Development of an LC–TOF/MS Method to Quantify Camrelizumab in Human Serum
Abstract
:1. Introduction
2. Results
2.1. Calibration Curve
2.2. Selectivity and Carryover
2.3. Precision and Accuracy
2.4. Stability
2.5. Matrix Effects and Recovery Rates
2.6. Dilution Reliability
2.7. Robustness
3. Discussion
4. Materials and Methods
4.1. Reagents and Instruments
4.2. Chromatographic and MS Conditions
4.2.1. Chromatographic Conditions
4.2.2. MS Conditions
4.3. Solution Preparation
4.3.1. Preparation of Experimental Reagents
4.3.2. Preparation of Sample and Standard Solutions
4.4. Optimization of the Experimental Process
4.4.1. Optimization of DTT and IAM Concentrations
4.4.2. Optimization of Enzymatic Hydrolysis Time
4.4.3. Selection of Quantitative Ion Pairs and Optimization of MRM Parameters
4.5. Method Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, S.; Solinas, A.; Calvisi, D.F. Cabozantinib for HCC Treatment, From Clinical Back to Experimental Models. Front. Oncol. 2021, 11, 756672. [Google Scholar] [CrossRef]
- Chen, L.; Wei, X.; Gu, D.; Xu, Y.; Zhou, H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett. 2023, 555, 216048. [Google Scholar] [CrossRef]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef]
- Kudo, M. Pembrolizumab for the Treatment of Hepatocellular Carcinoma. Liver Cancer 2019, 8, 143–154. [Google Scholar] [CrossRef]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef]
- Zou, J.; Li, C.; Han, Y.; Xing, Y.; Zhan, Y.; Zuo, C.; Ren, X.; Xing, R.; Zhang, N. Efficacy of Camrelizumab in Advanced Non-Small-Cell Lung Cancer and Prognostic Analysis of Different PET/CT Features. J. Oncol. 2022, 2022, 9942918. [Google Scholar] [CrossRef]
- Jing, W.; Li, M.; Zhang, Y.; Teng, F.; Han, A.; Kong, L.; Zhu, H. PD-1/PD-L1 blockades in non-small-cell lung cancer therapy. Onco Targets Ther. 2016, 9, 489–502. [Google Scholar] [CrossRef]
- Mathew, M.; Enzler, T.; Shu, C.A.; Rizvi, N.A. Combining chemotherapy with PD-1 blockade in NSCLC. Pharmacol. Ther. 2018, 186, 130–137. [Google Scholar] [CrossRef]
- Yan, Z.; Yao, Z.-H.; Yao, S.-N.; Wang, H.-Y.; Chu, J.-F.; Song, M.; Zhao, S.; Liu, Y.-Y. Camrelizumab plus apatinib successfully treated a patient with advanced esophageal squamous cell carcinoma. Immunotherapy 2020, 12, 1161–1166. [Google Scholar] [CrossRef]
- Yan, C.; Ma, X.; Guo, Z.; Wei, X.; Han, D.; Zhang, T.; Chen, X.; Cao, F.; Dong, J.; Zhao, G.; et al. Time-spatial analysis of T cell receptor repertoire in esophageal squamous cell carcinoma patients treated with combined radiotherapy and PD-1 blockade. Oncoimmunology 2022, 371, 203–212. [Google Scholar] [CrossRef]
- Zhou, Y.-X.; Chen, P.; Sun, Y.-T.; Zhang, B.; Qiu, M.-Z. Comparison of PD-1 Inhibitors in Patients with Advanced Esophageal Squamous Cell Carcinoma in the Second-Line Setting. Front. Oncol. 2021, 11, 698732. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wang, C.; Liu, Y.; Yang, Q.; Mei, Q.; Dong, L.; Li, X.; Liu, J.; Ku, W.; Zhang, Y.; et al. Addition of Low-Dose Decitabine to Anti–PD-1 Antibody Camrelizumab in Relapsed/Refractory Classical Hodgkin Lymphoma. J. Clin. Oncol. 2019, 37, 1479–1489. [Google Scholar] [CrossRef]
- Moskowitz, A.J. PD-1 blockade for untreated Hodgkin lymphoma. Blood 2021, 137, 1271–1272. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Casasnovas, R.-O. PD-1 inhibitors in patients with Hodgkin lymphoma. Eur. J. Cancer 2021, 164, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Mei, K.; Qin, S.; Chen, Z.; Liu, Y.; Wang, L.; Zou, J. Camrelizumab in combination with apatinib in second-line or above therapy for advanced primary liver cancer: Cohort A report in a multicenter phase Ib/II trial. J. Immunother. Cancer 2021, 9, e002191. [Google Scholar] [CrossRef]
- Wei, F.; Huang, Q.; He, J.; Luo, L.; Zeng, Y. Lenvatinib Plus Camrelizumab versus Lenvatinib Monotherapy as Post-Progression Treatment for Advanced Hepatocellular Carcinoma: A Short-Term Prognostic Study. Cancer Manag. Res. 2021, 13, 4233–4240. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Cheng, X.; Li, Q.; Zang, M.; Huang, W.; Fan, W.; Wu, T.; Ruan, J.; Dai, W.; Yu, W.; et al. Safety and Efficacy of Camrelizumab Combined with Apatinib for Advanced Hepatocellular Carcinoma with Portal Vein Tumor Thrombus: A Multicenter Retrospective Study. Onco Targets Ther. 2020, 13, 12683–12693. [Google Scholar] [CrossRef] [PubMed]
- You, R.; Xu, Q.; Wang, Q.; Zhang, Q.; Zhou, W.; Cao, C.; Huang, X.; Ji, H.; Lv, P.; Jiang, H.; et al. Efficacy and safety of camrelizumab plus transarterial chemoembolization in intermediate to advanced hepatocellular carcinoma patients: A prospective, multi-center, real-world study. Front. Oncol. 2022, 12, 816198. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Z.; Liao, W.; Hu, K.; Wang, Z. Combination of Sorafenib, Camrelizumab, Transcatheter Arterial Chemoembolization, and Stereotactic Body Radiation Therapy as a Novel Downstaging Strategy in Advanced Hepatocellular Carcinoma with Portal Vein Tumor Thrombus: A Case Series Study. Front. Oncol. 2021, 11, 650394. [Google Scholar] [CrossRef]
- Liu, K.; Bao, J.-F.; Wang, T.; Yang, H.; Xu, B.-P. Camrelizumab-induced anaphylactic shock in an esophageal squamous cell carcinoma patient: A case report and review of literature. World J. Clin. Cases 2022, 10, 6198–6204. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, G.; Liu, N.; Li, T.; Zhu, J.; Hou, H. Case report: A rare immune-related adverse effect: Hepatic cavernous hemangioma induced by camrelizumab. Front. Immunol. 2024, 15, 1387465. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jiang, H.; Titsch, C.; Haulenbeek, J.R.; Pillutla, R.C.; Aubry, A.F.; DeSilva, B.S.; Arnold, M.E.; Zeng, J.; Dodge, R.W. Development and characterization of a pre-treatment procedure to eliminate human monoclonal antibody therapeutic drug and matrix interference in cell-based functional neutralizing antibody assays. J. Immunol. Methods 2015, 416, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yan, C.; Li, Z.; Cao, Y.; Duan, H.; Ke, S. Efficacy and Safety of Neoadjuvant Chemoimmunotherapy in Resectable Esophageal Squamous Cell Carcinoma: A Meta-analysis. Ann. Surg. Oncol. 2023, 30, 1597–1613. [Google Scholar] [CrossRef] [PubMed]
- Millet, A.; Khoudour, N.; Bros, P.; Lebert, D.; Picard, G.; Machon, C.; Goldwasser, F.; Blanchet, B.; Guitton, J. Quantification of nivolumab in human plasma by LC-MS/HRMS and LC-MS/MS, comparison with ELISA. Talanta 2021, 224, 121889. [Google Scholar] [CrossRef] [PubMed]
- Schokker, S.; Fusetti, F.; Bonardi, F.; Molenaar, R.J.; Mathot, R.A.A.; van Laarhoven, H.W.M. Development and validation of an LC-MS/MS method for simultaneous quantification of co-administered trastuzumab and pertuzumab. MAbs 2020, 12, 1795492. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wysocki, E.; Antwi, K.; Niederkofler, E.; Leung, E.K.Y.; Lazar-Molnar, E.; Yeo, K.J. Development and validation of a targeted affinity-enrichment and LC-MS/MS proteomics approach for the therapeutic monitoring of adalimumab. Clin. Chim. Acta 2018, 483, 308–314. [Google Scholar] [CrossRef]
- Mochizuki, T.; Shibata, K.; Naito, T.; Shimoyama, K.; Ogawa, N.; Maekawa, M.; Kawakami, J. LC-MS/MS method for the quantitation of serum tocilizumab in rheumatoid arthritis patients using rapid tryptic digestion without IgG purification. J. Pharm. Anal. 2022, 12, 852–859. [Google Scholar] [CrossRef]
- Peng, X.; Liu, B.; Li, Y.; Wang, H.; Chen, X.; Guo, H.; Guo, Q.; Xu, J.; Wang, H.; Zhang, D.; et al. Development and Validation of LC–MS/MS Method for the Quantitation of Infliximab in Human Serum. Chromatographia 2015, 78, 521–531. [Google Scholar] [CrossRef]
- Mo, H.; Huang, J.; Xu, J.; Chen, X.; Wu, D.; Qu, D.; Wang, X.; Lan, B.; Wang, X.; Xu, J.; et al. Safety, anti-tumour activity, and pharmacokinetics of fixed-dose SHR-1210, an anti-PD-1 antibody in advanced solid tumours: A dose-escalation, phase 1 study. Br. J. Cancer 2018, 119, 538–545. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Bioanalytical Method Validation Guidance for Industry. 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 25 June 2023).
- Irie, K.; Okada, A.; Yamasaki, Y.; Kokan, C.; Hata, A.; Kaji, R.; Fukushima, K.; Sugioka, N.; Okada, Y.; Katakami, N.; et al. An LC-MS/MS Method for Absolute Quantification of Nivolumab in Human Plasma: Application to Clinical Therapeutic Drug Monitoring. Ther. Drug Monit. 2018, 40, 716–724. [Google Scholar] [CrossRef]
Concentration (μg/mL) | Precision (%) | Accuracy (%) | |||
---|---|---|---|---|---|
Spiked (μg/mL) | Found (μg/mL) (Mean ± SD) | Intraday | Interday | Intraday | Interday |
4 (LLOQ) | 3.68 ± 0.33 | 8.93 | 14.56 | 91.95 | 95.34 |
10 | 10.19 ± 0.81 | 8.03 | 8.16 | 101.18 | 93.66 |
80 | 75.62 ± 5.82 | 7.69 | 5.89 | 94.52 | 92.32 |
130 | 115.64 ± 3.13 | 2.87 | 2.90 | 88.95 | 89.59 |
QC Levels | LQC (10 μg/mL) | MQC (80 μg/mL) | HQC (130 μg/mL) | |||
---|---|---|---|---|---|---|
Stability Tests | RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) |
Condition | n = 6 | |||||
at once | 6.70 | 2.48 | 2.49 | 9.80 | 7.20 | −6.20 |
4 °C/24 h | 8.65 | 1.81 | 4.73 | 8.36 | 3.01 | −0.58 |
25 °C/24 h | 7.78 | 5.33 | 7.40 | 7.09 | 8.87 | −6.76 |
3 Freeze–thaw cycles | 7.40 | 0.70 | 3.24 | 8.54 | 8.09 | −4.36 |
−80 °C/3 months | 8.58 | 8.50 | 1.64 | 5.64 | 5.41 | −5.97 |
Spiked (μg/mL) | Recovery (%) | Matrix Effect (%) | |
---|---|---|---|
Mean | RSD | Mean | |
10 | 92.47 | 4.00 | 75.83 |
80 | 82.07 | 7.68 | |
130 | 93.23 | 4.44 | 77.17 |
Compound | Selected Peptide | Precursor Ion | |
---|---|---|---|
(m/z) | Charge | ||
Camrelizumab | GLEWVATISGGGANTYYPDSVK | 762.37434 | +3 |
TTPPVLDSDGSFFLYSR | 634.64751 | +3 | |
LLIYTATSLADGVPSR | 559.64544 | +3 | |
EPQVYTLPPSQEEMTK | 626.30500 | +3 |
Compound | Precursor Ion (m/z) | Daughter Ion (m/z) | Ion | Peak Area |
---|---|---|---|---|
701.3577 | y7 | 1.13 × 105 | ||
630.3206 | y6 | 1.61 × 105 | ||
Camrelizumab | 559.64544 | 515.2936 | y5 | 1.14 × 105 |
359.2037 | y3 | 1.89 × 105 | ||
340.2595 | b3 | 1.90 × 104 |
Analyte | Amino Acid Sequence | MRM Ion Transition, m/z | Declustering Potential (V) | Peak Area |
---|---|---|---|---|
45 | 2.76 × 105 | |||
Signature peptide | LLIYTATSLADGVPSR | 559.64544 (3+) >359.2037 (1+) | 80 | 5.79 × 105 |
90 | 2.59 × 105 |
Analyte | Amino Acid Sequence | MRM Ion Transition, m/z | Declustering Potential (V) | Collision Energy (V) | Peak Area |
---|---|---|---|---|---|
15 | 2.56 × 104 | ||||
20 | 2.11 × 104 | ||||
Signature peptide | LLIYTATSLADGVPSR | 559.64544 (3+) >359.2037 (1+) | 80 | 25 | 2.77 × 104 |
30 | 2.65 × 104 | ||||
35 | 1.24 × 104 | ||||
40 | 1.66 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Liang, Y.; Li, Y.; Guo, T.; Li, H.; Liang, S. Development of an LC–TOF/MS Method to Quantify Camrelizumab in Human Serum. Molecules 2024, 29, 4862. https://doi.org/10.3390/molecules29204862
Song L, Liang Y, Li Y, Guo T, Li H, Liang S. Development of an LC–TOF/MS Method to Quantify Camrelizumab in Human Serum. Molecules. 2024; 29(20):4862. https://doi.org/10.3390/molecules29204862
Chicago/Turabian StyleSong, Li, Yan Liang, Yilin Li, Tingting Guo, Hui Li, and Shuxuan Liang. 2024. "Development of an LC–TOF/MS Method to Quantify Camrelizumab in Human Serum" Molecules 29, no. 20: 4862. https://doi.org/10.3390/molecules29204862
APA StyleSong, L., Liang, Y., Li, Y., Guo, T., Li, H., & Liang, S. (2024). Development of an LC–TOF/MS Method to Quantify Camrelizumab in Human Serum. Molecules, 29(20), 4862. https://doi.org/10.3390/molecules29204862