramiro-Gutiérrez, J.M.; Molero-Mesa, J.; Pieroni, A.; Giusti, M.E.; Censorii, E.; De Pasquale, C.; Della, A. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J. Ethnopharmacol. 2008, 116, 341–357. [Google Scholar]
- Upson, T.; Andrews, S. The Genus Lavandula. Kew: Royal Botanic Gardens; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- Carrasco, A.; Ortiz-Ruiz, V.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula stoechas essential oil from Spain: Aromatic profile determined by gas chromatography–mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities. Ind. Crops Prod. 2015, 73, 16–27. [Google Scholar] [CrossRef]
- Turgut, A.C.; Emen, F.M.; Canbay, H.S.; Demirdöğen, R.E.; Cam, N.; Kılıç, D.; Yeşilkaynak, T. Chemical characterization of Lavandula angustifolia Mill. which is a phytocosmetic species and investigation of its antimicrobial effect in cosmetic products. J. Turk. Chem. Soc. Sect. A Chem. 2017, 4, 283–298. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Benzarti, A.; Marongiu, B.; Maxia, A.; Piras, A.; Salgueiro, L. Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind. Crops Prod. 2013, 44, 97–103. [Google Scholar]
- Saadi, B.; Msanda, F.; Boubaker, H. Contributions of folk medicine knowledge in Southwestern Morocco: The case of rural communities of Imouzzer Ida Outanane Region. Int. J. Med. Plant Res. 2013, 2, 135–145. [Google Scholar]
- Edwards, S.E.; da Costa Rocha, I.; Williamson, E.M.; Heinrich, M. Phytopharmacy: An Evidence-Based Guide to Herbal Medicinal Products; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Farsam, H.; Ahmadıan, A.S.; Khalaj, A.; Kamalinejad, M.; Shahrokh, R.; Ahmadıan, A.M.M. The Story of Stoechas: From Antiquity to the Present Day. Res. Hist. Med. 2016, 5, 69–86. [Google Scholar]
- Kageyama, A.; Ueno, T.; Oshio, M.; Masuda, H.; Horiuchi, H.; Yokogoshi, H. Antidepressant-like effects of an aqueous extract of lavender (Lavandula angustifolia Mill.) in rats. Food Sci. Technol. Res. 2012, 18, 473–479. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.B.; Romano, A. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem. Toxicol. 2013, 57, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula essential oils: A current review of applications in medicinal, food, and cosmetic industries of lavender. Nat. Prod. Commun. 2018, 13, 1934578X1801301038. [Google Scholar]
- Kırmızıbekmez, H.; Demirci, B.; Yeşilada, E.; Başer, K.H.C.; Demirci, F. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey. Nat. Prod. Commun. 2009, 4, 1934578X0900400727. [Google Scholar]
- Pluhár, Z.; Kocsis, M.; Kuczmog, A.; Csete, S.; Simkó, H.; Sárosi, S.; Molnár, P.; Horváth, G. Essential oil composition and preliminary molecular study of four Hungarian Thymus species. Acta Biol. Hung. 2012, 63, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, T.; Wang, X.; Shen, M.; Yan, X.; Fan, S.; Wang, L.; Wang, X.; Xu, X.; Sui, H. Traditional uses, chemical constituents and biological activities of plants from the genus Thymus. Chem. Biodivers. 2019, 16, e1900254. [Google Scholar]
- Morales, R. The history, botany and taxonomy of the genus Thymus. Thyme Genus Thymus 2002, 1, 1–43. [Google Scholar]
- Ramchoun, M.; Khouya, T.; Harnafi, H.; Amrani, S.; Alem, C.; Benlyas, M.; Kasbi Chadli, F.; Nazih, E.-H.; Nguyen, P.; Ouguerram, K. Effect of aqueous extract and polyphenol fraction derived from Thymus atlanticus leaves on acute hyperlipidemia in the Syrian Golden Hamsters. Evid. Based Complement. Altern. Med. 2020, 2020, 9. [Google Scholar] [CrossRef]
- Alexa, E.; Sumalan, R.M.; Danciu, C.; Obistioiu, D.; Negrea, M.; Poiana, M.-A.; Rus, C.; Radulov, I.; Pop, G.; Dehelean, C. Synergistic antifungal, allelopatic and anti-proliferative potential of Salvia officinalis L. and Thymus vulgaris L. essential oils. Molecules 2018, 23, 185. [Google Scholar] [CrossRef]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Ebrahimi, S.N.; Hadian, J.; Mirjalili, M.H.; Sonboli, A.; Yousefzadi, M. Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chem. 2008, 110, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Ismaili, H.; Sosa, S.; Brkic, D.; Fkih-Tetouani, S.; Ilidrissi, A.; Touati, D.; Aquino, R.P.; Tubaro, A. Topical anti-inflammatory activity of extracts and compounds from Thymus broussonettii. J. Pharm. Pharmacol. 2002, 54, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Beydemir, S. Phenolic compounds as antioxidants: Carbonic anhydrase isoenzymes inhibitors. Mini Rev. Med. Chem. 2013, 13, 408–430. [Google Scholar]
- Kavaz Yüksel, A.; Dikici, E.; Yüksel, M.; Işık, M.; Tozoğlu, F.; Köksal, E. Phytochemical, phenolic profile, antioxidant, anticholinergic and antibacterial properties of Epilobium angustifolium (Onagraceae). J. Food Meas. Charact. 2021, 15, 4858–4867. [Google Scholar] [CrossRef]
- Necip, A.; Isik, M. Bioactivities of Hypericum perforatum L. and Equisetum arvense L. fractions obtained with different solvents. Int. J. Life Sci. Biotecnol. 2019, 2, 221–230. [Google Scholar] [CrossRef]
- Tohma, H.; Isik, M.; Korkmaz, M.; Bursal, E.; Gulcin, I.; Koksal, E. Determination of antioxidant properties of Gypsophila bitlisensis bark. Int. J. Pharmacol. 2015, 11, 366–371. [Google Scholar]
- Fritz, K.L.; Seppanen, C.M.; Kurzer, M.S.; Csallany, A.S. The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutr. Res. 2003, 23, 479–487. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Dipalmo, T.; Crupi, P.; Durante, V.; Pesce, V.; Maiellaro, I.; Lovece, A.; Mercurio, A.; Laghezza, A.; Corbo, F.; et al. Comparison between different flavored olive oil production techniques: Healthy value and process efficiency. Plant Foods Hum. Nutr. 2016, 71, 81–87. [Google Scholar] [CrossRef]
- Yüksel, A.K.; Dikici, E.; Yüksel, M.; Işik, M.; Tozoğlu, F.; Köksal, E. Phytochemicals analysis and some bioactive properties of Erica manipuliflora Salisb. (EMS); antibacterial, antiradical and anti-lipid peroxidation. Iran. J. Pharm. Res. IJPR 2021, 20, 422. [Google Scholar]
- Sarikaya, S.B.Ö.; Topal, F.; Şentürk, M.; Gülçin, I.; Supuran, C.T. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg. Med. Chem. Lett. 2011, 21, 4259–4262. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, L.W. Inhibition of carcinogenesis by minor dietary constituents. Cancer Res. 1992, 52, 2085s–2091s. [Google Scholar] [PubMed]
- Ceylan, Y.; Usta, K.; Usta, A.; Maltas, E.; Yildiz, S. Evaluation of antioxidant activity, phytochemicals and ESR analysis of Lavandula stoechas. Acta Phys. Pol. A. 2015, 128, 483–487. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Karan, T. Metabolic profile and biological activities of Lavandula stoechas L. Cell. Mol. Biol. 2018, 64, 1–7. [Google Scholar] [CrossRef]
- Hadian, J.; Bigdeloo, M.; Nazeri, V.; Khadivi-Khub, A. Assessment of genetic and chemical variability in Thymus caramanicus. Mol. Biol. Rep. 2014, 41, 3201–3210. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R. The role of antioxidants in human health, in Oxidative stress: Diagnostics, prevention, and therapy. ACS Publ. 2011, 1083, 1–37. [Google Scholar]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Ávila-Escalante, M.L.; Coop-Gamas, F.; Cervantes-Rodríguez, M.; Méndez-Iturbide, D.; Aranda-González, I.I. The effect of diet on oxidative stress and metabolic diseases—Clinically controlled trials. J. Food Biochem. 2020, 44, e13191. [Google Scholar] [CrossRef]
- Işık, M.; Beydemir, Ş. The impact of some phenolic compounds on serum acetylcholinesterase: Kinetic analysis of an enzyme/inhibitor interaction and molecular docking study. J. Biomol. Struct. Dyn. 2021, 39, 6515–6523. [Google Scholar] [PubMed]
- Prior, R.L.; Cao, G. In vivo total antioxidant capacity: Comparison of different analytical methods. Free Radic. Biol. Med. 1999, 27, 1173–1181. [Google Scholar]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Delgado-Andrade, C.; Rufián-Henares, J.A. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem. 2016, 199, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Hawrył, A.; Hawrył, M.; Waksmundzka-Hajnos, M. Liquid chromatography fingerprint analysis and antioxidant activity of selected lavender species with chemometric calculations. PLoS ONE 2019, 14, e0218974. [Google Scholar] [CrossRef]
- Mrkonjić, Ž.; Rakić, D.; Olgun, E.O.; Canli, O.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Optimization of antioxidants recovery from wild thyme (Thymus serpyllum L.) by ultrasound-assisted extraction: Multi-response approach. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100333. [Google Scholar] [CrossRef]
- Spagnol, C.M.; Assis, R.P.; Brunetti, I.L.; Isaac, V.L.B.; Salgado, H.R.N.; Corrêa, M.A. In vitro methods to deter-mine the antioxidant activity of caffeic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 219, 358–366. [Google Scholar] [CrossRef]
- Lolak, N.; Akocak, S.; Durgun, M.; Duran, H.E.; Necip, A.; Türkeş, C.; Işık, M.; Beydemir, Ş. Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol. Divers. 2023, 27, 1735–1749. [Google Scholar]
- Ma, X.; Ye, W.; Mei, Z. Change of cholinergic transmission and memory deficiency induced by injection of β-amyloid protein into NBM of rats. Sci. China Ser. C Life Sci. 2001, 44, 435–442. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Amoo, S.O.; Aremu, A.O.; Stirk, W.A.; Gruz, J.; Šubrtová, M.; Doležal, K.; Van Staden, J. Phenolic profiles, antioxidant capacity, and acetylcholinesterase inhibitory activity of eight South African seaweeds. J. Appl. Phycol. 2015, 27, 1599–1605. [Google Scholar]
- Işık, M. The Binding Mechanisms and Inhibitory Effect of Intravenous Anesthetics on AChE In Vitro and In Vivo: Kinetic Analysis and Molecular Docking. Neurochem. Res. 2019, 44, 2147–2155. [Google Scholar]
- Lolak, N.; Akocak, S.; Türkeş, C.; Taslimi, P.; Işık, M.; Beydemir, Ş.; Gülçin, İ.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem. 2020, 100, 103897. [Google Scholar]
- Mushtaq, A.; Anwar, R.; Ahmad, M. Lavandula stoechas L alleviates dementia by preventing oxidative damage of cholinergic neurons in mice brain. Trop. J. Pharm. Res. 2018, 17, 1539–1547. [Google Scholar] [CrossRef]
- Ez zoubi, Y.; Farah, A.; Zaroual, H.; El Ouali Lalami, A. Antimicrobial activity of Lavandula stoechas phenolic extracts against pathogenic bacteria isolated from a hospital in Morocco. Vegetos 2020, 33, 703–711. [Google Scholar]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Terentjeva, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Kačániová, M. Thymus serpyllum essential oil and its biological activity as a modern food preserver. Plants 2021, 10, 1416. [Google Scholar] [PubMed]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Balanč, B.; Petrović, P.; Pravilović, R.; Djordjević, V. Pharmacological potential of Thymus serpyllum L. (wild thyme) extracts and essential oil: A review. J. Eng. Process. Manag. 2021, 13, 32–41. [Google Scholar]
- Al-Khayri, J.M.; Yüksel, A.K.; Yüksel, M.; Işık, M.; Dikici, E. Phenolic profile and antioxidant, anticholinergic, and antibacterial properties of corn tassel. Plants 2022, 11, 1899. [Google Scholar]
- Güven, L.; Erturk, A.; Miloğlu, F.D.; Alwasel, S.; Gulcin, İ. Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall—Analysis of Phenolics Profiles by LC-MS/MS. Pharmaceuticals 2023, 16, 659. [Google Scholar]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Kavaz, A.; Işık, M.; Dikici, E.; Yüksel, M. Anticholinergic, Antioxidant, and Antibacterial Properties of Vitex Agnus-Castus L. Seed Extract: Assessment of Its Phenolic Content by LC/MS/MS. Chem. Biodivers. 2022, 19, e202200143. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Yüksel, A.K.; Dikici, E.; Yüksel, M.; Mesut, I. Abelmoschus esculentus (Bamya) Çiçeğinin Fitokimyasal Profili, Antioksidan, Antikolinerjik ve Antibakteriyel Özellikleri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Derg. 2022, 25, 1205–1215. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Umar, H.; Kavaz, D.; Rizaner, N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomed. 2019, 14, 87–100. [Google Scholar]
Standard Compounds | a MRM | b RSD % | c LOD/LOQ (μg/L) | Recovery (%) | d RT (LS/TS) | LS (µg/L) | TS (µg/L) |
---|---|---|---|---|---|---|---|
Quercetin | 301.10 > 151.00 | 0.0136 | 22.5/25.7 | 1.001 | 3.947/3.885 | 180.34 | 104.93 |
Acetohydroxamic acid | 76.10 > 58.00 | 0.0082 | 2.8/8.2 | 1.000 | 0.356/0.407 | 53.15 | 108.36 |
Catechin hydrate | 291.10 > 139.00 | 0.0236 | 8.2/11.4 | 0.994 | -/2.721 | N.D. | 4.51 |
Vanillic acid | 168.80 > 93.00 | 0.0062 | 125.5/142.2 | 1.001 | 3.128/3.528 | 125,596.66 | 2690.72 |
Resveratrol | 229.10 > 135.00 | 0.0131 | 9.0/13.6 | 0.998 | 3.183/3.201 | 75.66 | 431.64 |
Fumaric acid | 115.20 > 71.00 | 0.0047 | 25.2/31.3 | 0.997 | 0.508/0.514 | 125.37 | 400.48 |
Gallic acid | - | - | - | - | - | N.D. | N.D. |
Caffeic acid | 179.20 > 135.00 | 0.0137 | 6.3/10.7 | 1.009 | 2.751/2.776 | 159.36 | 2504.97 |
Phloridzin dihydrate | 435.00 > 273.10 | 0.0564 | 61.0/207.0 | 1.000 | 3.441/3.195 | 26.96 | 39.37 |
Oleuropein | 539.10 > 377.20 | 0.0694 | 0.05/1.0 | 0.997 | -/3.582 | N.D. | 34.07 |
Ellagic acid | - | - | - | - | - | N.D. | N.D. |
Myricetin | - | - | - | - | - | N.D. | N.D. |
Protocatechuic acid | - | - | - | - | - | N.D. | N.D. |
Butein | 271.10 > 135.00 | 0.0145 | 22.7/28.6 | 0.096 | 3.849/3.857 | 40.07 | 147.49 |
Naringenin | 271.10 > 150.90 | 0.0205 | 5.4/6.4 | 0.998 | 3.865/3.875 | 369.60 | 750.43 |
Luteolin | 285.20 > 150.90 | 0.0057 | 0.5/2.5 | 1.007 | 4.349/3.988 | 4481.48 | 8550.52 |
Kaempferol | 285.10 > 116.90 | 0.0144 | 206.6/214.3 | 0.999 | 4.349/3.987 | 354.44 | 154.28 |
Alizarin | 239.20 > 211.00 | 0.0351 | 65.2/77.5 | 0.966 | 4.594/4.834 | 5.55 | 35.55 |
4-Hydroxybenzoic acid | 137.20 > 93.00 | 0.0154 | 30.5/40.25 | 0.996 | 3.510/3.528 | 78.60 | 30.87 |
Salicylic acid | 137.20 > 93.00 | 0.0124 | 4.2/7.6 | 1.009 | 3.512/3.528 | 88.56 | 39.29 |
Antioxidants | DPPH a (0.3 mg/mL) | ABTS a (0.3 mg/mL) | FRAP Assay b (0.2 mg/mL) | CUPRAC Assay b (0.2 mg/mL) | AChE | |
---|---|---|---|---|---|---|
IC50 (mg/mL) | R2 | |||||
LS | 15.86 ± 1.30 | 18.75 ± 1.60 | 0.18 ± 0.02 | 0.42 ± 0.05 | 0.221 ± 0.01 | 0.953 ± 0.02 |
TS | 38.85 ± 4.02 | 34.77 ± 2.88 | 0.25 ± 0.01 | 0.68 ± 0.04 | 0.067 ± 0.02 | |
BHA | 71.64 ± 6.17 | 82.95 ± 6.37 | 0.43 ± 0.06 | 0.61 ± 0.04 | ||
BHT | 46.67 ± 3.41 | 48.79 ± 3.20 | 0.65 ± 0.08 | 0.66 ± 0.05 | ||
Trolox | 82.63 ± 6.37 | 79.68 ± 5.31 | 0.28 ± 0.01 | 0.52 ± 0.04 | ||
Galanthamine | 1.6 ± 0.06 (µM) |
Plant Extract | Bacterial MIC (mg/mL) | |||
---|---|---|---|---|
S.a. | E.c. | P.a. | K.p. | |
LS | 0.78 | 5.15 | 12.5 | 1.56 |
TS | 1.56 | 6.25 | 6.25 | 2.50 |
Neomycin (positive control) | 1.6 × 10−3 | 0.8 × 10−3 | 0.8 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndhlala, A.R.; Işık, M.; Kavaz Yüksel, A.; Dikici, E. Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities. Molecules 2024, 29, 480. https://doi.org/10.3390/molecules29020480
Ndhlala AR, Işık M, Kavaz Yüksel A, Dikici E. Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities. Molecules. 2024; 29(2):480. https://doi.org/10.3390/molecules29020480
Chicago/Turabian StyleNdhlala, Ashwell R., Mesut Işık, Arzu Kavaz Yüksel, and Emrah Dikici. 2024. "Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities" Molecules 29, no. 2: 480. https://doi.org/10.3390/molecules29020480
APA StyleNdhlala, A. R., Işık, M., Kavaz Yüksel, A., & Dikici, E. (2024). Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities. Molecules, 29(2), 480. https://doi.org/10.3390/molecules29020480