Virtual Instruments for Peak-Overlapping Studies to Determine Low- and High-Concentration Components with Ion Chromatography: Potassium and Sodium
Abstract
:1. Introduction
- No pre-treatment of raw data.
- No choice in the peak-recognition criteria.
- Not a general method for peak-overlapping evaluation, requires the user’s choice of the overlapping-pattern subcase.
- No aid for the output-data compilation to support more comprehensive studies.
2. Results
2.1. Results of Data Treatment with Virtual Instruments
2.1.1. The First Virtual Instrument—Raw Data Pretreatment
2.1.2. The Second Virtual Instrument—Peak Data Combined and Irregularities Repaired
2.1.3. The Third Virtual Instrument—Peak Parameters and Peak-Overlapping Parameters
2.1.4. The Fourth Virtual Instrument—Data Compilation
2.2. Model Study of Peak Overlapping—Design of Experiments 1
2.3. Accuracy and Precision Study—Design of Experiments 2
2.4. Real Sample Analyses
3. Discussion
3.1. Real Sample Analyses
3.2. Changes in Peak Shape, Retention Times, and Column Capacity
3.3. Implications and Limitations
4. Materials and Methods
4.1. Virtual Instruments for Peak-Overlapping Studies
4.1.1. The First Virtual Instrument—Raw Data Pretreatment
4.1.2. The Second Virtual Instrument—Peak Data Combined and Irregularities Repaired
4.1.3. The Third Virtual Instrument—Peak Parameters and Peak-Overlapping Parameters
4.1.4. The Fourth Virtual Instrument—Data Compilation
4.1.5. Experimental Data Treated with the Virtual Instruments
4.2. Ion Exchange Chromatography
4.2.1. A Model Study of Peak-Overlapping
4.2.2. Accuracy and Precision Study
4.2.3. Real Sample Analyses
- Ringer Braun lactate solution, abbreviated RB (Ringerjeva raztopina Braun, raztopina za infundiranje, 500 mL, p.n. 363 2431, Lot 232158142, B.Braun Melsungen AG, Melsungen, Germany);
- Citrate anticoagulant blood collection tubes (109 mmol/L, 1.8 mL), abbreviated BCT-B (Vacutube, LT Burnik d.o.o., Skaručna, Slovenia);
- Buffered citrate anticoagulant blood collection tubes (109 mmol/L, 1.8 mL), abbreviated BCT-C (BD Vacutainer®, Becton, Dickinson and Company (BD), Franklin Lakes, NJ, USA).
- Magnesium chloride hexahydrate, MgCl2·6H2O ((M = 203.30 g/mol, w ≥ 0.99, pro analysi), Gram-Mol, Zagreb, Croatia);
- Calcium chloride dihydrate, CaCl2·2H2O ((M = 147.02 g/mol, w ≥ 0.995, GR), Merck, Darmstadt, Germany);
- Sodium sulfate, Na2SO4 ((M = 142,04 g/mol, w ≥ 0.99, pro analysi), Merck, Darmstadt, Germany);
- Sodium hydrogen carbonate, NaHCO3 ((M = 84.01 g/mol, w ≥ 0.997), Riedel-de Haën, Seelze, Germany);
- Sodium acetate trihydrate, CH3COONa·3H2O ((M = 136.08 g/mol, 1.005 ≥ w ≥ 0.995, pro analysi), E. Merck, Darmstadt, Germany);
- DL-lactic acid Na-salt, NaC3H5O3 ((M = 112.1 g/mol, cryst. research grade), Serva, Feinbiochemica, Heidelberg, Germany/New York, NY, USA).
4.3. Designs of Experiments
4.3.1. Design of Experiment 1
4.3.2. Design of Experiment 2
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Meaning |
---|---|
a | Intercept. |
AR | Ringer’s acetate solution. |
AR_V | Verification Ringer’s acetate solution. |
Area1/Area2 | Quotient of Peak area 1 over Peak area 2. |
b | Slope. |
BCT | Citrate anticoagulant blood collection tube. |
BCT-B | Citrate anticoagulant blood collection tube—unbuffered. |
BCT-C | Citrate anticoagulant blood collection tube—buffered. |
|Bias|r Lower | Lower absolute value of the relative bias. |
CitBuff_V | Verification buffered citrate solution. |
Conc_ratio | 1.6-base logarithmic value of the ratio of sodium over potassium mass concentration. |
DoE | Design of experiment. |
FractA/FractH | Relative change in the peak width of sodium ion over the peak width in potassium ion. |
Fraction Peak 2 | Overlap area expressed relatively over the Peak area 2. |
Height1/Height2 | Quotient of Peak height 1 over Peak height 2. |
k = 2 | Coverage factor. |
log1.6(Ratio) | Logarithmic values of the quotient of the sodium and potassium ion mass concentrations. |
log1.6(x0) | Logarithmic values of the interpolated mass concentrations of potassium and sodium ions. |
LR | Ringer’s lactate solution. |
LR_V | Verification Ringer’s lactate solution. |
Na3Cit_V | Verification trisodium citrate solution. |
OLS | Ordinary least squares regression |
RAK_Area | Relative accuracy of potassium peak area. |
RANa_Area | Relative accuracy of sodium peak area. |
RB | Ringer Braun solution. |
RB_V | Verification Ringer Braun solution. |
STS | Standard sea. |
STS_V | Standard sea verification solution. |
sx0 | Standard uncertainty (sx0) of the interpolated sodium or potassium ion concentration, x0. |
Ur | Relative expanded standard uncertainty of interpolation. |
Ur Lower | Lower relative expanded uncertainty. |
Vf | Volume of volumetric flask. |
VI | Virtual instrument. |
Vp | Pipetted volumes. |
WLS | Weighted least squares regression. |
x0 | Interpolated sodium or potassium ion mass concentration. |
γ | Mass concentration of ions in examined solution. |
γ(Na+)/γ(K+) | Quotient of the sodium and potassium ion mass concentrations. |
Δ/τ × 100 | Relative bias. |
τ | Expected mass concentration. |
References
- Wahab, M.F.; Hellinghausen, G.; Armstrong, D.W. Progress in Peak Processing. Lc Gc Eur. 2019, 32, 22–28. [Google Scholar]
- Wahab, M.F.; O’Haver, T.C.; Gritti, F.; Hellinghausen, G.; Armstrong, D.W. Increasing chromatographic resolution of analytical signals using derivative enhancement approach. Talanta 2019, 192, 492–499. [Google Scholar] [CrossRef]
- Wahab, M.F.; Gritti, F.; O’Haver, T.C.; Hellinghausen, G.; Armstrong, D.W. Power Law Approach as a Convenient Protocol for Improving Peak Shapes and Recovering Areas from Partially Resolved Peaks. Chromatographia 2019, 82, 211–220. [Google Scholar] [CrossRef]
- Hellinghausen, G.; Wahab, M.F.; Armstrong, D.W. Improving visualization of trace components for quantification using a power law based integration approach. J. Chromatogr. A 2018, 1574, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Barth, H.G. Chromatography Fundamentals, Part VIII: The Meaning and Significance of Chromatographic Resolution. Lc Gc N. Am. 2019, 37, 824–828. [Google Scholar]
- Zhang, Y.; Lucy, C.A. Effect of injection matrix concentration on peak shape and separation efficiency in ion chromatography. J. Chromatogr. A 2014, 1371, 177–183. [Google Scholar] [CrossRef]
- Pappoe, M.K.; Naeeni, M.H.; Lucy, C.A. Bromate peak distortion in ion chromatography in samples containing high chloride concentrations. J. Chromatogr. A 2016, 1444, 57–63. [Google Scholar] [CrossRef]
- Wahab, M.F.; Anderson, J.K.; Abdelrady, M.; Lucy, C.A. Peak Distortion Effects in Analytical Ion Chromatography. Anal. Chem. 2014, 86, 559–566. [Google Scholar] [CrossRef]
- Papas, A.N.; Tougas, T.P. Accuracy of peak deconvolution algorithms within chromatographic integrators. Anal. Chem. 1990, 62, 234–239. [Google Scholar] [CrossRef]
- Gros, N.; Gorenc, B. Simple recognition of similar samples for the ion-chromatographic determination of the main cations. J. Chromatogr. A 1997, 789, 323–327. [Google Scholar] [CrossRef]
- Caballero, R.D.; López-Grío, S.J.; Torres-Lapasió, J.R.; García-Alvarez-Coque, M.C. Single-peak resolution criteria for optimization of mobile phase composition in liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1895–1919. [Google Scholar] [CrossRef]
- Navarro-Huerta, J.A.; Alvarez-Segura, T.; Torres-Lapasió, J.R.; García-Alvarez-Coque, M.C. Study of the performance of a resolution criterion to characterise complex chromatograms with unknowns or without standards. Anal. Methods 2017, 9, 4293–4303. [Google Scholar] [CrossRef]
- Goldberg, H. What is virtual instrumentation? IEEE Instrum. Meas. Mag. 2000, 3, 10–13. [Google Scholar] [CrossRef]
- Taner, A.H.; White, N.M. Virtual instrumentation: A solution to the problem of design complexity in intelligent instruments. Meas. Control. 1996, 29, 165–171. [Google Scholar] [CrossRef]
- Wang, C.; Gao, R. A virtual instrumentation system for integrated bearing condition monitoring. IEEE Trans. Instrum. Meas. 2000, 49, 325–332. [Google Scholar] [CrossRef]
- Newman, C.; Giordan, B.; Copper, C.; Collins, G. Microchip micellar electrokinetic chromatography separation of alkaloids with UV-absorbance spectral detection. Electrophoresis 2008, 29, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; DeVol, T.; Fjeld, R. Digital alpha/beta pulse shape discrimination of CsI:Tl for on-line measurement of aqueous radioactivity. IEEE Trans. Nucl. Sci. 2000, 47, 1516–1521. [Google Scholar] [CrossRef]
- Peoples, M.; Phillips, T.; Karnes, H. A capillary-based microfluidic instrument suitable for immunoaffinity chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 848, 200–207. [Google Scholar] [CrossRef]
- Tereshatov, E.; Burns, J.; Schultz, S.; McCann, L.; McIntosh, L.; Tabacaru, G.; Berko, M.; Engelthaler, E.; Hannaman, A.; Harvey, B.; et al. Compact automated apparatus for rapid astatine recovery from nitric acid media: Design, application, and impurity characterization. Chem. Eng. J. 2022, 442, 136176. [Google Scholar] [CrossRef]
- Beussman, D.; Walters, J. Complete LabVIEW-Controlled HPLC Lab: An Advanced Undergraduate Experience. J. Chem. Educ. 2017, 94, 1527–1532. [Google Scholar] [CrossRef]
- Chung, K.; Kang, D.; Rhee, D. Design and performance of an automated single column sequential extraction chromatographic system. J. Radioanal. Nucl. Chem. 2019, 321, 935–942. [Google Scholar] [CrossRef]
- de Holanda, R.; Cunha, F.; Secchi, A.; Barreto, A. Supervisory system for automated simulated moving bed (SMB) liquid chromatography (LC). Instrum. Sci. Technol. 2023, 51, 319–334. [Google Scholar] [CrossRef]
- Jensen, M.B. Integrating HPLC and electrochemistry: A LabVIEW-based pulsed amperometric detection system. J. Chem. Educ. 2002, 79, 345–348. [Google Scholar] [CrossRef]
- Coutinho, C.; Coutinho, L.; Lancas, F.; Camara, C.; Nirdorf, S.; Mazo, L. Development of instrumentation for amperometric and coulometric detection using ultramicroelectrodes. J. Braz. Chem. Soc. 2008, 19, 131–139. [Google Scholar] [CrossRef]
- Burrell, F.; Warwick, P.; Croudace, I.; Walters, W. Development of a numerical simulation method for modelling column breakthrough from extraction chromatography resins. Analyst 2021, 146, 4049–4065. [Google Scholar] [CrossRef] [PubMed]
- McCormack, T.M.; van Staden, J.F. Use of a sequential injection technique to evaluate the effect of mixing chambers on zone penetration. Anal. Chim. Acta 1998, 367, 111–121. [Google Scholar] [CrossRef]
- van Staden, J.F.; McCormack, T. Influence of single bead string reactors on zone penetration and the isodispersion point in sequential injection analysis. Instrum. Sci. Technol. 1999, 27, 167–180. [Google Scholar] [CrossRef]
- Kuljanin, A.; Gros, N. LabVIEW virtual instrument for zone penetration studies in flow-based analytical systems. J. Serbian Chem. Soc. 2021, 86, 1089–1102. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Lockwood, A.P.M. “Ringer”, solutions and some notes on the physiological basis of their ionic composition. Comp. Biochem. Physiol. 1961, 2, 241–289. [Google Scholar] [CrossRef]
- Sanchez, J. Linear calibrations in chromatography: The incorrect use of ordinary least squares for determinations at low levels, and the need to redefine the limit of quantification with this regression model. J. Sep. Sci. 2020, 43, 2708–2717. [Google Scholar] [CrossRef] [PubMed]
- Tellinghuisen, J. Weighted least-squares in calibration: What difference does it make? Analyst 2007, 132, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Gros, N. Ion Chromatographic Analyses of Sea Waters, Brines and Related Samples. Water 2013, 5, 659–676. [Google Scholar] [CrossRef]
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 13 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|
2.56 | 4.10 | 6.55 | 10.5 | 16.8 | 26.8 | 42.9 | 68.7 | 110 | 176 | 281 | 450 |
Parameters | a | b | sy/x | R2 | a | b | sy/x | R2 |
---|---|---|---|---|---|---|---|---|
Analyte | Potassium | Sodium | ||||||
C1 (OLS) | 16 × 103 | 236 × 103 | 4402 | 0.9998 | 1.1 × 106 | 363 × 103 | 408.8 × 103 | 1.0000 |
C2-S2 (WLS) | 5 × 103 | 232.1 × 103 | 9874 | 0.9997 | 0.97 × 106 | 360 × 103 | 81.94 × 103 | 1.0000 |
C2-S1 (OLS) | 5 × 103 | 234.6 × 103 | 12.95 × 103 | 1.0000 | / | / | / | / |
Analyte | Potassium | Sodium |
---|---|---|
C2-S2 (WLS) | w0 = −1.66 × ln(y0) + 26.1 R2 = 0.8953 | w0 = 15.3 × ek×y0; k = −3.35 × 10−8 R2 = 0.9444 |
Solution | Na3Cit_V | CitBuff_V | BCT-C | BCT-B | Na3Cit_V | CitBuff_V | BCT-C | BCT-B |
---|---|---|---|---|---|---|---|---|
Analyte | Potassium | Sodium | ||||||
x0 (mg/L) | 0.993 | 2.703 | 2.148 | <0.360 | 338.8 | 339.0 | 258.8 | 235.4 |
sx0 (mg/L) | 0.021 | 0.021 | 0.020 | / | 1.2 | 1.2 | 1.3 | 1.3 |
Ur, k = 2 (%) | 4.4 | 1.6 | 1.9 | / | 0.73 | 0.73 | 0.97 | 1.1 |
Vp (mL) ** | 2.25 | 2.65 | 10 * | 10 * | 2.25 | 2.65 | 10 * | 10 * |
Vf (mL) *** | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
γ (mg/L) | 22.1 | 51.0 | 5.37 | / | 7.53 × 103 | 6.40 × 103 | 647 | 588 |
τ (mg/L) | 21.97 | 51.96 | / | / | 7499 | 6335 | / | / |
Δ/τ × 100 (%) | 0.41 | −1.8 | / | / | 0.39 | 0.96 | / | / |
γ(Na+)/γ(K+) | 341 | 125 | 120 | / | 341 | 125 | 120 | / |
log1.6(Ratio) | 12.41 | 10.28 | 10.19 | / | 12.41 | 10.28 | 10.19 | / |
log1.6(x0) | −0.02 | 2.12 | 1.63 | / | 12.394 | 12.396 | 11.82 | 11.62 |
Solution | STS_V | LR_V | AR_V | RB_V | STS | LR | AR | RB |
Analyte | Potassium—calibration potassium and sodium (C2-S2), data heteroscedastic, WLS | |||||||
x0 (mg/L) | 12.726 | 24.361 | 18.531 | 15.251 | 12.810 | 23.576 | 17.722 | 16.112 |
sx0 (mg/L) | 0.041 | 0.086 | 0.055 | 0.046 | 0.042 | 0.079 | 0.052 | 0.048 |
Ur, k = 2 (%) | 0.65 | 0.71 | 0.59 | 0.61 | 0.65 | 0.67 | 0.59 | 0.60 |
Vp (mL) * | 3.15 | 2.25 | 2.25 | 5 | 3.15 | 2.25 | 2.25 | 5 |
Vf (mL) ** | 100 | 20 | 20 | 50 | 100 | 20 | 20 | 50 |
γ (mg/L) | 404.0 | 216.5 | 164.7 | 152.5 | 406.7 | 209.6 | 157.5 | 161.1 |
τ (mg/L) | 402.3 | 212.9 | 161.6 | 156.4 | 406.6 | 209.3 | 156.4 | / |
Δ/τ × 100 (%) | 0.42 | 1.7 | 1.9 | −2.5 | 0.023 | 0.15 | 0.71 | / |
γ(Na+)/γ(K+) | 26.84 | 13.91 | 18.27 | 22.27 | 27.1 | 14.23 | 18.87 | 21.46 |
log1.6(Ratio) | 7.001 | 5.601 | 6.182 | 6.603 | 7.017 | 5.650 | 6.250 | 6.524 |
log1.6(x0) | 5.414 | 6.793 | 6.211 | 5.797 | 5.426 | 6.724 | 6.116 | 5.914 |
Solution | STS_V | LR_V | AR_V | RB_V | STS | LR | AR | RB |
Analyte | Sodium—calibration potassium and sodium (C2-S2), data heteroscedastic, WLS | |||||||
x0 (mg/L) | 341.56 | 338.77 | 338.65 | 339.69 | 346.56 | 335.56 | 334.43 | 345.73 |
sx0 (mg/L) | 0.49 | 0.48 | 0.48 | 0.48 | 0.50 | 0.47 | 0.47 | 0.50 |
Ur, k = 2 (%) | 0.29 | 0.28 | 0.28 | 0.28 | 0.29 | 0.28 | 0.28 | 0.29 |
Vp (mL) * | 3.15 | 2.25 | 2.25 | 5 | 3.15 | 2.25 | 2.25 | 5 |
Vf (mL) ** | 100 | 20 | 20 | 50 | 100 | 20 | 20 | 50 |
γ (mg/L) | 10.84 × 103 | 3011 | 3010 | 3397 | 11.00 × 103 | 2983 | 2973 | 3457 |
τ (mg/L) | 10.76 × 103 | 2988 | 2987 | 3375 | 10.97 × 103 | 2989 | 2989 | / |
Δ/τ × 100 (%) | 0.80 | 0.78 | 0.77 | 0.64 | 0.27 | −0.23 | −0.54 | / |
γ(Na+)/γ(K+) | 26.84 | 13.91 | 18.27 | 22.27 | 27.1 | 14.23 | 18.87 | 21.46 |
log1.6(Ratio) | 7.001 | 5.601 | 6.182 | 6.603 | 7.017 | 5.650 | 6.250 | 6.524 |
log1.6(x0) | 12.412 | 12.394 | 12.393 | 12.400 | 12.443 | 12.374 | 12.367 | 12.437 |
Solution | STS_V | LR_V | AR_V | RB_V | STS | LR | AR | RB |
Analyte | Potassium—calibration potassium, sodium constant (C2-S1), data homoscedastic, OLS | |||||||
x0 (mg/L) | 12.552 | 24.076 | 18.298 | 15.052 | 12.636 | 23.290 | 17.497 | 15.903 |
sx0 (mg/L) | 0.063 | 0.063 | 0.060 | 0.061 | 0.062 | 0.062 | 0.060 | 0.061 |
Ur, k = 2 (%) | 1.0 | 0.52 | 0.66 | 0.81 | 1.0 | 0.54 | 0.69 | 0.76 |
Vp (mL) * | 3.15 | 2.25 | 2.25 | 5 | 3.15 | 2.25 | 2.25 | 5 |
Vf (mL) ** | 100 | 20 | 20 | 50 | 100 | 20 | 20 | 50 |
γ (mg/L) | 398.5 | 213.9 | 162.6 | 150.5 | 401 | 207.0 | 155.5 | 159.0 |
τ (mg/L) | 402.3 | 212.9 | 161.6 | 156.4 | 406.6 | 209.3 | 156.4 | / |
Δ/τ × 100 (%) | −0.94 | 0.47 | 0.62 | −3.8 | −1.3 | −1.1 | −0.57 | / |
γ(Na+)/γ(K+) | 27.2 | 14.08 | 18.51 | 22.6 | 27.4 | 14.41 | 19.11 | 21.74 |
log1.6(Ratio) | 7.03 | 5.626 | 6.208 | 6.631 | 7.05 | 5.676 | 6.277 | 6.552 |
log1.6(x0) | 5.38 | 6.767 | 6.185 | 5.768 | 5.40 | 6.698 | 6.090 | 5.886 |
Ur Lower | WLS | OLS | WLS | WLS | WLS | OLS | WLS | WLS |
|Bias|r Lower | WLS | OLS | OLS | WLS | WLS | WLS | OLS | / |
Solution | STS | STS_V | LR | LR_V | AR | AR_V | RB_V | CitBuff_V | Na3Cit_V |
---|---|---|---|---|---|---|---|---|---|
KCl | 0.0759 | 0.0769 | 0.0400 | 0.0407 | 0.0299 | 0.0309 | 0.0299 | 0.0099318 * | 0.0041990 * |
NaCl | 2.3919 | 2.7415 | 0.6001 | 0.7615 | 0.5860 | 0.7613 | 0.8602 | 1.6145 | 1.9112 |
MgCl2·6H2O | 1.0734 | / | / | / | 0.0209 | / | / | / | / |
CaCl2·2H2O | 0.1512 | / | 0.0273 | / | 0.0289 | / | / | / | / |
Na2SO4 | 0.4009 | / | / | / | / | / | / | / | / |
NaHCO3 | 0.0143 | / | / | / | / | / | / | / | / |
CH3COONa·3H2O | / | / | / | / | 0.4080 | / | / | / | / |
NaC3H5O3 | / | / | 0.3094 | / | / | / | / | ||
Vsolution (mL) | 100.0038 ** | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gros, N. Virtual Instruments for Peak-Overlapping Studies to Determine Low- and High-Concentration Components with Ion Chromatography: Potassium and Sodium. Molecules 2024, 29, 4882. https://doi.org/10.3390/molecules29204882
Gros N. Virtual Instruments for Peak-Overlapping Studies to Determine Low- and High-Concentration Components with Ion Chromatography: Potassium and Sodium. Molecules. 2024; 29(20):4882. https://doi.org/10.3390/molecules29204882
Chicago/Turabian StyleGros, Nataša. 2024. "Virtual Instruments for Peak-Overlapping Studies to Determine Low- and High-Concentration Components with Ion Chromatography: Potassium and Sodium" Molecules 29, no. 20: 4882. https://doi.org/10.3390/molecules29204882
APA StyleGros, N. (2024). Virtual Instruments for Peak-Overlapping Studies to Determine Low- and High-Concentration Components with Ion Chromatography: Potassium and Sodium. Molecules, 29(20), 4882. https://doi.org/10.3390/molecules29204882