Equilibrium Structures of Propane and 2,2-Difluoropropane and Comparison with Other Two-Top Molecules
Abstract
:1. Introduction
2. Computational Methods
3. Equilibrium Structures
3.1. Ab Initio Structure
3.2. Semiexperimental Equilibrium Structure of Propane
4. Discussion
4.1. Comparison with the Internal Rotation Parameters
4.2. Comparison of the CC Bond Lengths
4.3. Comparison of the CF Bond Lengths
4.4. Geometry of the Methyl Group
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roe, H.G.; Greathouse, T.K.; Richter, M.J.; Lacy, J.H. Propane on Titan. Astrophys. J. 2003, 597, L65–L68. [Google Scholar] [CrossRef]
- Lide, D.R. Microwave spectrum, structure and dipole moment of propane. J. Chem. Phys. 1960, 33, 1514–1518. [Google Scholar] [CrossRef]
- Bestmann, G.; Dreizler, H.; Vacherand, J.M.; Boucher, D.; Eijck, B.V.; Demaison, J. The rotational spectrum of propane. Centrifugal distortion analysis. Z. Naturforsch. 1985, 40a, 508–510. [Google Scholar]
- Drouin, B.J.; Pearson, J.C.; Walters, A.; Lattanzi, V. THz measurements of propane. J. Mol. Spectrosc. 2006, 240, 227–237. [Google Scholar] [CrossRef]
- Bestmann, G.; Lalowski, W.; Dreizler, H. Determination of a high barrier hindering internal rotation from the ground state spectrum. The methyl barrier of propane. Z. Naturforsch. 1985, 40, 271–273. [Google Scholar] [CrossRef]
- Hirota, E.; Matsumura, C.; Morino, Y. Internal rotation of propane from the microwave spectrum. Bull. Chem. Soc. Jpn. 1967, 40, 1124–1130. [Google Scholar] [CrossRef]
- Trinkaus, A.; Dreizler, H.; Rudolph, H.D. Bestimmung höherer Potentialkoeffizienten des Hinderungspotentials von Molekülen mit zwei Methylgruppen. Z. Naturforsch. 1968, 23, 2123–2124. [Google Scholar] [CrossRef]
- Trinkaus, A.; Dreizler, H.; Rudolph, H.D. Zur Analyse der Rotationsspektren in torsionsangeregten Zuständen von Molekülen mit zwei Methylgruppen. Z. Naturforsch. 1973, 28, 750–758. [Google Scholar] [CrossRef]
- Durig, J.R.; Groner, P.; Griffin, M.G. Analysis of torsional spectra of molecules with two C3v internal rotors. IV. The torsional potential function for propane-d and -d3. J. Chem. Phys. 1977, 66, 3061–3065. [Google Scholar] [CrossRef]
- Engeln, R.; Reuss, J.; Consalvo, D.; van Bladel, J.W.I.; van der Avoird, A. Torsional motion of the CH3 groups of propane studied by Raman overtone spectroscopy. Chem. Phys. 1990, 144, 81–92. [Google Scholar] [CrossRef]
- Engeln, R.; Reuss, J.; Consalvo, D.; van Bladel, J.W.I.; van der Avoird, A.; Pavlov-Verevkin, V. Internal motion of two-top molecules: Propane and dimethylamine. Chem. Phys. Lett. 1990, 170, 206–210. [Google Scholar] [CrossRef]
- Grant, D.M.; Pugmire, R.J.; Livingston, R.C.; Strong, K.A.; McMurry, H.L.; Brugger, R.M. Methyl libration in propane measured with neutron inelastic scattering. J. Chem. Phys. 1970, 52, 4424–4436. [Google Scholar] [CrossRef]
- Flaud, J.-M.; Lafferty, W.J.; Herman, M. First high-resolution analysis of the absorption spectrum of propane in the 6.7 µm to 7.5 µm spectral region. J. Chem. Phys. 2001, 114, 9361–9366. [Google Scholar] [CrossRef]
- Tchana, F.K.; Flaud, J.-M.; Lafferty, W.J.; Manceron, L.; Roy, P. The first high-resolution analysis of the low-lying v9 band of propane. J. Quant. Spectr. Rad. Trans. 2010, 111, 1277–1281. [Google Scholar] [CrossRef]
- Flaud, J.-M.; Tchana, F.K.; Lafferty, W.J.; Nixon, C.A. High resolution analysis of the ν26 and 2ν9–ν9 bands of propane: Modelling of Titan’s infrared spectrum at 13.4 µm. Mol. Phys. 2010, 108, 699–704. [Google Scholar] [CrossRef]
- Perrin, A.; Kwabia-Tchana, F.; Flaud, J.M.; Manceron, L.; Demaison, J.; Vogt, N.; Groner, P.; Lafferty, W.J. First high-resolution analysis of the ν21 band of propane CH3CH2CH3 at 921.382 cm−1: Evidence of large amplitude tunneling effects. J. Mol. Spectrosc. 2015, 315, 55–62. [Google Scholar] [CrossRef]
- Perrin, A.; Flaud, J.M.; Kwabia-Tchana, F.; Manceron, L.; Groner, P. Investigation of the ν8 and ν21 bands of propane CH3CH2CH3 at 11.5 and 10.9 µm: Evidence of large amplitude tunnelling effects. Mol. Phys. 2019, 117, 323–339. [Google Scholar] [CrossRef]
- Vázquez, J.; Stanton, J.F. Equilibrium Molecular Structures: From Spectroscopy to Quantum Chemistry; Demaison, J., Boggs, J.E., Császár, A.G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 53–87. [Google Scholar]
- Vogt, N.; Demaison, J. Equilibrium Structure of Free Molecules; Lectures Notes in Chemistry; Springer Nature: Cham, Switzerland, 2023; Volume 111. [Google Scholar]
- Bak, K.L.; Gauss, J.; Jørgensen, P.; Olsen, J.; Helgaker, T.; Stanton, J.F. The accurate determination of molecular equilibrium structures. J. Chem. Phys. 2001, 114, 6548–6556. [Google Scholar] [CrossRef]
- Pawlowski, F.; Jørgensen, P.; Olsen, J.; Hegelund, F.; Helgaker, T.; Gauss, J.; Bak, K.L.; Stanton, J.F. Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants. J. Chem. Phys. 2002, 116, 6482–6496. [Google Scholar] [CrossRef]
- Bauer, S.H. An analytic method of interpretation of electron diffraction photographs of gases. J. Chem. Phys. 1936, 4, 406–412. [Google Scholar] [CrossRef]
- Pauling, L.; Brockway, L.O. Carbon-carbon bond distances. The electron diffraction investigation of ethane, propane, isobutane, neopentane, cyclopropane, cyclopentane, cyclohexane, allene, ethylene, isobutene, tetramethylethylene, mesitylene, and hexamethylbenzene. Revised values of covalent radii. J. Am. Chem. Soc. 1937, 59, 1223–1236. [Google Scholar]
- Iijima, T. Molecular structure of propane. Bull. Chem. Soc. Jpn. 1972, 45, 1291–1293. [Google Scholar] [CrossRef]
- Tam, H.S.; Choe, J.I.; Harmony, M.D. Molecular structure of polyatomic molecules using scaled moments of inertia. J. Phys. Chem. 1991, 95, 9267–9272. [Google Scholar] [CrossRef]
- Villa, M.; Senent, M.L.; Carvajal, M. Highly correlated ab initio study of the low frequency modes of propane and various monosubstituted isotopologues containing D and 13C. Phys. Chem. Chem. Phys. 2013, 15, 10258–10269. [Google Scholar] [CrossRef] [PubMed]
- Takeo, H.; Sugie, M.; Matsumura, C. Molecular structures of 2,2-dihalogenopropanes by microwave spectroscopy: CH3CF2CH3, CH3CCl2CH3, and CH3CClFCH3. J. Mol. Struct. 1995, 352–353, 267–272. [Google Scholar] [CrossRef]
- Mack, H.G.; Dakkouri, M.; Oberhammer, H. Effect of fluorination on the CCC bond angle in propane. Gas-phase structures of 2,2-difluoropropane and perfluoropropane. J. Phys. Chem. 1991, 95, 3136–3138. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef]
- Purvis, G.D., III; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron to neon. J. Chem. Phys. 1995, 103, 4572–4585. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D.A.; et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020, 152, 144107. [Google Scholar] [CrossRef]
- Werner, H.-J.; Knowles, P.J.; Manby, F.R.; Schütz, M.; Celani, P.; Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; et al. MOLPRO Is a Package of ab Initio Programs, Version 2024.2. Available online: https://www.molpro.net (accessed on 22 September 2024).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Revision, version A.02; Gaussian; Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Bader, R.F.W. Atoms in Molecules, A Quantum Theory; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- Gillespie, R.J.; Popelier, P.L.A. Chemical Bonding and Molecular Geometry; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Cioslowski, J. An efficient evaluation of atomic properties using a vectorized numerical integration with dynamic thresholding. Chem. Phys. Lett. 1992, 194, 73–78. [Google Scholar] [CrossRef]
- Cioslowski, J.; Surján, P.R. An observable-based interpretation of electronic wavefunctions: Application to “hypervalent” molecules. J. Mol. Struct. Theochem. 1992, 255, 9–33. [Google Scholar] [CrossRef]
- Cioslowski, J.; Nanayakkara, A.; Challacombe, M. Rapid evaluation of atomic properties with mixed analytical/numerical integration. Chem. Phys. Lett. 1993, 203, 137–142. [Google Scholar] [CrossRef]
- Cioslowski, J.; Nanayakkara, A. A new robust algorithm for fully automated determination of attractor interaction lines in molecules. Chem. Phys. Lett. 1994, 219, 151–154. [Google Scholar] [CrossRef]
- Cioslowski, J.; Stefanov, B.B. Variational determination of the zero-flux surfaces of atoms in molecules. Mol. Phys. 1995, 84, 707–716. [Google Scholar] [CrossRef]
- Stefanov, B.B.; Cioslowski, J. An efficient approach to calculation of zero-flux atomic surfaces and generation of atomic integration data. J. Comput. Chem. 1995, 16, 1394–1404. [Google Scholar] [CrossRef]
- Allen, W.D.; Császár, A.G. Quantum theory of molecular equilibrium structures. In Equilibrium Molecular Structures; Demaison, J., Boggs, J.E., Császár, A.G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–28. [Google Scholar]
- Demaison, J.; Vogt, N. Accurate Structure Determination of Free Molecules; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Häußler, H.; Hüttner, W. Unpublished results, quoted by W. Hüttner in chapter 2.9.3 of Demaison, J., Dubrulle, A., Hüttner, W., Tiemann, E. In Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy; Hellwege, K.-H., Hellwege, A.M., Eds.; Landolt-Börnstein—Group II Molecules and Radicals, Springer: Berlin, Germany, 1982; Volume 14. [Google Scholar]
- Rudolph, H.D.; Demaison, J.; Császár, A.G. Accurate determination of the deformation of the benzene ring upon substitution structures of benzonitrile and phenylacetylene. J. Phys. Chem. A 2013, 117, 12969–12982. [Google Scholar] [CrossRef]
- Demaison, J. The method of least squares. In Equilibrium Molecular Structures; Demaison, J., Boggs, J.E., Csaśzaŕ, A.G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 29–52. [Google Scholar]
- Belsley, D.A. Conditioning Diagnostics; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Hamilton, L.C. Regression with Graphics; Wadworth: Belmont, CA, USA, 1992. [Google Scholar]
- Neustock, W.; Guarnieri, A.; Dison, J.; Wlodarczak, G. The millimeter and submillmeter-wave spectrum of dimethylether. Z. Naturforsch. 1990, 45a, 702–706. [Google Scholar] [CrossRef]
- Vogt, N.; Demaison, J.; Vogt, J.; Rudolph, H.D. Why it is sometimes difficult to determine the accurate position of a hydrogen atom by the semiexperimental method of molecules containing the OH or the CH3 group. J. Comput. Chem. 2014, 35, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Vacherand, J.M.; Wlodarczak, G.; Dubrulle, A.; Demaison, J. The millimetre-wave spectrum of dimethylsulfide-rotation and centrifugal-distortion analysis (1987) Can. J. Phys. 1987, 65, 1159–1163. [Google Scholar]
- Demaison, J.; Margulès, L.; Rudolph, H.D. Accurate determination of an equilibrium structure in the presence of a small coordinate: The case of dimethylsulfide. J. Mol. Struct. 2010, 978, 229–233. [Google Scholar] [CrossRef]
- Vacherand, J.M.; Van Eijck, B.P.; Burie, J.; Demaison, J. The rotational spectrum of acetone rotation and centrifugal distortion analysis. J. Mol. Spectrosc. 1986, 118, 355–362. [Google Scholar] [CrossRef]
- Lovas, F.J.; Groner, P. Microwave spectra of mono-13C substituted acetone, (CH3)2CO. J. Mol. Spectrosc. 2006, 236, 173–177. [Google Scholar] [CrossRef]
- Bauder, A.; Günthard, H.H. Internal rotation in acetaldehyde. J. Mol. Spectrosc. 1976, 60, 290–311. [Google Scholar] [CrossRef]
- Iijima, T.; Tsuchiya, S. Zero-point average structure of a molecule containing a symmetric internal rotor. J. Mol. Spectrosc. 1972, 44, 88–107. [Google Scholar] [CrossRef]
- Demaison, J.; Wlodarczak, G.; Siam, K.; Ewbank, J.D.; Schäfer, L. Comparison of ab initio calculated and experimental methyl-top moments of inertia. Chem. Phys. 1988, 120, 421–428. [Google Scholar] [CrossRef]
- Gordy, W.; Cook, R.L. Microwave Molecular Spectra; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Meyer, R.; Caminati, W.; Hollenstein, H. Torsional motions in methyl glycolate. J. Mol. Spectrosc. 1989, 137, 87–103. [Google Scholar] [CrossRef]
- Lalowski, W.; Dreizler, H. A contribution to the analysis of the rotational spectra of dimethylselenide in torsional excited states. Z. Naturforsch. 1983, 38, 1346–1358. [Google Scholar] [CrossRef]
- Puzzarini, C.; Taylor, P.R. An ab initio study of the structure, torsional potential energy function, and electric properties of disilane, ethane, and their deuterated isotopomers. J. Chem. Phys. 2005, 122, 054315. [Google Scholar] [CrossRef]
- Demaison, J.; Breidung, J.; Thiel, W.; Papoušek, D. The equilibrium structure of methyl fluoride. Struct. Chem. 1999, 10, 129–133. [Google Scholar] [CrossRef]
- Robinson, E.A.; Johnson, S.A.; Tang, T.-H.; Gillespie, R.J. Reinterpretation of the lengths of bonds to fluorine in terms of an Almost Ionic Model. Inorg. Chem. 1997, 36, 3022–3030. [Google Scholar] [CrossRef]
- Stanton, J.F. A refined estimate of the bond length of methane. Mol. Phys. 1999, 97, 841–845. [Google Scholar] [CrossRef]
- McKean, D.C. A correlation between isolated CH stretching frequencies and HCH bond angles in methyl groups. J. Mol. Struct. 1976, 34, 181–185. [Google Scholar] [CrossRef]
- Demaison, J.; Wlodarczak, G.; Rück, H.; Wiedenmann, K.H.; Rudolph, H.D. Accurate structures of simple dicyanides. J. Mol. Struct. 1996, 376, 399–411. [Google Scholar] [CrossRef]
- Demaison, J.; Herman, M.; Liévin, J. The equilibrium OH bond length. Int. Rev. Phys. Chem. 2007, 26, 391–420. [Google Scholar] [CrossRef]
- Morgan, W.J.; Mathhews, D.A.; Ringholm, M.; Agarwal, J.; Gong, J.Z.; Ruud, K.; Allen, W.D.; Stanton, J.F.; Schaefer, H.F., III. Geometric energy derivatives at the complete basis set limit: Application to the equilibrium structure and molecular force field of formaldehyde. J. Chem. Theory Comput. 2018, 14, 1333–1350. [Google Scholar] [CrossRef]
- Demaison, J.; Boggs, J.E.; Rudolph, H.D. Ab initio anharmonic force field and ab initio and experimental equilibrium structures of formyl chloride. J. Mol. Struct. 2004, 695–696, 145–153. [Google Scholar] [CrossRef]
- Margulès, L.; Demaison, J.; Boggs, J.E. Equilibrium C-F bond length and the structure of formyl fluoride, difluorocarbene, monofluoromethylene, and difluoromethane. J. Phys. Chem. A 1999, 103, 7632–7638. [Google Scholar] [CrossRef]
- Demaison, J.; Herman, M.; Liévin, J. Anharmonic force field of cis- and trans-formic acid from high-level ab initio calculations, and analysis of resonance polyads. J. Chem. Phys. 2007, 126, 164305. [Google Scholar] [CrossRef]
- Demaison, J.; Margulès, L.; Kleiner, I.; Császár, A.G. Equilibrium structure in the presence of internal rotation: A case study of cis-methyl formate. J. Mol. Spectrosc. 2010, 259, 70–79. [Google Scholar] [CrossRef]
(CH3)2CH2 | (CH3)2CF2 | |||||
---|---|---|---|---|---|---|
[21] | From νis d | |||||
Weighted Fit b | IRLS c | e | e | |||
C1C2 | 1.5209 (9) | 1.52226 (6) | 1.52207 (10) | 1.5226 | 1.5143 | |
C1Hs | 1.0877 (35) | 1.08940 (22) | 1.08916 (42) | 1.089 | 1.0894 | 1.0869 |
C1Ha | 1.0907 (19) | 1.09087 (10) | 1.09113 (23) | 1.090 | 1.0908 | 1.0873 |
C2Y a | 1.0929 (20) | 1.09184 (15) | 1.09227 (25) | 1.091 | 1.0917 | 1.3691 |
C1C2C3 | 112.35 (11) | 112.070 (6) | 112.089 (13) | 112.10 | 115.89 | |
C2C1Hs | 111.60 (31) | 111.656 (14) | 111.687 (36) | 111.70 | 109.10 | |
C2C1Ha | 110.62 (10) | 110.745 (16) | 110.752 (12) | 110.79 | 109.85 | |
HsC1Ha | 107.950 (17) | 107.952 (26) | 107.91 | 109.36 | ||
HaC1Ha | 107.04 (28) | 107.642 (31) | 107.589 (33) | 107.58 | 109.32 | |
YC2Y a | 106.13 (32) | 106.448 (44) | 106.419 (39) | 106.38 | 105.75 | |
YC2C1Ha a | 59.671 (16) | 59.643 (21) | 59.66 | 60.140 |
Parent | 13C1 | 13C2 | CH2Ds | CH2Da | CHD(CH3)2 | |
---|---|---|---|---|---|---|
A0 | 29,207.47 | 29,092.14 | 28,660.68 | 29,017.92 | 26,829.12 | 25,830.05 |
B0 | 8445.97 | 8228.75 | 8446.84 | 7838.19 | 8122.83 | 8358.63 |
C0 | 7459.00 | 7281.77 | 7423.14 | 6971.95 | 7185.07 | 7282.97 |
Ae − A0 | 293.22 | 290.82 | 281.54 | 302.07 | 260.18 | 244.08 |
Be − B0 | 104.78 | 101.36 | 103.96 | 94.06 | 98.18 | 103.03 |
Ce − C0 | 95.20 | 92.32 | 93.97 | 85.03 | 89.70 | 91.49 |
Ase | 29,499.72 | 29,381.99 | 28,941.28 | 26,073.45 | 29,319.05 | 27,088.51 |
Bse | 8550.72 | 8330.08 | 8550.78 | 8461.63 | 7932.22 | 8220.98 |
Cse | 7554.20 | 7374.09 | 7517.11 | 7374.46 | 7056.98 | 7274.77 |
∆ | −9.335 | −9.335 | −9.335 | −9.335 | −10.661 | −10.578 |
Ase − Acalc | −0.34 | −0.07 | 0.16 | 0.15 | 0.01 | 0.11 |
Bse − Bcalc | −0.06 | 0.05 | −0.01 | −0.05 | −0.04 | 0.10 |
Cse − Ccalc | 0.00 | 0.11 | 0.08 | −0.15 | 0.07 | −0.09 |
Internal Rotation Analysis | Equilibrium Structure | |||||||
---|---|---|---|---|---|---|---|---|
∠(i,i) a | Ref. | ∠(CXC) | Ref. | Tilt b | ∆Iα c | |||
(CH3)2CH2 | 3.198 (21) | 109.70 (13) | [5] | 3.131 | 112.09 (1) | This work | 2.4 | 0.067 |
(CH3)2O | 3.263 (7) | 118.00 (18) | [56] | 3.186 | 111.10 (3) | [57] | −6.9 | 0.077 |
(CH3)2S | 3.225 (7) | 103.40 (1) | [58] | 3.184 | 98.58 (1) | [59] | −4.8 | 0.041 |
(CH3)2CO | 3.215 (6) | 120.50 (12) | [60] | 3.162 | 116.5 (1) | [61] | −4.0 | 0.053 |
q(Ha) b | d(Ha…Ha) | ∠(HaXHa) | d(Hs…Ha) | ∠(HsXHa) | Ref. | |
---|---|---|---|---|---|---|
CH4 | −0.01388 | 1.7737 | 109.47 | 1.7737 | 109.47 | [71] |
CH3F | 0.01554 | 1.7837 | 110.26 | 1.7837 | 110.26 | [69] |
CH3CH3 | −0.02773 | 1.7579 | 107.67 | 1.7579 | 107.67 | [68] |
(CH3)2CH2 c | −0.02986 | 1.7602 | 107.64 | 1.7628 | 107.95 | This work |
(CH3)2CH2 d | −0.03627 | 1.7480 | 106.38 | This work | ||
(CH3)2O | −0.01923 | 1.7780 | 108.55 | 1.7780 | 109.18 | [57] |
(CH3)2S | 0.00416 | 1.7823 | 109.73 | 1.7748 | 109.13 | [59] |
(CH3)2CO | −0.03902 | 1.7554 | 107.04 | 1.7821 | 109.97 | [61] |
(CH3)2CF2 | 0.00471 | 1.7738 | 109.32 | 1.7740 | 109.36 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demaison, J.; Vogt, N.; Perrin, A. Equilibrium Structures of Propane and 2,2-Difluoropropane and Comparison with Other Two-Top Molecules. Molecules 2024, 29, 4877. https://doi.org/10.3390/molecules29204877
Demaison J, Vogt N, Perrin A. Equilibrium Structures of Propane and 2,2-Difluoropropane and Comparison with Other Two-Top Molecules. Molecules. 2024; 29(20):4877. https://doi.org/10.3390/molecules29204877
Chicago/Turabian StyleDemaison, Jean, Natalja Vogt, and Agnès Perrin. 2024. "Equilibrium Structures of Propane and 2,2-Difluoropropane and Comparison with Other Two-Top Molecules" Molecules 29, no. 20: 4877. https://doi.org/10.3390/molecules29204877
APA StyleDemaison, J., Vogt, N., & Perrin, A. (2024). Equilibrium Structures of Propane and 2,2-Difluoropropane and Comparison with Other Two-Top Molecules. Molecules, 29(20), 4877. https://doi.org/10.3390/molecules29204877