Extraction, Characterization, and Antioxidant Activity of Eucommia ulmoides Polysaccharides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Test
2.2. Fitting the Process Model
2.3. Verification of Results
2.4. Characterization of EUPS
2.4.1. Physicochemical Property Analysis of EUPS
2.4.2. Determination of Uronic Acid Content in EUPS
2.4.3. FT-IR Analysis of EUPS
2.4.4. Analysis of Monosaccharide Components
2.4.5. Determination of Molecular Weight of EUPS
2.4.6. Determination of Particle Size of EUPS
2.5. Antioxidant Activities
2.5.1. DPPH Radical-Scavenging Activity
2.5.2. ABTS Radical-Scavenging Activity
2.5.3. Hydroxyl Radical-Scavenging Activity
2.5.4. Reduction Ability
2.5.5. Antioxidant Indices in the Serum of Mice
2.6. RNA Extraction, Reverse Transcription, and Fluorescence Quantitative PCR
2.7. Determination of Intestinal Microorganisms
2.7.1. Composition and Abundance of Gut Microflora
2.7.2. Alpha Diversity Analysis
2.7.3. Beta Diversity Analysis
3. Materials and Methods
3.1. Materials
3.2. Extraction and Purification of Polysaccharides
3.3. Response Surface Method
3.4. Structure of EUPS
3.4.1. Physicochemical Property Analysis
3.4.2. Uronic Acid Analysis
3.4.3. Fourier-Transform Infrared Spectroscopy Analysis
3.4.4. Monosaccharide Composition Analysis
3.4.5. Molecular Weight Determination of EUPS
3.4.6. Particle Size
3.5. Antioxidant Activity of EUPS
3.5.1. Assay of DPPH Radical-Scavenging Activity
3.5.2. Assay of ABTS Radical-Scavenging Activity
3.5.3. Assay of Hydroxyl Radical-Scavenging Activity
3.5.4. Assay of Reduction Ability
3.6. Animals and Treatment
3.6.1. Determination of Biochemical Indices
3.6.2. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction
3.6.3. Gut Microbiota Analysis
3.6.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.S.; Li, S.M.; Wu, G.D. Studies on resin purification process optimization of Eucommia ulmoides oliver and its antihypertensive effect mechanism. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 475–480. [Google Scholar] [CrossRef]
- Bao, L.; Sun, Y.L.; Wang, J.M.; Li, W.B.; Liu, J.; Li, T.Y.; Liu, Z.Q. A review of “plant gold” Eucommia ulmoides Oliv.: A medicinal and food homologous plant with economic value and prospect. Heliyon 2024, 10, e24851. [Google Scholar] [CrossRef]
- Ding, Z.J.; Liang, C.; Wang, X.; Yao, X.; Yang, R.H.; Zhang, Z.S.; He, J.J.; Du, H.Y.; Fang, D.; Li, Q. Antihypertensive activity of Eucommia ulmoides oliv: Male flower extract in spontaneously hypertensive rats. Evid. Based Complement. Altern. Med. 2020, 2020, 6432173. [Google Scholar] [CrossRef]
- Qian, C.J.; Zhang, R.R.; Li, J.; Huang, Z.S.; Liu, X.; Yu, L.F.; Yan, L.B.; Fu, Y.H. The characteristics of habitat, functional traits and medicinal components of Eucommia ulmoides from Guizhou. Environ. Sci. Pollut. Res. 2022, 29, 32299–32302. [Google Scholar] [CrossRef]
- Huang, Z.G.; Xiao, Y.; Yang, F.; Huang, S.L.; Li, Y.Y. Analysis of the soil water balance for large-scale reforestation with Eucommia ulmoides in the hilly red soil region of southern China. Reg. Environ. Chang. 2016, 16, 1333–1343. [Google Scholar] [CrossRef]
- Hsieh, C.L.; Yen, G.C. Antioxidant actions of du-zhong (Eucommia ulmoides oliv) Toward oxidative damage in biomolecules. Life Sci. 2000, 66, 1387–1400. [Google Scholar] [CrossRef]
- Liu, B.; Li, C.P.; Wang, W.Q.; Song, S.G.; Liu, X.M. Lignans extracted from Eucommia ulmoides oliv. Protects against ages-induced retinal endothelial cell injury. Cell. Physiol. Biochem. 2016, 39, 2044–2054. [Google Scholar] [CrossRef]
- He, X.R.; Wang, J.H.; Li, M.X.; Hao, D.J.; Yang, Y.; Zhang, C.L.; He, R.; Tao, R. Eucommia ulmoides oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014, 151, 78–92. [Google Scholar] [CrossRef]
- Xing, Y.F.; He, D.; Wang, Y.; Zeng, W.; Zhang, C.; Lu, Y.; Su, N.; Kong, Y.H.; Xing, X.H. Chemical constituents, biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver. Food Sci. Hum. Wellness 2019, 8, 177–188. [Google Scholar] [CrossRef]
- Yan, J.H.; Hu, R.Z.; Li, B.Z.; Tan, J.J.; Wang, Y.; Tang, Z.Y.; Liu, M.; Fu, C.X.; He, J.H.; Wu, X.S. Effect of Eucommia ulmoides leaf extract on growth performance, carcass traits, parameters of oxidative stress, and lipid metabolism in broiler chickens. Front. Vet. Sci. 2022, 9, 945981. [Google Scholar] [CrossRef]
- Wang, X.; Peng, M.J.; Wang, Z.H.; Yang, Q.L.; Peng, S. Ultrasound-microwave assisted extraction of flavonoid compounds from Eucommia ulmoides leaves and an evaluation of their antioxidant and antibacterial activities. Arch. Biol. Sci. 2020, 72, 211–221. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhang, S. Effervescent granules prepared using Eucommia ulmoides oliv. And moso bamboo leaves: Hypoglycemic activity in hepg2 cells. Evid. Based Complement. Altern. Med. 2016, 2016, 6362094. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, J.; Zhang, N.; He, H.Y.; An, J.M.; Dou, Y.N. Optimization of the extraction technology and assessment of antioxidant activity of chlorogenic acid-rich extracts from Eucommia ulmoides leaves. Nat. Prod. Commun. 2021, 16, 1934578X211046105. [Google Scholar] [CrossRef]
- Dai, X.P.; Huang, Q.; Zhou, B.T.; Gong, Z.C.; Liu, Z.Q.; Shi, S.Y. Preparative isolation and purification of seven main antioxidants from Eucommia ulmoides Oliv. (Du-zhong) leaves using HSCCC guided by DPPH-HPLC experiment. Food Chem. 2013, 139, 563–570. [Google Scholar] [CrossRef]
- Lee, M.K.; Cho, S.Y.; Kim, D.J.; Jang, J.Y.; Shin, K.H.; Park, S.A.; Park, E.M.; Lee, J.S.; Choi, M.S.; Lee, J.S.; et al. Du-zhong (Eucommia ulmoides Oliv.) cortex water extract alters heme biosynthesis and erythrocyte antioxidant defense system in lead-administered rats. J. Med. Food 2005, 8, 86–92. [Google Scholar] [CrossRef]
- Gao, W.D.; Feng, Z.J.; Zhang, S.L.; Wu, B.; Geng, X.; Fan, G.X.; Duan, Y.L.; Li, K.; Liu, K.W.; Peng, C.J. Anti-Inflammatory and Antioxidant Effect of Eucommia ulmoides Polysaccharide in Hepatic Ischemia-Reperfusion Injury by Regulating ROS and the TLR-4-NF-κB Pathway. BioMed Res. Int. 2020, 2020, 1860637. [Google Scholar] [CrossRef]
- Kwon, S.H.; Kim, M.J.; Ma, S.X.; You, I.J.; Hwang, J.Y.; Oh, J.H.; Kim, S.Y.; Kim, H.C.; Lee, S.Y.; Jang, C.G. Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells. J. Ethnopharmacol. 2012, 142, 337–345. [Google Scholar] [CrossRef]
- Kwon, S.H.; Ma, S.X.; Hong, S.I.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells. J. Ethnopharmacol. 2014, 152, 173–182. [Google Scholar] [CrossRef]
- Ren, X.Y.; Jin, X.Y.; Zong, W. Optimization of ultra-high pressure-assisted extraction of total phenols from Eucommia ulmoides leaves by response surface methodology. Open Chem. 2023, 21, 20220309. [Google Scholar] [CrossRef]
- Li, J.W.; Ding, S.D.; Ding, X.L. Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao. J. Food Eng. 2007, 80, 176–183. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhang, Q.; Li, Y.F.; Dong, L.L.; Liu, S.L. Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities. Carbohydr. Polym. 2015, 119, 101–109. [Google Scholar] [CrossRef]
- Xu, J.K.; Hou, H.J.; Hu, J.P.; Liu, B.C. Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides oliver leaf. Sci. Rep. 2018, 8, 6561. [Google Scholar] [CrossRef]
- Nai, J.J.; Zhang, C.; Shao, H.L.; Li, B.Q.; Li, H.; Gao, L.; Dai, M.M.; Zhu, L.Q.; Sheng, H.G. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int. J. Biol. Macromol. 2021, 183, 2337–2353. [Google Scholar] [CrossRef]
- Feng, H.B.; Fan, J.; Song, Z.H.; Du, X.G.; Chen, Y.; Wang, J.S.; Song, G.D. Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides. Carbohydr. Polym. 2016, 136, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.K.; Sun, Y.C.; Sun, R.C. Ionic liquid pretreatment of woody biomass to facilitate biorefinery: Structural elucidation of alkali-soluble hemicelluloses. ACS Sustain. Chem. Eng. 2014, 2, 1035–1042. [Google Scholar] [CrossRef]
- Wei, J.J.; Li, X.J.; Liu, W.; Chai, X.J.; Zhu, X.Y.; Sun, P.H.; Liu, F.; Zhao, Y.K.; Huang, J.L.; Liu, Y.F.; et al. Eucommia polysaccharides ameliorate aging-associated gut dysbiosis: A potential mechanism for life extension in drosophila. Int. J. Mol. Sci. 2023, 24, 5881. [Google Scholar] [CrossRef]
- Liang, X.X.; Gao, Y.Y.; Pan, Y.; Zou, Y.F.; He, M.; He, C.L.; Li, L.X.; Yin, Z.Q.; Lv, C. Purification, chemical characterization and antioxidant activities of polysaccharides isolated from Mycena dendrobii. Carbohydr. Polym. 2019, 203, 45–51. [Google Scholar] [CrossRef]
- Fakhfakh, N.; Abdelhedi, O.; Jdir, H.; Nasri, M.; Zouari, N. Isolation of polysaccharides from Malva aegyptiaca and evaluation of their antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2017, 105, 1519–1525. [Google Scholar] [CrossRef]
- He, R.J.; Zhao, Y.J.; Zhao, R.N.; Sun, P.L. Antioxidant and antitumor activities in vitro of polysaccharides from E. sipunculoides. Int. J. Biol. Macromol. 2015, 78, 56–61. [Google Scholar] [CrossRef]
- Xian, J.; Chen, Q.L.; Zhang, C.; Huang, Q.; Zhang, L.L.; Ma, J.Q.; Feng, Y.X.; Zhu, Y.X.; Su, Z.Y.; Peng, T.; et al. Polygonati rhizoma polysaccharides relieve exercise-induced fatigue by regulating gut microbiota. J. Funct. Foods 2023, 107, 105658. [Google Scholar] [CrossRef]
- Yuan, F.; Yu, R.M.; Yin, Y.; Shen, J.R.; Dong, Q.F.; Zhong, L.; Song, L.Y. Structure characterization and antioxidant activity of a novel polysaccharide isolated from Ginkgo biloba. Int. J. Biol. Macromol. 2010, 46, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wen, X.Y.; Zhang, X.Q.; Pu, H.M.; Kan, J.; Jin, C.H. Extraction, characterization and in vitro antioxidant activity of polysaccharides from black soybean. Int. J. Biol. Macromol. 2015, 72, 1182–1190. [Google Scholar] [CrossRef]
- Dou, J.A.; Meng, Y.H.; Liu, L.; Li, J.; Ren, D.Y.; Guo, Y.R. Purification, characterization and antioxidant activities of polysaccharides from Thinned-young apple. Int. J. Biol. Macromol. 2015, 72, 31–40. [Google Scholar] [CrossRef]
- Jiang, P.; Yuan, L.; Cai, D.L.; Jiao, L.L.; Zhang, L.P. Characterization and antioxidant activities of the polysaccharides from Mycelium of phellinus pini and culture medium. Carbohydr. Polym. 2015, 117, 600–604. [Google Scholar] [CrossRef]
- Xie, J.H.; Shen, M.Y.; Xie, M.Y.; Nie, S.P.; Chen, Y.; Li, C.; Huang, D.F.; Wang, Y.X. Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (batal.) Iljinskaja polysaccharides. Carbohydr. Polym. 2012, 89, 177–184. [Google Scholar] [CrossRef]
- Lo, T.C.-T.; Chang, C.A.; Chiu, K.H.; Tsay, P.K.; Jen, J.F. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydr. Polym. 2011, 86, 320–327. [Google Scholar] [CrossRef]
- Meng, L.; Sun, S.S.; Li, R.; Shen, Z.P.; Wang, P.; Jiang, X.L. Antioxidant activity of polysaccharides produced by Hirsutella sp and relation with their chemical characteristics. Carbohydr. Polym. 2015, 117, 452–457. [Google Scholar] [CrossRef]
- Shang, H.M.; Zhou, H.Z.; Duan, M.Y.; Li, R.; Wu, H.X.; Lou, Y.J. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from Comfrey (symphytum officinale l.) Root. Int. J. Biol. Macromol. 2018, 112, 889–899. [Google Scholar] [CrossRef]
- Burçak, E.; Yalçın, S. Effects of dietary sepiolite usage on performance, carcass characteristics, blood parameters and rumen fluid metabolites in Merino cross breed lambs. Appl. Clay Sci. 2018, 163, 291–298. [Google Scholar] [CrossRef]
- Shen, J.H.; Chen, Y.; Wang, Z.S.; Zhou, A.G.; He, M.; Mao, L.; Zhou, H.; Peng, Q.H.; Xue, B.; Wang, L.Z.; et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br. J. Nutr. 2014, 111, 2123–2134. [Google Scholar] [CrossRef]
- Wang, M.Y.; Zhang, S.F.; Zhong, R.Q.; Wan, F.; Chen, L.; Liu, L.; Yi, B.; Zhang, H.F. Olive fruit extracts supplement improve antioxidant capacity via altering colonic microbiota composition in mice. Front. Nutr. 2021, 8, 645099. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, D.W.; Koropatkin, N.M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol. 2016, 428, 3230–3252. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Ren, P.F.; Mang, L.; Shen, N.; Chen, J.R.; Zhang, Y.W. In vitro fermentation of novel microwave-synthesized non-digestible oligosaccharides and their impact on the composition and metabolites of human gut microbiota. J. Funct. Foods 2019, 55, 156–166. [Google Scholar] [CrossRef]
- Muhomah, T.A.; Nishino, N.; Katsumata, E.; Wu, H.M.; Tsuruta, T. High-fat diet reduces the level of secretory immunoglobulin a coating of commensal gut microbiota. Biosci. Microbiota Food Health 2019, 38, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Osaka, T.; Moriyama, E.; Arai, S.; Date, Y.; Yagi, J.; Kikuchi, J.; Tsuneda, S. Meta-analysis of fecal microbiota and metabolites in experimental colitic mice during the inflammatory and healing phases. Nutrients 2017, 9, 1329. [Google Scholar] [CrossRef]
- Brownlie, E.J.E.; Chaharlangi, D.; Wong, E.O.-Y.; Kim, D.; Navarre, W.W. Acids produced by Lactobacilli inhibit the growth of commensal Lachnospiraceae and s24-7 bacteria. Gut Microbes 2022, 14, 2046452. [Google Scholar] [CrossRef]
- Durbán, A.; Abellán, J.J.; Jiménez-Hernández, N.; Ponce, M.; Ponce, J.; Sala, T.; D’Auria, G.; Latorre, A.; Moya, A. Assessing gut microbial diversity from feces and rectal mucosa. Microb. Ecol. 2011, 61, 123–133. [Google Scholar] [CrossRef]
- Gan, C.Y.; Manaf, N.H.A.; Latiff, A.A. Optimization of alcohol insoluble polysaccharides (aips) extraction from the Parkia speciosa pod using response surface methodology (rsm). Carbohydr. Polym. 2010, 79, 825–831. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Lv, G.Y.; Pan, H.J.; Shi, L.G.; Fan, L.F. Optimization of the microwave-assisted extraction process for polysaccharides in Himematsutake (agaricus blazei murrill) and evaluation of their antioxidant activities. Food Sci. Technol. Res. 2011, 17, 461–470. [Google Scholar] [CrossRef]
- Nikolaeva, T.N.; Lapshin, P.V.; Zagoskina, N.V. Method for determining the total content of phenolic compounds in plant extracts with folin–denis reagent and folin–ciocalteu reagent: Modification and comparison. Russ. J. Bioorganic Chem. 2022, 48, 1519–1525. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, Y.L.; Yang, F.R.; Zheng, L.; Ma, Y.H.; Liu, Q.A.; Cai, L.; Gong, W.L.; Wang, B.L. Preparation and structure-activity relationship of highly active black garlic polysaccharides. Int. J. Biol. Macromol. 2022, 220, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, Y.; Wang, Q.; Wang, H.; Mei, Q. Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal. Sci. 2005, 21, 1177–1180. [Google Scholar] [CrossRef]
- Sun, S.J.; Deng, P.; Peng, C.E.; Ji, H.Y.; Mao, L.F.; Peng, L.Z. Extraction, structure and immunoregulatory activity of low molecular weight polysaccharide from Dendrobium officinale. Polymers 2022, 14, 2899. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tian, H.Y.; Xiang, D. Stabilizing the oil-in-water emulsions using the mixtures of Dendrobium officinale polysaccharides and gum arabic or propylene glycol alginate. Molecules 2020, 25, 759. [Google Scholar] [CrossRef]
- Fu, L.L.; Chen, H.X.; Dong, P.; Zhang, X.; Zhang, M. Effects of ultrasonic treatment on the physicochemical properties and dpph radical scavenging activity of polysaccharides from Mushroom inonotus obliquus. J. Food Sci. 2010, 75, C322–C327. [Google Scholar] [CrossRef]
- Wu, S.; Li, F.; Jia, S.; Ren, H.; Gong, G.; Wang, Y.; Lv, Z.; Liu, Y. Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei murrill. Carbohydr. Polym. 2014, 103, 414–417. [Google Scholar] [CrossRef]
- Su, Y.; Li, L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Li, L.; Thakur, K.; Liao, B.Y.; Zhang, J.G.; Wei, Z.J. Antioxidant and antimicrobial potential of polysaccharides sequentially extracted from Polygonatum cyrtonema hua. Int. J. Biol. Macromol. 2018, 114, 317–323. [Google Scholar] [CrossRef]
- Wu, S.S.; He, X.; Wu, X.S.; Qin, S.; He, J.H.; Zhang, S.R.; Hou, D.X. Inhibitory effects of blue honeysuckle (Lonicera caerulea L) on adjuvant-induced arthritis in rats: Crosstalk of anti-inflammatory and antioxidant effects. J. Funct. Foods 2015, 17, 514–523. [Google Scholar] [CrossRef]
- Ren, Y.L.; Geng, Y.; Du, Y.; Li, W.; Lu, Z.M.; Xu, H.Y.; Xu, G.H.; Shi, J.S.; Xu, Z.H. Polysaccharide of Hericium erinaceus attenuates colitis in c57bl/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. J. Nutr. Biochem. 2018, 57, 67–76. [Google Scholar] [CrossRef]
- Xie, J.L.; Liu, Y.X.; Chen, B.H.; Zhang, G.W.; Ou, S.Y.; Luo, J.M.; Peng, X.C. Gonoderma lucidum polysaccharide improves rat dss-induced colitis by altering cecal microbiota and gene expression of colonic epithelial cells. Food Nutr. Res. 2019, 63, 1559. [Google Scholar] [CrossRef] [PubMed]
Run | Ratio of Water to Materials A (mL/g) | Extraction Temperature B (°C) | Extraction Time C (h) | Yield (%) (w/w Dry Weight) |
---|---|---|---|---|
1 | −1 (15:1) | −1 (40) | 0 (1) | 2.18 |
2 | 1 (25:1) | −1 (40) | 0 (1) | 2.35 |
3 | −1 (15:1) | 1 (80) | 0 (1) | 2.32 |
4 | 1 (25:1) | 1 (80) | 0 (1) | 2.45 |
5 | −1 (15:1) | 0 (60) | −1 (0.5) | 2.35 |
6 | 1 (25:1) | 0 (60) | −1 (0.5) | 2.44 |
7 | −1 (15:1) | 0 (60) | 1 (1.5) | 2.33 |
8 | 1 (25:1) | 0 (60) | 1 (1.5) | 2.49 |
9 | 0 (20:1) | −1 (40) | −1 (0.5) | 2.21 |
10 | 0 (20:1) | 1 (80) | −1 (0.5) | 2.34 |
11 | 0 (20:1) | −1 (40) | 1 (1.5) | 2.29 |
12 | 0 (20:1) | 1 (80) | 1 (1.5) | 2.41 |
13 | 0 (20:1) | 0 (60) | 0 (1) | 2.57 |
14 | 0 (20:1) | 0 (60) | 0 (1) | 2.6 |
15 | 0 (20:1) | 0 (60) | 0 (1) | 2.59 |
16 | 0 (20:1) | 0 (60) | 0 (1) | 2.55 |
17 | 0 (20:1) | 0 (60) | 0 (1) | 2.62 |
Source | Sum of Squares | Degree Freedom | Means of Squares | F Value | p Value | Significant |
---|---|---|---|---|---|---|
Model | 0.29 | 9 | 0.033 | 5.38 | <0.0001 | ** |
A-A | 0.038 | 1 | 0.038 | 23.16 | 0.0002 | ** |
B-B | 0.03 | 1 | 0.03 | 2.2 | 0.0003 | ** |
C-C | 4.050 × 10−3 | 1 | 4.050 × 10−3 | 1.17 | 0.0496 | * |
AB | 4.000 × 10−4 | 1 | 4.000 × 10−4 | 5.34 | 0.4805 | |
AC | 1.225 × 10−3 | 1 | 1.225 × 10−3 | 1.77 | 0.2336 | |
BC | 2.500 × 10−5 | 1 | 2.500 × 10−5 | 4.87 | 0.8575 | |
A2 | 0.031 | 1 | 0.031 | 1.83 | 0.0003 | ** |
B2 | 0.13 | 1 | 0.13 | 2.94 | <0.0001 | ** |
C2 | 0.040 | 1 | 0.040 | 4.09 | 0.0001 | ** |
Residual | 5.045 × 10−3 | 7 | 7.207 × 10−4 | |||
Lack of fit | 2.125 × 10−3 | 3 | 7.083 × 10−4 | 0.97 | 0.4893 | |
Pure error | 2.920 × 10−3 | 4 | 7.300 × 10−4 | |||
Cor total | 0.3 | 16 |
Gene | Nucleotide Sequence of Primers (5′–3′) | PubMed No | Product Length |
---|---|---|---|
Nrf2 | F: ACCTCTGCTGCAAGTAGCCT R: TGGGCAACCATCACTCTGCT | NM_001399226.1 | 118 |
Keap1 | F: GCCCCGGGACTCTTATTGTG R: TTAGGGGCCCCGCCAT | NM_001110305.1 | 101 |
HO-1 | F: GCTAGCCTGGTGCAAGATACT R: AAGCTGAGAGTGAGGACCCA | NM_010442.2 | 110 |
NQO1 | F: CTCTGGCCGATTCAGAGTGG R: CTCCCAGACGGTTTCCAGAC | NM_008706.5 | 147 |
β-actin | F: CATTGCTGACAGGATGCAGA R: CTGCTGGAAGGTGGACAGTGA | NM_007393.5 | 118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Yang, Y.; Tian, Y.; Zhang, M.; Cheng, K.; Zhang, X.; Zhou, M.; Hui, M.; Zhang, Y. Extraction, Characterization, and Antioxidant Activity of Eucommia ulmoides Polysaccharides. Molecules 2024, 29, 4793. https://doi.org/10.3390/molecules29204793
Peng Y, Yang Y, Tian Y, Zhang M, Cheng K, Zhang X, Zhou M, Hui M, Zhang Y. Extraction, Characterization, and Antioxidant Activity of Eucommia ulmoides Polysaccharides. Molecules. 2024; 29(20):4793. https://doi.org/10.3390/molecules29204793
Chicago/Turabian StylePeng, Yuqing, Yulin Yang, Yitong Tian, Meng Zhang, Kang Cheng, Xuelei Zhang, Mengqing Zhou, Ming Hui, and Yong Zhang. 2024. "Extraction, Characterization, and Antioxidant Activity of Eucommia ulmoides Polysaccharides" Molecules 29, no. 20: 4793. https://doi.org/10.3390/molecules29204793
APA StylePeng, Y., Yang, Y., Tian, Y., Zhang, M., Cheng, K., Zhang, X., Zhou, M., Hui, M., & Zhang, Y. (2024). Extraction, Characterization, and Antioxidant Activity of Eucommia ulmoides Polysaccharides. Molecules, 29(20), 4793. https://doi.org/10.3390/molecules29204793