Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice
Abstract
:1. Introduction
2. Results
2.1. Qualitative Estimation of Phytochemicals in T. siliquosa
2.2. In Silico Anti-Inflammatory Activity
2.3. Anti-Inflammatory Activity in Acute Model
2.4. Anti-Inflammatory Activity in the Chronic Model
3. Discussion
4. Materials and Methods
4.1. Extraction of T. siliquosa Leaves and Chemical Composition
4.2. In Silico Screening of Anti-Inflammatory Activity
4.3. In Vivo Anti-Inflammatory Effect of TSE
4.4. Animal Model Study
4.4.1. Acute Toxicity Analysis of TSE
4.4.2. Effect of TSE on Carrageenan-Induced Acute Inflammation
4.4.3. Formalin-Induced Chronic Inflammation
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, A.U. An overview of inflammation: Mechanism and consequences. Front. Biol. 2011, 6, 274–281. [Google Scholar] [CrossRef]
- Qian, L.W.; Fourcaudot, A.B.; Yamane, K.; You, T.; Chan, R.K.; Leung, K.P. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regen. 2016, 24, 26–34. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; A Safyan, R.; Lentzsch, S. Immunomodulatory drugs (IMiDs) in multiple myeloma. Curr. Cancer Drug Targets 2017, 17, 846–857. [Google Scholar] [CrossRef]
- Luppi, F.; Cerri, S.; Beghè, B.; Fabbri, L.; Richeldi, L. Corticosteroid and immunomodulatory agents in idiopathic pulmonary fibrosis. Respir. Med. 2004, 98, 1035–1044. [Google Scholar] [CrossRef]
- Hussain, M.; Javeed, A.; Ashraf, M.; Al-Zaubai, N.; Stewart, A.; Mukhtar, M.M. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol. Res. 2012, 66, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, M.; Owlia, S.; Owlia, M.B. Review of anti-inflammatory herbal medicines. Adv. Pharmacol. Pharm. Sci. 2016, 2016, 9130979. [Google Scholar] [CrossRef]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef]
- Teklehaymanot, T.; Giday, M.; Medhin, G.; Mekonnen, Y. Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia. J. Ethnopharmacol. 2007, 111, 271–283. [Google Scholar] [CrossRef]
- Mesfin, F.; Seta, T.; Assefa, A. An ethnobotanical study of medicinal plants in Amaro Woreda, Ethiopia. Ethnobot. Res. Appl. 2014, 12, 341–354. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid. Based Complement. Altern. Med. 2014, 2014, 525340. [Google Scholar] [CrossRef] [PubMed]
- Rich, S.A.; Libera, J.M.; Locke, R.J. Treatment of foxglove extract poisoning with digoxin-specific Fab fragments. Ann. Emerg. Med. 1993, 22, 1904–1907. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.R.; Rehman, M.U.; Shabir, A.; Rahman Mir, M.U.; Ahmad, A.; Khan, R.; Masoodi, M.H.; Madkhali, H.; Ganaie, M.A. Chemical composition and biological uses of Artemisia absinthium (wormwood). In Plant and Human Health, Volume 3: Pharmacology and Therapeutic Uses; Springer: Cham, Switzerland, 2019; Volume 3, pp. 37–63. [Google Scholar]
- George, P. Concerns regarding the safety and toxicity of medicinal plants-An overview. J. Appl. Pharm. Sci. 2011, 1, 40–44. [Google Scholar]
- Patwardhan, B. Drug Discovery & Development: Traditional Medicine and Ethnopharmacol; New India Publishing: New Delhi, India, 2007. [Google Scholar]
- Lewis, W.H. Pharmaceutical discoveries based on ethnomedicinal plants: 1985 to 2000 and beyond. Econ. Bot. 2003, 57, 126–134. [Google Scholar] [CrossRef]
- John, J.A.; Jose, J.O.; Pradeep, N.; Sethuraman, M.; George, V. Composition and antibacterial activity of the leaf oils of two Thottea species. J. Trop. Med. Plants 2008, 9, 119–124. [Google Scholar]
- Moorthy, K.; Punitha, T.; Vinodhini, R.; Mickymaray, S.; Shonga, A.; Tomass, Z.; Thajuddin, N. Efficacy of different solvent extracts of Aristolochia krisagathra and Thottea ponmudiana for potential antimicrobial activity. J. Pharm. Res 2015, 9, 35–40. [Google Scholar]
- Tennakoon, T.; Borosova, R.; Suraweera, C.; Herath, S.; De Silva, T.; Padumadasa, C.; Weerasena, J.; Gunaratna, N.; Gunasekera, N.; Edwards, S. First record of Thottea duchartrei Sivar., A. Babu & Balach.(Aristolochiaceae) in Sri Lanka. J. Natl. Sci. Found. 2022, 50, 441. [Google Scholar]
- Tom, A.; Job, J.T.; Rajagopal, R.; Alfarhan, A.; Kim, H.-J.; Kim, Y.O.; Na, S.W.; Narayanankutty, A. Thottea siliquosa (Lam.) Ding Hou leaf methanolic extract inhibits lipopolysaccharide-induced TLR4 activation and cytokine production as well as ethyl methyl sulfonate induced genotoxicity. Physiol. Mol. Plant Pathol. 2022, 117, 101772. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, S.; Mahajan, A. Herbal medicines: Possible risks and benefits. Am. J. Phytomed. Clin. Ther. 2013, 1, 226–239. [Google Scholar]
- Gregory, N.S.; Harris, A.L.; Robinson, C.R.; Dougherty, P.M.; Fuchs, P.N.; Sluka, K.A. An overview of animal models of pain: Disease models and outcome measures. J. Pain 2013, 14, 1255–1269. [Google Scholar] [CrossRef] [PubMed]
- Degens, H. The role of systemic inflammation in age-related muscle weakness and wasting. Scand. J. Med. Sci. Sports 2010, 20, 28–38. [Google Scholar] [CrossRef]
- Burisch, J.; Vardi, H.; Schwartz, D.; Friger, M.; Kiudelis, G.; Kupčinskas, J.; Fumery, M.; Gower-Rousseau, C.; Lakatos, L.; Lakatos, P.L. Health-care costs of inflammatory bowel disease in a pan-European, community-based, inception cohort during 5 years of follow-up: A population-based study. Lancet Gastroenterol. Hepatol. 2020, 5, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Rainsford, K. Anti-inflammatory drugs in the 21st century. In Inflammation in the Pathogenesis of Chronic Diseases; Springer Nature: Berlin, Germany, 2007; pp. 3–27. [Google Scholar]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Das, S.; Singh, B.K.; Prasad, J.; Dubey, N.K.; Dwivedy, A.K. Herbal medicines as a rational alternative for treatment of human diseases. In Botanical Leads for Drug Discovery; Singh, B., Ed.; Springer: Singapore, 2020; pp. 29–49. [Google Scholar]
- Khumalo, G.P.; Van Wyk, B.E.; Feng, Y.; Cock, I.E. A review of the traditional use of southern African medicinal plants for the treatment of inflammation and inflammatory pain. J. Ethnopharmacol. 2022, 283, 114436. [Google Scholar] [CrossRef]
- Dzoyem, J.; McGaw, L.; Kuete, V.; Bakowsky, U. Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 239–270. [Google Scholar]
- Farahani, F.; Azizi, H.; Janahmadi, M.; Seutin, V.; Semnanian, S. Formalin-induced inflammatory pain increases excitability in locus coeruleus neurons. Brain Res. Bull. 2021, 172, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Bello, E.F.; Ezeteonu, A.I.; Vincent, U. In vitro therapeutic potential of leaf extract of Eugenia uniflora Linn on acute–inflammation rat model. JDMP 2020, 6, 31–38. [Google Scholar] [CrossRef]
- Meeker, T.J.; Schmid, A.-C.; Keaser, M.L.; Khan, S.A.; Gullapalli, R.P.; Dorsey, S.G.; Greenspan, J.D.; Seminowicz, D.A. Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex. Neuroimage 2022, 256, 119278. [Google Scholar] [CrossRef]
- Manikandan, R.; Parimalanandhini, D.; Mahalakshmi, K.; Beulaja, M.; Arumugam, M.; Janarthanan, S.; Palanisamy, S.; You, S.; Prabhu, N.M. Studies on isolation, characterization of fucoidan from brown algae Turbinaria decurrens and evaluation of it's in vivo and in vitro anti-inflammatory activities. Int. J. Biol. Macromol. 2020, 160, 1263–1276. [Google Scholar] [CrossRef]
- Groh, A.; Krieger, P.; Mease, R.A.; Henderson, L. Acute and chronic pain processing in the thalamocortical system of humans and animal models. Neuroscience 2018, 387, 58–71. [Google Scholar] [CrossRef]
- Akdis, C.A.; Blaser, K. Histamine in the immune regulation of allergic inflammation. J. Allergy Clin. Immunol. 2003, 112, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.C.C.C.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of histamine in modulating the immune response and inflammation. Mediat. Inflamm. 2018, 2018, 9524075. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, P.Z. Cytokines & their physiologic and pharmacologic functions in inflammation: A review. Int. J. Pharm. Life Sci. 2011, 2. [Google Scholar]
- Rosland, J.H.; Tjølsen, A.; Mæhle, B.; Hole, K. The formalin test in mice: Effect of formalin concentration. Pain 1990, 42, 235–242. [Google Scholar] [CrossRef]
- Hiramatsu, G.; Matsuda, K.; Uta, D.; Mihara, K.; Kume, T. Panaxytriol inhibits lipopolysaccharide-induced microglia activation in brain inflammation in vivo. Biol. Pharm. Bull. 2021, 44, 1024–1028. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science 2010, 327, 656–661. [Google Scholar] [CrossRef]
- Galvão, I.; Sugimoto, M.A.; Vago, J.P.; Machado, M.G.; Sousa, L.P. Mediators of inflammation. Immunopharmacol. Inflamm. 2018, 23, 3–32. [Google Scholar]
- Claesson-Welsh, L. Vascular permeability—The essentials. Upsala J. Med. Sci. 2015, 120, 135–143. [Google Scholar] [CrossRef]
- Smith, W.L.; Dewitt, D.L. Prostaglandin endoperoxide H synthases-1 and-2. Adv. Immunol. 1996, 62, 167–215. [Google Scholar]
- Nantel, F.; Denis, D.; Gordon, R.; Northey, A.; Cirino, M.; Metters, K.M.; Chan, C.C. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. Br. J. Pharmacol. 1999, 128, 853–859. [Google Scholar] [CrossRef]
- Sadiq, I.Z. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Curr. Mol. Med. 2023, 23, 13–35. [Google Scholar] [CrossRef]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef]
- Papi, S.; Ahmadizar, F.; Hasanvand, A. The role of nitric oxide in inflammation and oxidative stress. Immunopathol. Persa 2019, 5, e08. [Google Scholar] [CrossRef]
- Koottasseri, A.; Babu, A.; Augustin, A.; Job, J.T.; Narayanankutty, A. Antioxidant, anti-inflammatory and anticancer activities of the methanolic extract of Thottea siliquosa: An in vitro and in silico study. Recent Pat. Anti-Cancer Drug Discov. 2021, 16, 436–444. [Google Scholar] [CrossRef]
- Hofseth, L.J. Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett. 2008, 268, 10–30. [Google Scholar] [CrossRef]
- Verri, W.A.; Vicentini, F.T.M.C.; Baracat, M.M.; Georgetti, S.R.; Cardoso, R.D.R.; Cunha, T.M.; Ferreira, S.H.; Cunha, F.Q.; Fonseca, M.J.V.; Casagrande, R. Chapter 9—Flavonoids as Anti-Inflammatory and Analgesic Drugs: Mechanisms of Action and Perspectives in the Development of Pharmaceutical Forms. In Studies in Natural Products Chemistry; Atta-ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 36, pp. 297–330. [Google Scholar]
- Zhang, L.; Virgous, C.; Si, H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem. 2019, 69, 19–30. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021, 133, 16. [Google Scholar] [CrossRef]
- Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother. 2021, 134, 111017. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. Rsc Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jun, C.-D.; Suk, K.; Choi, B.-J.; Lim, H.; Park, S.; Lee, S.H.; Shin, H.-Y.; Kim, D.-K.; Shin, T.-Y. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci. 2006, 91, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Ariasnegrete, S.; Keller, K.; Chadee, K. Proinflammatory cytokines regulate cyclooxygenase-2 mRNA expression in human macrophages. Biochem. Biophys. Res. Commun. 1995, 208, 582–589. [Google Scholar] [CrossRef]
- Domitrović, R.; Rashed, K.; Cvijanović, O.; Vladimir-Knežević, S.; Škoda, M.; Višnić, A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem. Biol. Interact. 2015, 230, 21–29. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Liu, M.; Cheng, X.; Li, W.-H.; Zhang, S.-S.; Wang, Y.-H.; Du, G.-H. Myricitrin blocks activation of NF-κB and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. J. Neuroimmunol. 2019, 337, 577049. [Google Scholar] [CrossRef] [PubMed]
- Los, M.; Schenk, H.; Hexel, K.; Baeuerle, P.A.; Dröge, W.; Schulze-Osthoff, K. IL-2 gene expression and NF-kappa B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J. 1995, 14, 3731–3740. [Google Scholar] [CrossRef]
- Saleh, H.A.; Yousef, M.H.; Abdelnaser, A. The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation. Front. Immunol. 2021, 12, 606069. [Google Scholar] [CrossRef]
- Yu, C.; Wang, D.; Yang, Z.; Wang, T. Pharmacological effects of polyphenol phytochemicals on the intestinal inflammation via targeting TLR4/NF-κB signaling pathway. Int. J. Mol. Sci. 2022, 23, 6939. [Google Scholar] [CrossRef]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef]
- Olela, B.; Mbaria, J.; Wachira, T.; Moriasi, G. Acute oral toxicity and anti-inflammatory and analgesic effects of aqueous and methanolic stem bark extracts of Piliostigma thonningii (Schumach.). Evid. Based Complement. Altern. Med. 2020, 2020, 5651390. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxidative Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed]
- Sidhic, J.; George, S.; Alfarhan, A.; Rajagopal, R.; Olatunji, O.J.; Narayanankutty, A. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Humboldtia sanjappae Sasidh. & Sujanapal, an Endemic Medicinal Plant to the Western Ghats. Molecules 2023, 28, 6875. [Google Scholar] [CrossRef]
- House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. S. Afr. J. Bot. 2020, 135, 408–412. [Google Scholar] [CrossRef]
Sl. No. | RT | Compound | Molecular Formula | Ionization Mode | m/z (Measured) | m/z (Calculated) | Diff (ppm) | Fragments |
---|---|---|---|---|---|---|---|---|
1 | 1.179 | Lotaustralin | C11H19NO6 | (M+H)+ | 264.1333 | 264.1336 | 1.01 | 127.0371, 143.0544, 161.0649, 180.0986, 198.1108, 216.1212, 244.1145 |
2 | 1.226 | Retronecine | C8H13NO2 | (M+H)+ | 157.1045 | 157.1051 | 3.76 | 156.1013, 130.0855, 138.0545, 152.0691 |
3 | 2.097 | Gallic acid | C7H6O5 | (M−H)− | 169.0144 | 169.0142 | −0.83 | 169.0144 |
4 | 4.118 | o-Cresol | C7H8O | (M+HCOO)− | 153.0555 | 153.0557 | 1.34 | 153.0555, 107.0494 |
5 | 6.473 | Quinic acid | C7H12O6 | (M−H)− | 191.0566 | 191.0561 | −2.58 | 191.0566 |
6 | 6.551 | Caffeic acid | C9H8O4 | (M−H)− | 179.0352 | 179.0352 | 2.2 | 179.0352, 180.0387, 181.0462 |
7 | 7.114 | Phenethyl salicylate | C15H14O3 | (M+Na)+ | 265.0844 | 265.0835 | −3.15 | 250.0599, 233.0588, 22.0645, 209.0952, 191.0856, 177.0697, 158.9949, 131.0857 |
8 | 7.42 | Batatasin II | C16H18O4 | (M+Na)+ | 297.1105 | 297.1097 | −2.71 | 282.0866, 191.0864 |
9 | 7.462 | (-)-Epicatechin | C15H14O6 | (M+HCOO)− | 335.0783 | 335.0772 | −3.04 | 317.0838, 277.1098, 247.1009, 219.0447, 179.0343, 161.0247, 135.0447, 111.0450 |
10 | 8.817 | Fabianine | C14H21NO | (M+H)+ | 220.1686 | 220.1679 | −17.61 | 202.1553, 176.1430, 161.1313, 146.0939 |
11 | 8.955 | Inundatine | C16H23NO2 | (M+H)+ | 262.1784 | 262.1802 | 6.67 | 262.1784, 242.1734, 247.1313 |
12 | 9.26 | 7(14)-Bisabolene−2,3,10,11-tetrol | C15H28 O4 | (M+Na)+ | 272.1993 | 272.1988 | 1.01 | 282.0824, 253.1398, 217.1564, 161.0928, 133.0991 |
13 | 9.872 | (E,E,E)-Sylvatine | C24H33NO3 | (M+Na)+ | 383.2512 | 383.246 | −1.61 | 285.1379, 254.1162, 228.1615, 191.1408, 151.1110 |
14 | 9.924 | Quercetin | C15H10O7 | (M+H)+ | 302.0405 | 302.0426 | 5.86 | 285.0390, 144.1295, 200.1074, 165.0161, 121.0274 |
15 | 10.403 | Ketosantalic acid | C15H22O3 | (M+Na)+ | 250.1574 | 250.1569 | 0.39 | 233.1060, 213.1253, 195.1126, 165.0674, 153.0161, 143.0851, 132.0519 |
16 | 10.518 | Gingerol | C17H26O4 | (M+H)+ | 294.1817 | 294.1831 | −2.44 | 277.1790, 238.0810, 199.1425, 173.1288, 147.1146, 129.0536 |
17 | 10.594 | Clitorin | C33H40O19 | (M−H)− | 739.2132 | 739.2091 | −5.54 | 593.1284, 394.0259, 326.0317, 284.0326, 151.0027 |
18 | 10.742 | Myricitrin | C21H20O12 | (M−H)− | 463.0899 | 463.0882 | −3.68 | 300.0276, 271.0249, 151.0025 |
19 | 11.716 | Quercitrin | C21H20O11 | (M−H)− | 447.0949 | 447.0933 | −3.71 | 284.0327, 227.0352, 151.0048 |
20 | 11.795 | Luteolin 4′-O-glucoside | C21H20O11 | (M−H)− | 447.0957 | 447.0933 | −5.41 | 387.0760, 327.0466, 284.0333, 227.0356, 151.0053 |
21 | 13.06 | 1-(2,4,5-Trimethoxyphenyl)-1,2-propanedione | C12H14O5 | (M+Na)+ | 238.0847 | 238.0841 | −1.3 | 246.0507, 231.0271, 217.0793, 190.9943, 163.0033, 131.0812 |
22 | 13.972 | Guaiazulene | C15H18 | (M+H)+ | 198.1397 | 198.1409 | 6.33 | 184.1249, 173.1335, 157.0994, 143.0857, 129.0689 |
23 | 17.176 | Coumaric acid | C17H14N2O7 | (M+H)+ | 361.092 | 361.0928 | 2.01 | 324.0481, 296.0649, 280.0580, 265.0385, 252.0707, 221.0573, 207.0398, 193.0619, 164.0481 |
24 | 17.426 | Panaxytriol | C17H26O3 | (M+Na)+ | 301.1756 | 301.1774 | 6.04 | 252.0552, 223.1464, 185.1351, 159.1143, 133.0997 |
25 | 19.164 | Colnelenic acid | C18H28O3 | (M−H)− | 291.1963 | 291.1966 | 0.77 | 291.1965, 205.8387, 165.1275 |
26 | 19.736 | α-Corocalene | C15H20 | (M+H)+ | 202.1663 | 202.1672 | 4.15 | 186.1214, 173.1324, 159.1141, 145.0992, 131.0829, 121.0992 |
27 | 20.161 | Citronellyl hexanoate | C16H30O2 | (M+Na)+ | 278.2178 | 278.2172 | −2.22 | 277.2155, 209.1525 |
28 | 24.474 | Euphornin | C33H44O9 | (M+Na)+ | 584.2983 | 584.2985 | 0.5 | 547.2653, 505.2219, 460.2219, 433.2323, 372.1422, 262.1336, 146.1020 |
Compounds | LOX | COX-2 |
---|---|---|
Quercetin | −6.625 ± 0.31 | −7.875 ± 0.56 |
Ketosantalic acid | −4.975 ± 0.21 | −6.725 ± 0.50 |
Coumaric acid | −5.875 ± 0.48 | −6.425 ± 0.46 |
Quinic acid | −6.375 ± 0.43 | −6.450 ± 0.62 |
Gallic acid | −5.825 ± 0.17 | −7.400 ± 0.29 |
Myricitrin | −7.075 ± 0.22 | −7.475 ± 0.20 |
Quercitrin | −5.150 ± 0.07 | −6.250 ± 0.21 |
Luteolin 4′-O-glucoside | −6.075 ± 0.68 | −6.625 ± 0.59 |
(-)-Epicatechin | −6.475 ± 0.30 | −6.625 ± 0.31 |
Diclofenac | −7.200 ± 0.61 | −8.125 ± 0.27 |
Treatment Group | Paw Thickness | Increase in Paw Thickness | Percentage Inhibition with Respect to Control (%) | |
---|---|---|---|---|
Initial | Final | |||
Control | 1.78 ± 0.18 | 2.33 ± 0.29 | 0.55 ± 0.07 | 0.0 |
Diclofenac | 2.00 ± 0.20 | 2.18 ± 0.19 | 0.18 ± 0.04 ** | 67.3 ± 2.3 |
Drug (50 mg) | 1.88 ± 0.10 | 2.13 ± 0.17 | 0.26 ± 0.11 * | 53.0 ± 2.5 |
Drug (100 mg) | 1.90 ± 0.08 | 2.12 ± 0.26 | 0.22 ± 0.14 ** | 60.0 ± 1.8 |
Treatment Group | Paw Thickness | % Inhibition with Respect to Control | |||
---|---|---|---|---|---|
Initial | Day 5 | Day 10 | Day 5 | Day 10 | |
Control | 2.05 ± 0.12 | 3.78 ± 0.17 | 2.86 ± 0.08 | 0.00 | 0.00 |
Diclofenac | 2.25 ± 0.18 | 3.19 ± 0.13 * | 2.44 ± 0.15 ** | 46.17 ± 2.1 | 76.89 ± 2.8 |
Drug (50 mg) | 2.19 ± 0.11 | 3.49 ± 0.10 * | 2.59 ± 0.11 * | 24.74 ± 3.2 | 50.48 ± 2.3 |
Drug (100 mg) | 2.15 ± 0.09 | 3.07 ± 0.14 * | 2.44 ± 0.12 ** | 47.04 ± 1.9 | 64.72 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renny, A.; Sidhic, J.; Tom, A.; Kuttithodi, A.M.; Job, J.T.; Rajagopal, R.; Alfarhan, A.; Narayanankutty, A. Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice. Molecules 2024, 29, 4800. https://doi.org/10.3390/molecules29204800
Renny A, Sidhic J, Tom A, Kuttithodi AM, Job JT, Rajagopal R, Alfarhan A, Narayanankutty A. Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice. Molecules. 2024; 29(20):4800. https://doi.org/10.3390/molecules29204800
Chicago/Turabian StyleRenny, Aneeta, Jameema Sidhic, Alby Tom, Aswathi Moothakoottil Kuttithodi, Joice Tom Job, Rajakrishnan Rajagopal, Ahmed Alfarhan, and Arunaksharan Narayanankutty. 2024. "Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice" Molecules 29, no. 20: 4800. https://doi.org/10.3390/molecules29204800
APA StyleRenny, A., Sidhic, J., Tom, A., Kuttithodi, A. M., Job, J. T., Rajagopal, R., Alfarhan, A., & Narayanankutty, A. (2024). Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice. Molecules, 29(20), 4800. https://doi.org/10.3390/molecules29204800