SG-ATT: A Sequence Graph Cross-Attention Representation Architecture for Molecular Property Prediction
Abstract
:1. Introduction
- (1)
- Fusing 1D and 2D molecular features encoding to learn molecular representations from a multidimensional view.
- (2)
- Considering the generalization ability of the model for small datasets, the molecular graph is enhanced using MKG guidance, which allows the model to learn richer molecular information.
- (3)
- Adopting a cross-attention mechanism to improve the learning ability of the representation of molecular.
2. Results
2.1. Dataset and Setup
2.2. Benchmarking Methods
- (1)
- GCN is a convolutional method that focuses on learning the relationship with the nearest neighbor node [23].
- (2)
- (3)
- DMPNN treated the molecular graph as an edge-oriented directed structure, avoiding information redundancy during iterations [25].
- (4)
- CMPNN improves molecular embedding by enhancing message interaction between nodes and edges through communication kernel [26].
- (5)
- CoMPT invokes a communicative message-passing paradigm based on Transformer [27].
- (6)
- FP-GNN combines and simultaneously learns information from molecular graphs and fingerprints for molecular property prediction [28].
2.3. Experimental Setup
2.4. Experimental Results and Analysis
2.5. Ablation Experiments
2.6. Exploration of Model Interpretability
2.7. Case Analysis
2.8. Web Server Implementation
3. Materials and Methods
3.1. Feature Extraction
3.2. Sequence Encoding: Transformer
3.3. Knowledge Graph Enhancement
3.4. Molecular Graph Encoding: AMPNN
3.5. Cross-Attention Feature Fusion
3.6. Loss Function
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details of AMPNN
Appendix B. Details of GRU and Transformer
Appendix C. Details of Dataset
Appendix C.1. Dataset Description
Type | Category | Dataset | Tasks | Compounds | Split |
---|---|---|---|---|---|
Classification | Biophysics | BACE | 1 | 1513 | Scaffold |
HIV | 1 | 41,127 | Scaffold | ||
Physiology | SIDER | 27 | 1427 | Random | |
ClinTox | 2 | 1478 | Random | ||
BBBP | 1 | 2039 | Scaffold | ||
Tox21 | 12 | 7831 | Random | ||
ToxCast | 617 | 8575 | Random | ||
Regression | Physical chemistry | FreeSolv | 1 | 642 | Random |
ESOL | 1 | 1128 | Random | ||
Quantum mechanics | QM7 | 1 | 7160 | Random |
Appendix C.2. Dataset Splitting
Appendix D. Specific SMILES for Each Molecular Graph
Name | SMILES |
---|---|
SMILES.1 | CC(=O)Nc1ccccc1 |
SMILES.2 | O=C(C)Nc1ccccc1C |
SMILES.3 | CCC(C)=O |
SMILES.4 | CC(C)CO |
SMILES.5 | Cc1ccccc1C |
SMILES.6 | Cc1ccccc1 |
SMILES.7 | CCOCC(=O)Nc1ccccc1C |
SMILES.8 | O=C(C)OC(=O)c1ccccc1C |
References
- Kolluri, S.; Lin, J.; Liu, R. Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: A review. AAPS J. 2022, 24, 1–10. [Google Scholar] [CrossRef]
- Weihua, H.; Bowen, L.; Joseph, G. Strategies for Pre-training Graph Neural Networks. arXiv 2019. [Google Scholar] [CrossRef]
- Rong, Y.; Bian, Y.; Xu, T. Self-Supervised Graph Transformer on Large-Scale Molecular Data. NeurIPS 2020, 33, 12559–12571. [Google Scholar] [CrossRef]
- Mater, A.C.; Coot, M.L. Deep Learning in Chemistry. J. Chem. Inf. Model. 2020, 59, 2545–2559. [Google Scholar] [CrossRef] [PubMed]
- Chuang, K.V.; Gunsalus, L.M.; Keiser, M.J. Learning molecular representations for medicinal chemistry. J. Med. Chem. 2020, 63, 8705–8722. [Google Scholar] [CrossRef]
- Shen, J.; Nicolaou, C.A. Molecular property prediction: Recent trends in the era of artificial intelligence. Drug Discov. Today Technol. 2019, 32, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Mendez, D.; Gaulton, A.; Bento, A.P. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, 930–940. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, 88–395. [Google Scholar] [CrossRef]
- David, W. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Arús-Pous, J.; Patronov, A.; Bjerrum, E.J. SMILES-based deep generative scaffold decorator for de-novo drug design. J. Cheminf. 2020, 12, 1–18. [Google Scholar] [CrossRef]
- Shuman, D.I.; Narang, S.K.; Frossard, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE SPM. 2013, 30, 83–98. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, Y.; Qin, T. Dual-view molecule pre-training. arXiv 2021. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, Y.; Song, T. AMDE: A novel attention-mechanism-based multidimensional feature encoder for drug–drug interaction prediction. Brief. Bioinf. 2022, 23, bbab545. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N. Attention is all you need. arXiv 2017. [Google Scholar] [CrossRef]
- Justin, G.; Samuel, S.S.; Patrick, R.; Oriol, V.; George, E.D. Neural Message Passing for Quantum Chemistry. arXiv 2017. [Google Scholar] [CrossRef]
- Li, R.; Cao, Y.; Zhu, Q.; Bi, G.; Fang, F.; Liu, Y.; Li, Q. How Does Knowledge Graph Embedding Extrapolate to Unseen Data: A Semantic Evidence View. Proc. AAAI Conf. Artif. Intell. 2022, 36, 5781–5791. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Q.; Yang, H.; Zhuang, X.; Deng, S.; Zhang, W.; Qin, M.; Chen, Z.; Fan, X.; Chen, H. Molecular Contrastive Learning with Chemical Element Knowledge Graph. Proc. AAAI Conf. Artif. Intell. 2022, 36, 3968–3976. [Google Scholar] [CrossRef]
- Hasebe, T. Knowledge-Embedded Message-Passing Neural Networks: Improving Molecular Property Prediction with Human Knowledge. ACS Omega 2021, 6, 27955–27967. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, A.; Zhang, Z.; Chen, J.; Yasunaga, M.; Yang, D. Is ChatGPT a General-Purpose Natural Language Processing Task Solver? arXiv 2023. [Google Scholar] [CrossRef]
- Zhu, W.; Li, Z.; Cai, L. Stepping Back to SMILES Transformers for Fast Molecular Representation Inference. arXiv 2023. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.A. survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Wu, Z.; Ramsundar, B.; Feinberg, E.N. MoleculeNet: A benchmark for molecular machine learning. Chem. Sci. 2018, 9, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2015. [Google Scholar] [CrossRef]
- Kearnes, S.; McCloskey, K.; Berndl, M. Molecular graph convolutions: Moving beyond fingerprints. J. Comput.-Aided Mol. Des. 2016, 30, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Swanson, K.; Jin, W. Analyzing Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 2019, 59, 3370–3388. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zheng, S.; Niu, Z.; Fu, Z.H.; Lu, Y.; Yang, Y. Communicative Representation Learning on Attributed Molecular Graphs. IJCAI 2020, 2020, 2831–2838. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, S.; Song, Y. Learning attributed graph representations with communicative message passing transformer. arXiv 2021. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, H.; Zhao, D. FP-GNN: A versatile deep learning architecture for enhanced molecular property prediction. Brief Bioinform. 2022, 23, bbac408. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F. Pytorch: An imperative style, high-performance deep learning library. arXiv 2019. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, D.; Ye, Z. Deep graph library: Agraph-centric, highly-performant package for graph neural net. arXiv 2019. [Google Scholar] [CrossRef]
- Available online: https://chembl.gitbook.io/chemblinterfacedocumentation/downloads (accessed on 5 March 2023).
- Huang, K.; Xiao, C.; Glass, L. Moltrans: Molecular interaction Transformer for drug target interaction prediction. Bioinformatics 2020, 37, 830–836. [Google Scholar] [CrossRef]
- Available online: https://www.rdkit.org/docs (accessed on 10 December 2021).
- Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzz. 1998, 6, 107–116. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1–14. [Google Scholar]
- Zeng, X.; Tu, X.; Liu, Y. Toward better drug discovery with knowledge graph. Curr. Opin. Struct. Biol. 2022, 72, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xing, J.; Wang, H.; Chen, B.; Zhou, J. Mocl: Contrastive learning on molecular graphs with multi-level domain knowledge. arXiv 2021. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Q.; Zhang, N.; Chen, Z.; Xiang, Z.; Shao, X.; Fan, X.; Chen, H. Knowledge graph-enhanced molecular contrastive learning with functional prompt. Nat. Mach. Intell. 2023, 5, 542–553. [Google Scholar] [CrossRef]
- Veličković, P.; Cucurull, G.; Casanova, A. Graph attention networks. arXiv 2017. [Google Scholar] [CrossRef]
- Cho, K.; Van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. Comput. Sci. 2014, 103–111. [Google Scholar] [CrossRef]
- Vinyals, O.; Bengio, S.; Kudlur, M. Order matters: Sequence to sequence for sets. arXiv 2015. [Google Scholar] [CrossRef]
- Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R.A. Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches. J. Chem. Inf. Model. 2016, 56, 1936–1949. [Google Scholar] [CrossRef]
- Available online: http://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data (accessed on 15 April 2022).
- Martins, I.F.; Teixeira, A.L.; Pinheiro, L. A Bayesian approach to in silico blood-brain barrier penetration modeling. J. Chem. Inf. Model. 2012, 52, 1686–1697. [Google Scholar] [CrossRef]
- Gayvert, K.M.; Madhukar, N.S.; Elemento, O. A data-driven approach to predicting successes and failures of clinical trials. Cell Chem. Biol. 2016, 23, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://tripod.nih.gov/tox21/challenge/ (accessed on 15 April 2022).
- Richard, A.M.; Judson, R.S.; Houck, K.A.; Grulke, C.M.; Volarath, P.; Thillainadarajah, I.; Yang, C.; Rathman, J.; Martin, M.T.; Wambaugh, J.F.; et al. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chem. Res. Toxicol. 2016, 29, 1225–1251. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Letunic, I.; Jensen, L.J. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016, 44, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
- Mobley, D.L.; Guthrie, J.P. FreeSolv: A database of experimental and calculated hydration free energies, with input files. J. Comput.-Aided Mol. Des. 2014, 28, 711–720. [Google Scholar] [CrossRef]
- Blum, L.C.; Reymond, J. 970 million druglike small molecules for virtual screening in the chemical universe database gdb-13. J. Am. Chem. Soc. 2009, 131, 8732–8733. [Google Scholar] [CrossRef]
- Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887–2893. [Google Scholar] [CrossRef]
Metric | ROC-AUC | RMSE | MAE | ||||
---|---|---|---|---|---|---|---|
Dataset | BBBP | BACE | HIV | ClinxTox | ESOL | FreeSolv | QM7 |
Weave [2016] | 0.837 | 0.791 | — | 0.823 | 1.158 | 2.398 | — |
GCN [2017] | 0.877 | 0.854 | 0.740 | 0.807 | 1.068 | 2.900 | — |
MPNN [2017] | 0.913 | 0.815 | 0.770 | 0.879 | 1.167 | 2.185 | 111.4 |
DMPNN [2019] | 0.919 | 0.852 | 0.771 | 0.897 | 0.980 | 2.177 | 103.5 |
CMPNN [2020] | 0.927 | 0.869 | 0.782 | 0.902 | 0.798 | 0.956 | 75.1 |
CoMPT [2021] | 0.938 | 0.871 | — | 0.934 | 0.774 | 1.855 | 65.3 |
FP-GNN [2022] | 0.916 | 0.860 | 0.824 | 0.840 | 0.675 | 0.905 | — |
SG-ATT | 0.943 | 0.910 | 0.827 | 0.920 | 0.646 | 0.879 | 64.1 |
Metric | ROC-AUC | RMSE | MAE | ||||
---|---|---|---|---|---|---|---|
Dataset | BBBP | BACE | HIV | ClinxTox | ESOL | FreeSolv | QM7 |
SG-ATT | 0.943 | 0.910 | 0.827 | 0.920 | 0.646 | 0.879 | 64.1 |
-w/o Graph | 0.883 | 0.864 | 0.757 | 0.853 | 0.858 | 1.126 | 68.7 |
-w/o Sequnce | 0.922 | 0.879 | 0.788 | 0.910 | 0.692 | 0.904 | 67.3 |
Dataset | ROC-AUC |
---|---|
CHEMBLCC50 | 0.817 |
in vitro validationCC50 | 0.704 |
CHEMBLIC50 | 0.783 |
in vitro validationIC50 | 0.696 |
Rank | SMILES | In Vitro Validation (μM) |
---|---|---|
1 | O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=C(F) C=CC=C2)=O)=C\C3=CC=CC=C3 | >20 |
2 | O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=CC=CC=C2)=O) =C\C3=CC=CC=C3Br | >20 |
3 | O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=CC=CC=C2)=O) =C\C3=CC=CC=C3Cl | >20 |
4 | Br/C(C1=CC=CC=C1)=C(NC(C2=CC=CC=C2)=O)/ C(N[C@H](CO)CC3=CC=CC=C3)=O | 3.86 |
5 | Br/C(C1=CC=C(Br)C=C1)=C(NC(C2=CC=CC=C2)=O)/ C(N[C@@H](CC3=CC=CC=C3)CO)=O | 4.45 |
6 | O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=CC=CC=C2) =O)=C\C3=CC=CC(C)=C3 | >20 |
7 | O=C(N1CCCCC1)[C@@H](NC(C2=CC=CC=C2) =O)CC3=CC=CC=C3 | >20 |
8 | Br/C(C1=CC=CC=C1OC)=C(NC(C2=CC=C([N+]([O-]) =O)C=C2)=O)/C(N[C@@H](CO)C(C)C)=O | 2.06 |
9 | Br/C(C1=CC=CC=C1Cl)=C(NC(C2=CC=CC=C2)=O)/ C(N[C@@H](CC3=CC=CC=C3)CO)=O | 1.88 |
10 | O=C1C2=CC(OCCN(CC)CC)=CC=C2N=C (SCC3=C(OC)C=CC=C3)N1CC4=CC=CS4 | 1.93 |
Rank | SMILES | In Vitro Validation (μM) |
---|---|---|
1 | Br/C(C1=CC=C(O)C=C1)=C(NC(C2=CC=CC=C2)=O)/ C(N[C@H](CO)CC3=CC=CC=C3)=O | >100 |
2 | O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC(C2=C(F) C=CC=C2)=O)=C\C3=CC=CC=C3 | >100 |
3 | O=C(N[C@H](CO)CC1=CC=CC=C1)/C(NC (C2=CC=CC=C2)=O)=C\C3=CC=CC=C3Cl | >100 |
4 | Br/C(C1=CC=CC=C1Br)=C(NC(C2=CC=CC=C2)=O)/ C(N[C@@H](CC3=CC=CC=C3)CO)=O | >100 |
5 | O=C(N[C@H](CO)CC1=CC=CC=C1)/ C(NC(C2=CC=CC=C2)=O)=C\C3=CC=CC(C)=C3 | >100 |
6 | O=C(N[C@H](CO)CC1=CC=CC=C1)/C (NC(C2=CC=CC=C2)=O)=C\C3=CC=C(Br)C=C3 | 72.66 |
7 | Br/C(C1=CC=C(C#N)C=C1)=C(NC(C2=CC=CC=C2)=O)/ C(N[C@@H](CC3=CC=CC=C3)CO)=O | >100 |
8 | O=C(N/C(C(N1CCCCC1)=O)=C(Br)/C2=NC=CS2) C(C=C3)=CC=C3F | >100 |
9 | O=C(NC(CO)C(C)C)[C@@H](NC(C1=CC=CC=C1)=O)CC2=CC=C(OCCN(C)C)C=C2 | 89.10 |
10 | O=C(N[C@H](CC(C)C)CO)/C(NC(C1=CC=C([N+]([O-])=O) C=C1)=O)=C(Br)\C2=CC=CC=C2OC | 86.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Chen, X.; Fei, A.; Jia, Q.; Chen, Y.; Shao, J.; Pandiyan, S.; Wang, L. SG-ATT: A Sequence Graph Cross-Attention Representation Architecture for Molecular Property Prediction. Molecules 2024, 29, 492. https://doi.org/10.3390/molecules29020492
Hao Y, Chen X, Fei A, Jia Q, Chen Y, Shao J, Pandiyan S, Wang L. SG-ATT: A Sequence Graph Cross-Attention Representation Architecture for Molecular Property Prediction. Molecules. 2024; 29(2):492. https://doi.org/10.3390/molecules29020492
Chicago/Turabian StyleHao, Yajie, Xing Chen, Ailu Fei, Qifeng Jia, Yu Chen, Jinsong Shao, Sanjeevi Pandiyan, and Li Wang. 2024. "SG-ATT: A Sequence Graph Cross-Attention Representation Architecture for Molecular Property Prediction" Molecules 29, no. 2: 492. https://doi.org/10.3390/molecules29020492
APA StyleHao, Y., Chen, X., Fei, A., Jia, Q., Chen, Y., Shao, J., Pandiyan, S., & Wang, L. (2024). SG-ATT: A Sequence Graph Cross-Attention Representation Architecture for Molecular Property Prediction. Molecules, 29(2), 492. https://doi.org/10.3390/molecules29020492