Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review
Abstract
:1. Introduction
2. Bioactive Compounds Found in N. sativa
2.1. Terpenes and Terpenoids
2.1.1. Thymoquinone
2.1.2. P-Cymene
2.1.3. Carvacrol
2.1.4. Camphene
2.1.5. Thymol
2.1.6. Terpineol
2.2. Alkaloids
2.2.1. Nigellidine
2.2.2. Nigellamines
2.3. Polyphenols
2.3.1. Vanillic Acid
2.3.2. Caffeic Acid
2.3.3. Flavone
2.3.4. Catechins
2.4. Fatty Acids
2.4.1. Palmitic Acid
2.4.2. Linoleic Acid
2.4.3. Oleic Acid
2.5. Phytosterols
2.5.1. Campesterol
2.5.2. Cholesterol
2.5.3. Stigmasterol
3. In Silico Toxicity and Drug-Likeness Evaluation
4. Antioxidant and Immunomodulatory Properties of N. sativa
5. Antimicrobial Activities of N. sativa
5.1. Antibacterial Abilities
Activity of N. sativa Against Mycobacterium tuberculosis
5.2. Antiviral Activity
5.3. Antifungal Activity of N. sativa
5.4. Antiparasitic Features
6. Pharmacological Applications of N. sativa
6.1. Anti-Inflammatory Drug
6.2. Strong Antioxidant
6.3. Immunoregulatory Agent
6.4. A Substitute for Antibiotics
6.5. Neuroprotective Medicine
6.6. Cardioprotective Agent
6.7. Application in Cancer Treatment
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The Alarming Antimicrobial Resistance in ESKAPEE Pathogens: Can Essential Oils Come to the Rescue? Fitoterapia 2020, 140, 104433. [Google Scholar] [CrossRef]
- Watkins, R.R.; Bonomo, R.A. Overview: The Ongoing Threat of Antimicrobial Resistance. Infect. Dis. Clin. 2020, 34, 649–658. [Google Scholar] [CrossRef]
- Koulenti, D.; Fragkou, P.C.; Tsiodras, S. Editorial for Special Issue “Multidrug-Resistant Pathogens”. Microorganisms 2020, 8, 1383. [Google Scholar] [CrossRef]
- None, T.L.I.D. Antibiotic Research Priorities: Ready, Set, Now Go. Lancet Infect. Dis. 2017, 17, 349. [Google Scholar] [CrossRef]
- Allen, H.K. Alternatives to Antibiotics: Why and How. In NAM Perspectives; National Academy of Medicine: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Karkenny, G.; Pao, M.; Demissie, S.; Shah, N.; Hirsch, B. 2200. The Antibiotic Steward’s Nightmare: Long-Term Antibiotics in An Infectious Disease Practice. In Open Forum Infectious Diseases; Oxford University Press: New York, NY, USA, 2023; Volume 10. [Google Scholar] [CrossRef]
- Nikmaram, A. Intestinal Side Effects of Improper Antibiotic Use: Cause, Symptoms, and Treatment Through Probiotic Food Sources. J. Rep. Pharm. Sci. 2022, 11, 12–17. [Google Scholar] [CrossRef]
- Gilani, A.H.; Jabeen, Q.; Khan, M.A.U. A Review of Medicinal Uses and Pharmacological Activities of Nigella sativa. Pak. J. Biol. Sci. 2004, 7, 441–451. [Google Scholar]
- Chakrapani, I.; Anisree, S.; Karthika, V.; Kamesh, V.V.; Medikondu, N.R.; Ismail, Y.; Aarthi, M. Exploring the Bioactive Potential, Antimicrobial Properties and Toxicity of Peptides and Proteins from Nigella sativa for Drug Discovery. Oxid. Commun. 2023, 46, 318. [Google Scholar]
- Matthaus, B.; Özcan, M.M. Fatty Acids, Tocopherol, and Sterol Contents of Some Nigella Species Seed Oil. Czech J. Food Sci. 2011, 29, 145–150. [Google Scholar] [CrossRef]
- Al-Kayssi, A.W.; Shihab, R.M.; Mustafa, S.H. Impact of Soil Water Stress on Nigellone Oil Content of Black Cumin Seeds Grown in Calcareous-Gypsifereous Soils. Agric. Water Manag. 2011, 100, 46–57. [Google Scholar] [CrossRef]
- Aziz, S.A.; Kurniawati, A.; Faridah, D.N. Changes of Thymoquinone, Thymol, and Malondialdehyde Content of Black Cumin (Nigella sativa L.) in Response to Indonesia Tropical Altitude Variation. Hayati J. Biosci. 2017, 24, 156–161. [Google Scholar]
- Bassim Atta, M. Some Characteristics of Nigella (Nigella sativa L.) Seed Cultivated in Egypt and Its Lipid Profile. Food Chem. 2003, 83, 63–68. [Google Scholar] [CrossRef]
- Kabbashi, A.S.; Garbi, M.I.; El-badri, E.; Dahab, M.M.; Koko, W.S.; Abuzeid, N. Antigiardial and Cytotoxicity of Ethanolic Seed Extract of Nigella sativa (Linn) in Sudan. J. For. Prod. Ind. 2015, 4, 66–72. [Google Scholar]
- Asdadi, A.; Harhar, H.; Gharby, S.; Bouzoubaâ, Z.; Yadini, A.; Moutaj, R.; Hadek, M.; Chebli, B.; Hassani, L.M.I. Chemical Composition and Antifungal Activity of Nigella sativa L. Oil Seed Cultivated in Morocco. Int. J. Pharm. Sci. Invent. 2014, 3, 09–15. [Google Scholar]
- Ali, B.; Blunden, G. Pharmacological and Toxicological Properties of Nigella sativa. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2003, 17, 299–305. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical Composition and Physicochemical Characteristics of Lipid Fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Mollafilabi, A.; Moodi, H.; Rashed, M.H.; Kafi, M. Effect of plant density and nitrogen on yield and yield components of black cumin (Nigella sativa L.). Acta Hortic. 2010, 853, 115–126. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Elyes Kchouk, M.; Marzouk, B. Lipid and Aroma Composition of Black Cumin (Nigella sativa L.) Seeds from Tunisia. J. Food Biochem. 2008, 32, 335–352. [Google Scholar] [CrossRef]
- Ainane, T.; Gharby, S.; Talbi, M.; Abourriche, A.; Bennamara, A.; Oukkache, N.; Lamdini, H.; Elkouali, M. Moroccan Formulation of Oils for the Care of Hair: Chemical Composition and Antibacterial Activity. SOJ Biochem. 2016, 10, 2376–4589. [Google Scholar] [CrossRef]
- Sultan, I.; Qaddoumi, I.; Yaser, S.; Rodriguez-Galindo, C.; Ferrari, A. Comparing Adult and Pediatric Rhabdomyosarcoma in the Surveillance, Epidemiology and End Results Program, 1973 to 2005: An Analysis of 2,600 Patients. J. Clin. Oncol. 2009, 27, 3391–3397. [Google Scholar] [CrossRef]
- Ali, M.; Sterk, G.; Seeger, M.; Boersema, M.; Peters, P. Effect of Hydraulic Parameters on Sediment Transport Capacity in Overland Flow over Erodible Beds. Hydrol. Earth Syst. Sci. 2012, 16, 591–601. [Google Scholar] [CrossRef]
- Al-Naqeep, G.; Ismail, M.; Yazan, L.S. Effects of Thymoquinone Rich Fraction and Thymoquinone on Plasma Lipoprotein Levels and Hepatic Low Density Lipoprotein Receptor and 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Genes Expression. J. Funct. Foods 2009, 1, 298–303. [Google Scholar] [CrossRef]
- Al-Jassir, M.S. Chemical Composition and Microflora of Black Cumin (Nigella sativa L.) Seeds Growing in Saudi Arabia. Food Chem. 1992, 45, 239–242. [Google Scholar] [CrossRef]
- Aziz, M.A.; Khan, A.H.; Adnan, M.; Izatullah, I. Traditional Uses of Medicinal Plants Reported by the Indigenous Communities and Local Herbal Practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan. J. Ethnopharmacol. 2017, 198, 268–281. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Imran, M.; Ul-Haq, I.; Živković, J.; Abu-Reidah, I.M.; Sen, S.; Taheri, Y.; Acharya, K.; Azadi, H.; et al. Nigella Plants—Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Front. Pharmacol. 2021, 12, 625386. [Google Scholar] [CrossRef]
- Jankowski, G.; Sawicki, R.; Truszkiewicz, W.; Wolan, N.; Ziomek, M.; Hryć, B.; Sieniawska, E. Molecular Insight into Thymoquinone Mechanism of Action against Mycobacterium Tuberculosis. Front. Microbiol. 2024, 15, 1353875. [Google Scholar] [CrossRef]
- Mohammad, M.Y.; Haniffa, H.M.; Choudhary, M.I. Antibacterial Activity of Thymoquinone Derivative. BMC Res. Notes 2023, 16, 260. [Google Scholar] [CrossRef]
- Abdul-Rahman, N.Z.; Mohd-Zubri, N.S. Therapeutic Potential of Nigella sativa. In Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed; Elsevier: Amsterdam, The Netherlands, 2023; pp. 127–142. [Google Scholar]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A Review on Therapeutic Potential of Nigella sativa: A Miracle Herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef]
- Tavakoli, M.; Tavakoli, H.; Rajabipour, A.; Ahmadi, H.; Gharib-Zahedi, S.M.T. Moisture-Dependent Physical Properties of Barley Grains. Int. J. Agric. Biol. Eng. 2010, 2, 84–91. [Google Scholar]
- Alyami, H.H.; Al-Hariri, M.T. Synergistic effects of nigella sativa and exercise on diabetic profiles: A systematic review. Diabetes Therapy 2023, 3, 467–478. [Google Scholar] [CrossRef]
- Sayeed, M.S.B.; Asaduzzaman, M.; Morshed, H.; Hossain, M.M.; Kadir, M.F.; Rahman, M.R. The Effect of Nigella sativa Linn. Seed on Memory, Attention and Cognition in Healthy Human Volunteers. J. Ethnopharmacol. 2013, 148, 780–786. [Google Scholar] [CrossRef]
- Koshak, A.; Koshak, E.; Heinrich, M. Medicinal Benefits of Nigella sativa in Bronchial Asthma: A Literature Review. Saudi Pharm. J. 2017, 25, 1130–1136. [Google Scholar] [CrossRef]
- Mehta, B.K.; Sharma, U.; Agrawal, S.; Pandit, V.; Joshi, N.; Gupta, M. Isolation and Characterization of New Compounds from Seeds of Nigella sativa. Med. Chem. Res. 2008, 17, 462–473. [Google Scholar] [CrossRef]
- Ramadan, M.F. Introduction to Black Cumin (Nigella sativa): Chemistry, Technology, Functionality and Applications. In Black cumin (Nigella sativa) Seeds: Chemistry, Technology, Functionality, and Applications; Fawzy Ramadan, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–7. [Google Scholar]
- Salman, M.T.; Khan, R.A.; Shukla, I. Antimicrobial Activity of Nigella sativa Linn. Seed Oilagainst Multi-Drug Resistant Bacteria from Clinical Isolates. Indian J. Nat. Prod. Resour. 2008, 7, 10–14. [Google Scholar]
- Kmail, A.; Said, O.; Saad, B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr. Issues Mol. Biol. 2023, 45, 9039–9059. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and Clinical Effects of Nigella sativa and Its Constituent, Thymoquinone: A Review. J. Ethnopharmacol. 2016, 190, 372–386. [Google Scholar] [CrossRef]
- Pramanik, A.; Datta, A.K.; Gupta, S.; Basu, S.; Das, D.; Ghosh, B. Cytotoxicity Assessment of Heavy Metal Arsenic (Arsenic Trioxide) Using Nigella sativa L.(Black Cumin) as Test System. Cytologia 2019, 84, 215–219. [Google Scholar] [CrossRef]
- Shady, N.H.; Sobhy, S.K.; Mostafa, Y.A.; Yahia, R.; Glaeser, S.P.; Kämpfer, P.; El-Katatny, M.H.; Abdelmohsen, U.R. Phytochemical Analysis and Anti-Infective Potential of Fungal Endophytes Isolated from Nigella sativa Seeds. BMC Microbiol. 2023, 23, 343. [Google Scholar] [CrossRef]
- Rao, M.V.; Al-Marzouqi, A.H.; Kaneez, F.S.; Ashraf, S.S.; Adem, A. Comparative Evaluation of SFE and Solvent Extraction Methods on the Yield and Composition of Black Seeds (Nigella sativa). J. Liq. Chromatogr. Relat. Technol. 2007, 30, 2545–2555. [Google Scholar] [CrossRef]
- Tabassum, H.; Ahmad, A.; Ahmad, I.Z. Nigella sativa L. and Its Bioactive Constituents as Hepatoprotectant: A Review. Curr. Pharm. Biotechnol. 2018, 19, 43–67. [Google Scholar] [CrossRef]
- Shafiq, H.; Ahmad, A.; Masud, T.; Kaleem, M. Cardio-Protective and Anti-Cancer Therapeutic Potential of Nigella sativa. Iran. J. Basic Med. Sci. 2014, 17, 967–979. [Google Scholar]
- Shaterzadeh-Yazdi, H.; Noorbakhsh, M.-F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and Anti-Inflammatory Effects of Thymoquinone. Cardiovasc. Haematol. Disord.-Drug Targets (Former. Curr. Drug Targets-Cardiovasc. Hematol. Disord.) 2018, 18, 52–60. [Google Scholar] [CrossRef]
- Randhawa, M.A. In Vitro Antituberculous Activity of Thymoquinone, an Active Principle of Nigella sativa. J. Ayub Med. Coll. Abbottabad 2011, 23, 78–81. [Google Scholar]
- Yi, T.; Zhu, L.; Zhu, G.-Y.; Tang, Y.-N.; Xu, J.; Fan, J.-Y.; Zhao, Z.-Z.; Chen, H.-B. HSCCC-Based Strategy for Preparative Separation of in Vivo Metabolites after Administration of an Herbal Medicine: Saussurea Laniceps, a Case Study. Sci. Rep. 2016, 6, 33036. [Google Scholar] [CrossRef]
- Mamun, M.; Absar, N. Major Nutritional Compositions of Black Cumin Seeds–Cultivated in Bangladesh and the Physicochemical Characteristics of Its Oil. Int. Food Res. J. 2018, 25, 2634–2639. [Google Scholar]
- Ghahramanloo, K.H.; Kamalidehghan, B.; Akbari Javar, H.; Teguh Widodo, R.; Majidzadeh, K.; Noordin, M.I. Comparative Analysis of Essential Oil Composition of Iranian and Indian Nigella sativa L. Extracted Using Supercritical Fluid Extraction and Solvent Extraction. Drug Des. Dev. Ther. 2017, 11, 2221–2226. [Google Scholar] [CrossRef]
- Pop, R.M.; Trifa, A.P.; Popolo, A.; Chedea, V.S.; Militaru, C.; Bocsan, I.C.; Buzoianu, A.D. Nigella sativa: Valuable Perspective in the Management of Chronic Diseases. Iran. J. Basic Med. Sci. 2020, 23, 699–713. [Google Scholar]
- Al Juhaimi, F.; Matthäus, B.; Ghafoor, K.; Elbabiker, E.F.; Ozcan, M. Fatty Acids, Tocopherols, Minerals Contents of Nigella sativa and Trigonella Foenum-Graecum Seed and Seed Oils. Riv. Ital. Delle Sostanze Grasse 2016, 93, 165–171. [Google Scholar]
- Selin, I.; Kartal, M.; Erdem, S.A. Quantitative Analysis of Thymoquinone in Nigella sativa L.(Black Cumin) Seeds and Commercial Seed Oils and Seed Oil Capsules from Turkey. J. Fac. Pharm. Ank. Univ. 2017, 41. [Google Scholar] [CrossRef]
- Tavakkoli, A.; Mahdian, V.; Razavi, B.M.; Hosseinzadeh, H. Review on Clinical Trials of Black Seed (Nigella sativa) and Its Active Constituent, Thymoquinone. J. Pharmacopunct. 2017, 20, 179–193. [Google Scholar]
- Adamska, A.; Stefanowicz-Hajduk, J.; Ochocka, J.R. Alpha-Hederin, the Active Saponin of Nigella sativa, as an Anticancer Agent Inducing Apoptosis in the SKOV-3 Cell Line. Molecules 2019, 24, 2958. [Google Scholar] [CrossRef]
- Khoddami, A.; Ghazali, H.M.; Yassoralipour, A.; Ramakrishnan, Y.; Ganjloo, A. Physicochemical Characteristics of Nigella Seed (Nigella sativa L.) Oil as Affected by Different Extraction Methods. J. Am. Oil Chem. Soc. 2011, 88, 533–540. [Google Scholar] [CrossRef]
- Alrashidi, M.; Derawi, D.; Salimon, J.; Firdaus Yusoff, M. An Investigation of Physicochemical Properties of Nigella sativa L. Seed Oil from Al-Qassim by Different Extraction Methods. J. King Saud Univ.—Sci. 2020, 32, 3337–3342. [Google Scholar] [CrossRef]
- Haseena, S.; Aithal, M.; Das, K.K.; Saheb, S.H. Phytochemical Analysis of Nigella sativa and Its Effect on Reproductive System. J. Pharm. Sci. Res. 2015, 7, 514–517. [Google Scholar]
- Razavi, B.; Hosseinzadeh, H. A Review of the Effects of Nigella sativa L. and Its Constituent, Thymoquinone, in Metabolic Syndrome. J. Endocrinol. Investig. 2014, 37, 1031–1040. [Google Scholar] [CrossRef]
- AbuKhader, M.M. Thymoquinone in the Clinical Treatment of Cancer: Fact or Fiction? Pharmacogn. Rev. 2013, 7, 117–120. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Taiari, S.; Nassiri-Asl, M. Effect of Thymoquinone, a Constituent of Nigella sativa L., on Ischemia–Reperfusion in Rat Skeletal Muscle. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012, 385, 503–508. [Google Scholar] [CrossRef]
- Kocyigit, Y.; Atamer, Y.; Uysal, E. The Effect of Dietary Supplementation of Nigella sativa L. on Serum Lipid Profile in Rats. Saudi Med. J. 2009, 30, 893–896. [Google Scholar]
- Ahmad, S.; Beg, Z.H. Hypolipidemic and Antioxidant Activities of Thymoquinone and Limonene in Atherogenic Suspension Fed Rats. Food Chem. 2013, 138, 1116–1124. [Google Scholar] [CrossRef]
- Ali, S.; Hashim, A.; Shiekh, A.; Majid, S.; Rehman, M.U. The Cardioprotective Effect of Thymoquinone from Nigella sativa. In Black Seeds (Nigella sativa); Khan, A., Rehman, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 239–252. ISBN 978-0-12-824462-3. [Google Scholar]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Soares, G.A.B.e.; Bhattacharya, T. Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20220063069 (accessed on 13 October 2024).
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.L.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of P-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
- Abelan, U.S.; de Oliveira, A.C.; Cacoci, É.S.P.; Martins, T.E.A.; Giacon, V.M.; Velasco, M.V.R.; Lima, C.R.R.d.C. Potential Use of Essential Oils in Cosmetic and Dermatological Hair Products: A Review. J. Cosmet. Dermatol. 2022, 21, 1407–1418. [Google Scholar] [CrossRef]
- Zouirech, O.; Alyousef, A.A.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Ouahmane, L.; Giesy, J.P.; Aboul-soud, M.A.M.; Lyoussi, B.; et al. Phytochemical Analysis and Antioxidant, Antibacterial, and Antifungal Effects of Essential Oil of Black Caraway (Nigella sativa L.) Seeds against Drug-Resistant Clinically Pathogenic Microorganisms. BioMed Res. Int. 2022, 2022, 5218950. [Google Scholar] [CrossRef]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Memar, M.Y.; Raei, P.; Alizadeh, N.; Akbari Aghdam, M.; Kafil, H.S. Carvacrol and Thymol: Strong Antimicrobial Agents against Resistant Isolates. Rev. Res. Med. Microbiol. 2017, 28, 63–68. [Google Scholar] [CrossRef]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The Bioactivity and Toxicological Actions of Carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef]
- Ioanna, V.; Nikolaos, P.; Panayotis, P.; Chatzopoulou-Kladara, M. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity. PLoS ONE 2011, 6, e20516. [Google Scholar]
- Forouzanfar, F.; Bazzaz, B.S.F.; Hosseinzadeh, H. Black Cumin (Nigella sativa) and Its Constituent (Thymoquinone): A Review on Antimicrobial Effects. Iran. J. Basic Med. Sci. 2014, 17, 929–938. [Google Scholar]
- Marsik, P.; Kokoska, L.; Landa, P.; Nepovim, A.; Soudek, P.; Vanek, T. In Vitro Inhibitory Effects of Thymol and Quinones of Nigella sativa Seeds on Cyclooxygenase-1- and -2-Catalyzed Prostaglandin E2 Biosyntheses. Planta Medica 2005, 71, 739–742. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Fayyad, M.W. Recent Advances on the Anti-Cancer Properties of Nigella sativa, a Widely Used Food Additive. J. Ayurveda Integr. Med. 2016, 7, 173–180. [Google Scholar] [CrossRef]
- Adam, S.H.; Mohd Nasri, N.; Kashim, M.I.A.M.; Abd Latib, E.H.; Ahmad Juhari, M.A.A.; Mokhtar, M.H. Potential Health Benefits of Nigella sativa on Diabetes Mellitus and Its Complications: A Review from Laboratory Studies to Clinical Trials. Front. Nutr. 2022, 9, 1057825. [Google Scholar] [CrossRef]
- de Sousa, G.M.; Cazarin, C.B.B.; Junior, M.R.M.; de Almeida Lamas, C.; Quitete, V.H.A.C.; Pastore, G.M.; Bicas, J.L. The Effect of α-Terpineol Enantiomers on Biomarkers of Rats Fed a High-Fat Diet. Heliyon 2020, 6, e03752. [Google Scholar] [CrossRef]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a Natural Monoterpene: A Review of Its Biological Properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Burits, M.; Bucar, F. Antioxidant Activity of Nigella sativa Essential Oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef]
- Rahman, M.T. Potential Benefits of Combination of Nigella sativa and Zn Supplements to Treat COVID-19. J. Herb. Med. 2020, 23, 100382. [Google Scholar] [CrossRef]
- Akram Khan, M.; Afzal, M. Chemical Composition of Nigella sativa Linn: Part 2 Recent Advances. Inflammopharmacology 2016, 24, 67–79. [Google Scholar] [CrossRef]
- Banerjee, A.; Kanwar, M.; Mohapatra, P.K.D.; Saso, L.; Nicoletti, M.; Maiti, S. Nigellidine (Nigella sativa, Black-Cumin Seed) Docking to SARS CoV-2 Nsp3 and Host Inflammatory Proteins May Inhibit Viral Replication/Transcription and FAS-TNF Death Signal via TNFR 1/2 Blocking. Nat. Prod. Res. 2022, 36, 5817–5822. [Google Scholar] [CrossRef]
- Maiti, S.; Banerjee, A.; Nazmeen, A.; Kanwar, M.; Das, S. Active-Site Molecular Docking of Nigellidine with Nucleocapsid–NSP2–MPro of COVID-19 and to Human IL1R–IL6R and Strong Antioxidant Role of Nigella sativa in Experimental Rats. J. Drug Target. 2022, 30, 511–521. [Google Scholar] [CrossRef]
- Niu, Y.; Zhou, L.; Meng, L.; Chen, S.; Ma, C.; Liu, Z.; Kang, W. Recent Progress on Chemical Constituents and Pharmacological Effects of the Genus Nigella. Evid.-Based Complement. Altern. Med. 2020, 2020, 6756835. [Google Scholar] [CrossRef]
- Nie, L.; Song, H.; He, A.; Yao, S. Recent Research Progress in Natural Bioactive Constituents against Lipid Metabolic Diseases. Curr. Top. Med. Chem. 2016, 16, 2605–2624. [Google Scholar] [CrossRef]
- Morikawa, T. Pharmaceutical Food Science: Search for Bio-Functional Molecules Obtained from Natural Resources to Prevent and Ameliorate Lifestyle Diseases. Chem. Pharm. Bull. 2023, 71, 756–765. [Google Scholar] [CrossRef]
- Gao, X.; Tang, B.; Liang, H.; Yi, L.; Wei, Z. The Protective Effect of Nigeglanine on Dextran Sulfate Sodium-Induced Experimental Colitis in Mice and Caco-2 Cells. J. Cell. Physiol. 2019, 234, 23398–23408. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sharfaraz, A.; Dutta, A.; Ahsan, A.; Masud, M.A.; Ahmed, I.A.; Goh, B.H.; Urbi, Z.; Sarker, M.M.R.; Ming, L.C. A Review of Ethnobotany, Phytochemistry, Antimicrobial Pharmacology and Toxicology of Nigella sativa L. Biomed. Pharmacother. 2021, 143, 112182. [Google Scholar] [CrossRef]
- Khoshnam, S.E.; Sarkaki, A.; Rashno, M.; Farbood, Y. Memory Deficits and Hippocampal Inflammation in Cerebral Hypoperfusion and Reperfusion in Male Rats: Neuroprotective Role of Vanillic Acid. Life Sci. 2018, 211, 126–132. [Google Scholar] [CrossRef]
- Bai, F.; Fang, L. Vanillic Acid Mitigates the Ovalbumin (OVA)-Induced Asthma in Rat Model through Prevention of Airway Inflammation|Bioscience, Biotechnology, and Biochemistry|Oxford Academic. Available online: https://academic.oup.com/bbb/article-abstract/83/3/531/5920314 (accessed on 13 October 2024).
- Sharma, N.; Tiwari, N.; Vyas, M.; Khurana, N.; Muthuraman, A.; Utreja, P. An overview of therapeutic effects of vanillic acid. Plant Arch. 2020, 20, 3053–3059. [Google Scholar]
- Sun, L.; Ren, J.; Feng, X.; Li, S.; Wang, Y.; Jiang, Y.; Zheng, C. Caffeic Acid Markedly Induced Apoptosis of Human Multiple Myeloma Cells through the Caspase-Dependent Pathway. Pharmacogn. Mag. 2023, 19, 720–726. [Google Scholar] [CrossRef]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef]
- Elkady, A.I.; Abu-Zinadah, O.A.; El Hamid Hussein, R.A. Crude Flavonoid Extract of the Medicinal Herb Nigella sativa Inhibits Proliferation and Induces Apoptosis in Breast Cancer Cells. J. Biomater. Tissue Eng. 2017, 7, 1235–1249. [Google Scholar] [CrossRef]
- Veeramani, S.; Narayanan, A.P.; Yuvaraj, K.; Sivaramakrishnan, R.; Pugazhendhi, A.; Rishivarathan, I.; Jose, S.P.; Ilangovan, R. Nigella sativa Flavonoids Surface Coated Gold NPs (Au-NPs) Enhancing Antioxidant and Anti-Diabetic Activity. Process Biochem. 2022, 114, 193–202. [Google Scholar] [CrossRef]
- Cheng, A.-W.; Tan, X.; Sun, J.-Y.; Gu, C.-M.; Liu, C.; Guo, X. Catechin Attenuates TNF-α Induced Inflammatory Response via AMPK-SIRT1 Pathway in 3T3-L1 Adipocytes. PLoS ONE 2019, 14, e0217090. [Google Scholar] [CrossRef]
- Pop, R.M.; Vassilopoulou, E.; Jianu, M.-E.; Roșian, Ș.H.; Taulescu, M.; Negru, M.; Bercian, C.; Boarescu, P.-M.; Bocsan, I.C.; Feketea, G.; et al. Nigella sativa Oil Attenuates Inflammation and Oxidative Stress in Experimental Myocardial Infarction. BMC Complement. Med. Ther. 2024, 24, 362. [Google Scholar] [CrossRef]
- Soleimanifar, M.; Niazmand, R.; Jafari, S.M. Evaluation of Oxidative Stability, Fatty Acid Profile, and Antioxidant Properties of Black Cumin Seed Oil and Extract. Food Meas. 2019, 13, 383–389. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Bunn, R.C.; Cockrell, G.E.; Ou, Y.; Thrailkill, K.M.; Lumpkin, C.K.; Fowlkes, J.L. Palmitate and Insulin Synergistically Induce IL-6 Expression in Human Monocytes. Cardiovasc. Diabetol. 2010, 9, 73. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, Y.; Szabo, A.; Wu, Y.; Wang, H.; Camer, D.; Huang, X.-F. Palmitic Acid Induces Central Leptin Resistance and Impairs Hepatic Glucose and Lipid Metabolism in Male Mice. J. Nutr. Biochem. 2015, 26, 541–548. [Google Scholar] [CrossRef]
- Aydin, E.; Kart, A. Health Promoting Activities of Nigella sativa Seeds. In Black Cumin (Nigella sativa) Seeds: Chemistry, Technology, Functionality, and Applications; Fawzy Ramadan, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 153–177. [Google Scholar]
- Sharma, P.; Longvah, T. Nigella (Nigella sativa) Seed. In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Singapore, 2021; pp. 331–350. ISBN 9789811541940. [Google Scholar]
- Abd-Rabou, A.A.; Edris, A.E. Cytotoxic, Apoptotic, and Genetic Evaluations of Nigella sativa Essential Oil Nanoemulsion against Human Hepatocellular Carcinoma Cell Lines. Cancer Nanotechnol. 2021, 12, 28. [Google Scholar] [CrossRef]
- Palomer, X.; Pizarro-Delgado, J.; Barroso, E.; Vázquez-Carrera, M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol. Metab. 2018, 29, 178–190. [Google Scholar] [CrossRef]
- Henique, C.; Mansouri, A.; Fumey, G.; Lenoir, V.; Girard, J.; Bouillaud, F.; Prip-Buus, C.; Cohen, I. Increased Mitochondrial Fatty Acid Oxidation Is Sufficient to Protect Skeletal Muscle Cells from Palmitate-Induced Apoptosis. J. Biol. Chem. 2010, 285, 36818–36827. [Google Scholar] [CrossRef]
- Mei, S.; Ni, H.-M.; Manley, S.; Bockus, A.; Kassel, K.M.; Luyendyk, J.P.; Copple, B.L.; Ding, W.-X. Differential Roles of Unsaturated and Saturated Fatty Acids on Autophagy and Apoptosis in Hepatocytes. J. Pharmacol. Exp. Ther. 2011, 339, 487–498. [Google Scholar] [CrossRef]
- Hegazy, E.; Haggag, T.; Elmansy, M. The Protective Role of Nigella sativa versus Lepidium Sativum on the Submandibular Salivary Gland in Hypercholesterolemic Albino Rat (Histological and Immunohistochemical Study). Egypt. Dent. J. 2021, 67, 3113–3125. [Google Scholar] [CrossRef]
- Nazir, S.; Mobashar, A.; Anjum, I.; Chaudhary, W.A.; Tariq, N.; Dar, S.R. Mechanistic Evaluation of Anti-Arthritic Effects of Campesterol Through Downregulation of TNF-α, IL-1β, IL-6, NF-κB, MMP 3,COX I and COX II and Upregulation of IL-4. 2023. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchsquare.com/article/rs-3053739/v1.pdf (accessed on 9 September 2024).
- Crimarco, A.; Springfield, S.; Petlura, C.; Streaty, T.; Cunanan, K.; Lee, J.; Fielding-Singh, P.; Carter, M.M.; Topf, M.A.; Wastyk, H.C.; et al. A Randomized Crossover Trial on the Effect of Plant-Based Compared with Animal-Based Meat on Trimethylamine-N-Oxide and Cardiovascular Disease Risk Factors in Generally Healthy Adults: Study With Appetizing Plantfood—Meat Eating Alternative Trial (SWAP-MEAT). Am. J. Clin. Nutr. 2020, 112, 1188–1199. [Google Scholar] [CrossRef]
- Brown, L.; Rose, K.; Campbell, A. Healthy Plant-Based Diets and Their Short-Term Effects on Weight Loss, Nutrient Intake and Serum Cholesterol Levels. Nutr. Bull. 2022, 47, 199–207. [Google Scholar] [CrossRef]
- Kiralan, M.; Kiralan, S.S.; Ozkan, G.; Ramadan, M.F. Food Applications of Nigella sativa Fixed Oil. In Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications; Fawzy Ramadan, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 349–360. [Google Scholar]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.-H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Medina-Pastor, P.; Triacchini, G. The 2018 European Union Report on Pesticide Residues in Food. EFSA J. Eur. Food Saf. Auth. 2020, 18, e06057. [Google Scholar] [CrossRef]
- Padmasri Govindarajan, P.G.; Sarada, D.V.L. Isolation and Characterization of Stigmasterol and β-Sitosterol from Acacia Nilotica (L.) Delile Ssp. Indica (Benth.) Brenan. J. Pharm. Res. 2011, 4, 3601–3602. [Google Scholar]
- Somsak, N.; Peerawit, P.; Chusri, T. Hypoglycemic Activity in Diabetic Rats of Stigmasterol and Sitosterol-3-O--D-Glucopyranoside Isolated from Pseuderanthemum Palatiferum (Nees) Radlk. Leaf Extract. J. Med. Plants Res. 2015, 9, 629–635. [Google Scholar] [CrossRef]
- Bae, H.; Song, G.; Lim, W. Stigmasterol Causes Ovarian Cancer Cell Apoptosis by Inducing Endoplasmic Reticulum and Mitochondrial Dysfunction. Pharmaceutics 2020, 12, 488. [Google Scholar] [CrossRef]
- Ahmad Khan, M.; Sarwar, A.H.M.G.; Rahat, R.; Ahmed, R.S.; Umar, S. Stigmasterol Protects Rats from Collagen Induced Arthritis by Inhibiting Proinflammatory Cytokines. Int. Immunopharmacol. 2020, 85, 106642. [Google Scholar] [CrossRef]
- Wen, S.; He, L.; Zhong, Z.; Zhao, R.; Weng, S.; Mi, H.; Liu, F. Stigmasterol Restores the Balance of Treg/Th17 Cells by Activating the Butyrate-PPARγ Axis in Colitis. Front. Immunol. 2021, 12, 741934. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Liu, J.; Pan, X.; Zhao, Q. Stigmasterol Exerts Neuro-Protective Effect Against Ischemic/Reperfusion Injury Through Reduction Of Oxidative Stress And Inactivation Of Autophagy. Neuropsychiatr. Dis. Treat. 2019, 15, 2991–3001. [Google Scholar] [CrossRef]
- Ayele, T.T.; Gurmessa, G.T.; Abdissa, Z.; Kenasa, G.; Abdissa, N. Oleanane and Stigmasterol-Type Triterpenoid Derivatives from the Stem Bark of Albizia Gummifera and Their Antibacterial Activities. J. Chem. 2022, 2022, 9003143. [Google Scholar] [CrossRef]
- Bourgou, S.; Pichette, A.; Marzouk, B.; Legault, J. Antioxidant, Anti-Inflammatory, Anticancer and Antibacterial Activities of Extracts from Nigella sativa (Black Cumin) Plant Parts. J. Food Biochem. 2012, 36, 539–546. [Google Scholar] [CrossRef]
- Esharkawy, E.R.; Almalki, F.; Hadda, T.B. In Vitro Potential Antiviral SARS-CoV-19-Activity of Natural Product Thymohydroquinone and Dithymoquinone from Nigella sativa. Bioorg. Chem. 2022, 120, 105587. [Google Scholar] [CrossRef]
- Song, J.; Yeo, S.-G.; Hong, E.-H.; Lee, B.-R.; Kim, J.-W.; Kim, J.; Jeong, H.; Kwon, Y.; Kim, H.; Lee, S.; et al. Antiviral Activity of Hederasaponin B from Hedera Helix against Enterovirus 71 Subgenotypes C3 and C4a. Biomol. Ther. 2014, 22, 41–46. [Google Scholar] [CrossRef]
- Lima, I.O.; Pereira, F.D.O.; Oliveira, W.A.D.; Lima, E.D.O.; Menezes, E.A.; Cunha, F.A.; Diniz, M.D.F.F.M. Antifungal Activity and Mode of Action of Carvacrol against Candida Albicans Strains. J. Essent. Oil Res. 2013, 25, 138–142. [Google Scholar] [CrossRef]
- Šegvić Klarić, M.; Kosalec, I.; Mastelić, J.; Pieckova, E.; Pepeljnak, S. Antifungal Activity of Thyme (Thymus vulgaris L.) Essential Oil and Thymol against Moulds from Damp Dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. In Vitro Study of Synergistic Antimicrobial Effect of Carvacrol and Cymene on Drug Resistant Salmonella Typhi. Afr. J. Microbiol. Res 2009, 3, 978–980. [Google Scholar]
- Thakre, A.D.; Mulange, S.V.; Kodgire, S.S.; Zore, G.B.; Karuppayil, S.M. Effects of Cinnamaldehyde, Ocimene, Camphene, Curcumin and Farnesene on Candida Albicans. Adv. Microbiol. 2016, 6, 627–643. [Google Scholar] [CrossRef]
- Usman, R.A.; Idris, M.M.; Makinde, S.A. Antibacterial Activity of Nigella sativa Seed Extracts. Bayero J. Pure Appl. Sci. 2017, 10, 328–330. [Google Scholar] [CrossRef]
- Pohl, C.H.; Kock, J.L.; Thibane, V.S. Antifungal Free Fatty Acids: A Review. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 1, 61–71. [Google Scholar]
- Tan, L.F.; Yap, V.L.; Rajagopal, M.; Wiart, C.; Selvaraja, M.; Leong, M.Y.; Tan, P.L. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. Plants 2022, 11, 3009. [Google Scholar] [CrossRef]
- Shokry, S.; Hegazy, A.; Abbas, A.M.; Mostafa, I.; Eissa, I.H.; Metwaly, A.M.; Yahya, G.; El-Shazly, A.M.; Aboshanab, K.M.; Mostafa, A. Phytoestrogen β-Sitosterol Exhibits Potent in Vitro Antiviral Activity against Influenza a Viruses. Vaccines 2023, 11, 228. [Google Scholar] [CrossRef]
- Beavers, W.N.; Monteith, A.J.; Amarnath, V.; Mernaugh, R.L.; Roberts, L.J.; Chazin, W.J.; Davies, S.S.; Skaar, E.P. Arachidonic Acid Kills Staphylococcus Aureus through a Lipid Peroxidation Mechanism. mBio 2019, 10, e01333-19. [Google Scholar] [CrossRef]
- Yang, T.-L.; Hsieh, C.-M.; Meng, L.-J.; Tsai, T.; Chen, C.-T. Oleic Acid-Based Self Micro-Emulsifying Delivery System for Enhancing Antifungal Activities of Clotrimazole. Pharmaceutics 2022, 14, 478. [Google Scholar] [CrossRef]
- Mpanju, O. Mechanisms of [Gamma]-Linolenic Acid Induction of Apoptosis in T Cells Chronically Infected with HIV-1. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2001. [Google Scholar]
- de Oliveira Pereira, F.; Mendes, J.M.; de Oliveira Lima, E. Investigation on Mechanism of Antifungal Activity of Eugenol against Trichophyton Rubrum. Med. Mycol. 2013, 51, 507–513. [Google Scholar] [CrossRef]
- Tucker, J.M.; Townsend, D.M. Alpha-Tocopherol: Roles in Prevention and Therapy of Human Disease. Biomed. Pharmacother. 2005, 59, 380–387. [Google Scholar] [CrossRef]
- Jiang, Q.; Ames, B.N. γ-Tocopherol, but Not A-tocopherol, Decreases Proinflammatory Eicosanoids and Inflammation Damage in Rats. FASEB J. 2003, 17, 816–822. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An Updated Knowledge of Black Seed (Nigella sativa Linn.): Review of Phytochemical Constituents and Pharmacological Properties. J. Herb. Med. 2021, 25, 100404. [Google Scholar] [CrossRef]
- Khalife, K.; Lupidi, G. Nonenzymatic Reduction of Thymoquinone in Physiological Conditions. Free Radic. Res. 2007, 41, 153–161. [Google Scholar] [CrossRef]
- Hadi, V.; Kheirouri, S.; Alizadeh, M.; Khabbazi, A.; Hosseini, H. Effects of Nigella sativa Oil Extract on Inflammatory Cytokine Response and Oxidative Stress Status in Patients with Rheumatoid Arthritis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Avicenna J. Phytomed. 2016, 6, 34–43. [Google Scholar]
- Mor, A.; Abramson, S.B.; Pillinger, M.H. The Fibroblast-like Synovial Cell in Rheumatoid Arthritis: A Key Player in Inflammation and Joint Destruction. Clin. Immunol. 2005, 115, 118–128. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef]
- Umar, S.; Zargan, J.; Umar, K.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Modulation of the Oxidative Stress and Inflammatory Cytokine Response by Thymoquinone in the Collagen Induced Arthritis in Wistar Rats. Chem.-Biol. Interact. 2012, 197, 40–46. [Google Scholar] [CrossRef]
- Abdallah, E.M. Plants: An Alternative Source for Antimicrobials. J. Appl. Pharm. Sci. 2011, 1, 16–20. [Google Scholar]
- Omojate Godstime, C.; Enwa Felix, O.; Jewo Augustina, O.; Eze Christopher, O. Mechanisms of Antimicrobial Actions of Phytochemicals against Enteric Pathogens—A Review. J. Pharm. Chem. Biol. Sci. 2014, 2, 77–85. [Google Scholar]
- Shafodino, F.S.; Lusilao, J.M.; Mwapagha, L.M. Phytochemical Characterization and Antimicrobial Activity of Nigella sativa Seeds. PLoS ONE 2022, 17, e0272457. [Google Scholar] [CrossRef]
- Mohamed Shohayeb, M.S.; Eman Halawani, E.H. Comparative Antimicrobial Activity of Some Active Constituents of N. sativa L. World Appl. Sci. J. 2012, 20, 182–189. [Google Scholar]
- Aumeeruddy, M.Z.; Aumeeruddy-Elalfi, Z.; Neetoo, H.; Zengin, G.; Fibrich, B.; Rademan, S.; Van Staden, A.B.; Szuman, K.; Lambrechts, I.A.; Lall, N. Biological, Phytochemical, and Physico-Chemical Properties of Two Commercial Nigella sativa Seed Oils: A Comparative Analysis. Istanb. J. Pharm. 2019, 48, 89–99. [Google Scholar] [CrossRef]
- Goel, S.; Mishra, P. Thymoquinone Inhibits Biofilm Formation and Has Selective Antibacterial Activity Due to ROS Generation. Appl. Microbiol. Biotechnol. 2018, 102, 1955–1967. [Google Scholar] [CrossRef]
- Ishtiaq, S.; Ashraf, M.; Hayat, M.Q.; Asrar, M. Phytochemical Analysis of Nigella sativa and Its Antibacterial Activity against Clinical Isolates Identified by Ribotyping. Int. J. Agric. Biol. 2013, 15, 1151–1156. [Google Scholar]
- Mouwakeh, A.; Telbisz, A.; Spengler, G.; Mohacsi-Farkas, C.; Kiskó, G. Antibacterial and Resistance Modifying Activities of Nigella sativa Essential Oil and Its Active Compounds against Listeria Monocytogenes. In Vivo 2018, 32, 737–743. [Google Scholar] [CrossRef]
- Qian, M.; Ismail, B.B.; He, Q.; Zhang, X.; Yang, Z.; Ding, T.; Ye, X.; Liu, D.; Guo, M. Inhibitory Mechanisms of Promising Antimicrobials from Plant Byproducts: A Review. Comp. Rev. Food Sci. Food Saf. 2023, 22, 2523–2590. [Google Scholar] [CrossRef]
- Ghaffar, N.; Javad, S.; Shah, A.A.; Ilyas, S.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Tariq, A. Restoration of Antibacterial Activity of Inactive Antibiotics via Combined Treatment with AgNPs. ACS Omega 2024, 9, 13621–13635. [Google Scholar] [CrossRef]
- Lönnroth, K.; Migliori, G.B.; Abubakar, I.; D’Ambrosio, L.; De Vries, G.; Diel, R.; Douglas, P.; Falzon, D.; Gaudreau, M.-A.; Goletti, D. Towards Tuberculosis Elimination: An Action Framework for Low-Incidence Countries. Eur. Respir. J. 2015, 45, 928–952. [Google Scholar] [CrossRef]
- Lienhardt, C.; Lönnroth, K.; Menzies, D.; Balasegaram, M.; Chakaya, J.; Cobelens, F.; Cohn, J.; Denkinger, C.M.; Evans, T.G.; Källenius, G. Translational Research for Tuberculosis Elimination: Priorities, Challenges, and Actions. PLoS Med. 2016, 13, e1001965. [Google Scholar] [CrossRef]
- Lienhardt, C.; Vernon, A.; Raviglione, M.C. New Drugs and New Regimens for the Treatment of Tuberculosis: Review of the Drug Development Pipeline and Implications for National Programmes. Curr. Opin. Pulm. Med. 2010, 16, 186–193. [Google Scholar] [CrossRef]
- Anbarasu, S.; Sundar, R.; Manigundan, K.; Rajasekar, T.; Shamya, M.; Joseph, J. Evaluating the Anti-Mycobacterial Activity of Nigella sativa Seed Extracts. Sch. Res. Libr. Der Pharm. Lett. 2018, 10, 1–9. [Google Scholar]
- Dehyab, A.S.; Bakar, M.F.A.; Alomar, M.K.; Sabran, S.F. A Review of Medicinal Plant of Middle East and North Africa (MENA) Region as Source in Tuberculosis Drug Discovery. Saudi J. Biol. Sci. 2020, 27, 2457–2478. [Google Scholar] [CrossRef]
- Mahmud, H.A.; Seo, H.; Kim, S.; Islam, M.I.; Nam, K.-W.; Cho, H.-D.; Song, H.-Y. Thymoquinone (TQ) Inhibits the Replication of Intracellular Mycobacterium Tuberculosis in Macrophages and Modulates Nitric Oxide Production. BMC Complement. Altern. Med. 2017, 17, 279. [Google Scholar] [CrossRef]
- Dey, D.; Ray, R.; Hazra, B. Antitubercular and Antibacterial Activity of Quinonoid Natural Products against Multi-drug Resistant Clinical Isolates. Phytother. Res. 2014, 28, 1014–1021. [Google Scholar] [CrossRef]
- Jaswal, A.; Sinha, N.; Bhadauria, M.; Shrivastava, S.; Shukla, S. Therapeutic Potential of Thymoquinone against Anti-Tuberculosis Drugs Induced Liver Damage. Environ. Toxicol. Pharmacol. 2013, 36, 779–786. [Google Scholar] [CrossRef]
- Koshak, A.E.; Koshak, E.A.; Mobeireek, A.F.; Badawi, M.A.; Wali, S.O.; Malibary, H.M.; Atwah, A.F.; Alhamdan, M.M.; Almalki, R.A.; Madani, T.A. Nigella sativa for the Treatment of COVID-19: An Open-Label Randomized Controlled Clinical Trial. Complement. Ther. Med. 2021, 61, 102769. [Google Scholar] [CrossRef]
- Kadil, Y.; Mouhcine, M.; Filali, H. In Silico Investigation of the SARS CoV2 Protease with Thymoquinone, the Major Constituent of Nigella sativa. Curr. Drug Discov. Technol. 2021, 18, 570–573. [Google Scholar] [CrossRef]
- Sommer, A.P.; Försterling, H.-D.; Sommer, K.E. Tutankhamun’s Antimalarial Drug for COVID-19. Drug Res. 2021, 71, 4–9. [Google Scholar] [CrossRef]
- Yadav, P.K.; Jaiswal, A.; Singh, R.K. In Silico Study on Spice-Derived Antiviral Phytochemicals against SARS-CoV-2 TMPRSS2 Target. J. Biomol. Struct. Dyn. 2022, 40, 11874–11884. [Google Scholar] [CrossRef]
- Ahmad, S.; Abbasi, H.W.; Shahid, S.; Gul, S.; Abbasi, S.W. Molecular Docking, Simulation and MM-PBSA Studies of Nigella sativa Compounds: A Computational Quest to Identify Potential Natural Antiviral for COVID-19 Treatment. J. Biomol. Struct. Dyn. 2021, 39, 4225–4233. [Google Scholar] [CrossRef]
- Sumaryada, T.; Pramudita, C.A. Molecular Docking Evaluation of Some Indonesian’s Popular Herbals for a Possible COVID-19 Treatment. Biointerface Res. Appl. Chem. 2021, 11, 9827–9835. [Google Scholar]
- Mehra, R.; Khan, I.A.; Nargotra, A. Anti-Tubercular Drug Discovery: In Silico Implications and Challenges. Eur. J. Pharm. Sci. 2017, 104, 1–15. [Google Scholar] [CrossRef]
- Vanhaelen, Q.; Mamoshina, P.; Aliper, A.M.; Artemov, A.; Lezhnina, K.; Ozerov, I.; Labat, I.; Zhavoronkov, A. Design of Efficient Computational Workflows for in Silico Drug Repurposing. Drug Discov. Today 2017, 22, 210–222. [Google Scholar] [CrossRef]
- Gado, A.R.; Ellakany, H.; Elbestawy, A.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Mahgoub, S. Herbal medicine additives as powerful agents to control and prevent avian influenza virus in poultry—A review. Ann. Anim. Sci. 2019, 19, 905–935. [Google Scholar] [CrossRef]
- Tania, M.; Asad, A.; Li, T.; Islam, M.S.; Islam, S.B.; Hossen, M.M.; Bhuiyan, M.R.; Khan, M.A. Thymoquinone against Infectious Diseases: Perspectives in Recent Pandemics and Future Therapeutics. Iran. J. Basic Med. Sci. 2021, 24, 1014–1022. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Al-Olayan, E.M.; Aboul-Soud, M.A.; Al-Khedhairy, A.A. The Immune Enhancer, Thymoquinone, and the Hope of Utilizing the Immune System of Aedes Caspius against Disease Agents. Afr. J. Biotechnol. 2010, 9, 3183–3195. [Google Scholar]
- Saleem, H.N.; Batool, F.; Mansoor, H.J.; Shahzad-ul-Hussan, S.; Saeed, M. Inhibition of Dengue Virus Protease by Eugeniin, Isobiflorin, and Biflorin Isolated from the Flower Buds of Syzygium aromaticum (Cloves). ACS Omega 2019, 4, 1525–1533. [Google Scholar] [CrossRef]
- Ciesielska-Figlon, K.; Wojciechowicz, K.; Wardowska, A.; Lisowska, K.A. The Immunomodulatory Effect of Nigella sativa. Antioxidants 2023, 12, 1340. [Google Scholar] [CrossRef]
- Khan, M.A.U.; Ashfaq, M.K.; Zuberi, H.S.; Mahmood, M.S.; Gilani, A.H. The in Vivo Antifungal Activity of the Aqueous Extract from Nigella sativa Seeds. Phytother. Res. 2003, 17, 183–186. [Google Scholar] [CrossRef]
- Rezgui, M.; Majdoub, N.; Mabrouk, B.; Baldisserotto, A.; Bino, A.; Ben Kaab, L.B.; Manfredini, S. Antioxidant and Antifungal Activities of Marrubiin, Extracts and Essential Oil from Marrubium vulgare L. against Pathogenic Dermatophyte Strains. J. De Mycol. Médicale 2020, 30, 100927. [Google Scholar] [CrossRef]
- Akansha; Kaushal, S.; Arora, A.; Heena; Sharma, P.; Jangra, R. Chemical Composition and Synergistic Antifungal Potential of Nigella sativa L. Seeds and Syzygium aromaticum (L.) Merr. & L.M. Perry Buds Essential Oils and Their Major Compounds, and Associated Molecular Docking Studies. J. Essent. Oil Bear. Plants 2023, 26, 602–625. [Google Scholar] [CrossRef]
- Barashkova, A.S.; Sadykova, V.S.; Salo, V.A.; Zavriev, S.K.; Rogozhin, E.A. Nigellothionins from Black Cumin (Nigella sativa L.) Seeds Demonstrate Strong Antifungal and Cytotoxic Activity. Antibiotics 2021, 10, 166. [Google Scholar] [CrossRef]
- Benazzouz-Smail, L.; Achat, S.; Brahmi, F.; Bachir-Bey, M.; Arab, R.; Lorenzo, J.M.; Benbouriche, A.; Boudiab, K.; Hauchard, D.; Boulekbache, L.; et al. Biological Properties, Phenolic Profile, and Botanical Aspect of Nigella sativa L. and Nigella damascena L. Seeds: A Comparative Study. Molecules 2023, 28, 571. [Google Scholar] [CrossRef]
- Zishan, M.; Manzoor, U. Antifungal Activity of Aloe Barbadensis and Nigella sativa: A Review. Int. J. Biol. Phys. Chem. Stud. 2020, 2, 11–14. [Google Scholar]
- Al-Ameedy, T.H.; Omran, R. Antimicrobial Activity of Nigella sativa Extract Against Some Bacterial and Fungal Species. J. Univ. Babylon Pure Appl. Sci. 2019, 27, 277–286. [Google Scholar]
- Nouri, N.; Mohammadi, S.R.; Beardsley, J.; Aslani, P.; Ghaffarifar, F.; Roudbary, M.; Rodrigues, C.F. Thymoquinone Antifungal Activity against Candida Glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study. Metabolites 2023, 13, 580. [Google Scholar] [CrossRef]
- Abdulelah, H.; Zainal-Abidin, B. In Vivo Anti-Malarial Tests of Nigella sativa (Black Seed) Different Extracts. Am. J. Pharmacol. Toxicol. 2007, 2, 46–50. [Google Scholar]
- Sheikh, B.Y.; Taha, M.M.E.; Koko, W.S.; Abdelwahab, S.I. Antimicrobial Effects of Thymoquinone on Entamoeba Histolytica and Giardia Lamblia. Pharmacogn. J. 2015, 8, 168–170. [Google Scholar] [CrossRef]
- Mady, R.F.; El-Hadidy, W.; Elachy, S. Effect of Nigella sativa Oil on Experimental Toxoplasmosis. Parasitol. Res. 2016, 115, 379–390. [Google Scholar] [CrossRef]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Dalli, M.; Bekkouch, O.; Azizi, S.; Azghar, A.; Gseyra, N.; Kim, B. Nigella sativa L. Phytochemistry and Pharmacological Activities: A Review (2019–2021). Biomolecules 2022, 12, 20. [Google Scholar] [CrossRef]
- Adeleke, A.E.; Onifade, A.P.; Awojide, S.H.; Adegbite, A.A. Chemical and Nutritive Composition of Nigella sativa (Black Seed) Oils. Adeleke Univ. J. Sci. 2023, 2, 94–101. [Google Scholar]
- Fatima Shad, K.; Soubra, W.; Cordato, D.J. The Role of Thymoquinone, a Major Constituent of Nigella sativa, in the Treatment of Inflammatory and Infectious Diseases. Clin. Exp. Pharmacol. Physiol. 2021, 48, 1445–1453. [Google Scholar] [CrossRef]
- Salem, M.L. Immunomodulatory and Therapeutic Properties of the Nigella sativa L. Seed. Int. Immunopharmacol. 2005, 5, 1749–1770. [Google Scholar] [CrossRef]
- Khaldi, T.; Chekchaki, N.; Boumendjel, M.; Taibi, F.; Abdellaoui, M.; Messarah, M.; Boumendjel, A. Ameliorating Effects of Nigella sativa Oil on Aggravation of Inflammation, Oxidative Stress and Cytotoxicity Induced by Smokeless Tobacco Extract in an Allergic Asthma Model in Wistar Rats. Allergol. Et Immunopathol. 2018, 46, 472–481. [Google Scholar] [CrossRef]
- Alam, M.; Galav, V. Anti-Inflammatory Effect and Toxicological Evaluation of Thymoquinone (Volatile Oil of Black Seed) on Adjuvant-Induced Arthritis in Wistar Rat. Indian J. Life Sci. 2013, 2, 17–22. [Google Scholar]
- Amin, B.; Hosseinzadeh, H. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-Inflammatory Effects. Planta Medica 2015, 82, 8–16. [Google Scholar] [CrossRef]
- Tuna, H.I.; Babadag, B.; Ozkaraman, A.; Balci Alparslan, G. Investigation of the Effect of Black Cumin Oil on Pain in Osteoarthritis Geriatric Individuals. Complement. Ther. Clin. Pract. 2018, 31, 290–294. [Google Scholar] [CrossRef]
- Bilto, Y.Y.; Alabdallat, N.G.; Atoom, A.M.; Khalaf, N.A. Effects of Commonly Used Medicinal Herbs in Jordan on Erythrocyte Oxidative Stress Markers. J. Pharm. Pharmacogn. Res. 2021, 9, 422–434. [Google Scholar] [CrossRef]
- Nehar, S.; Rani, P.; Kumar, C. Evaluation of Genoprotective and Antioxidative Potentiality of Ethanolic Extract of N. sativa Seed in Streptozotocin Induced Diabetic Albino Rats. Vegetos 2021, 34, 453–459. [Google Scholar] [CrossRef]
- Pop, R.M.; Sabin, O.; Suciu, Ș.; Vesa, S.C.; Socaci, S.A.; Chedea, V.S.; Bocsan, I.C.; Buzoianu, A.D. Nigella sativa’s Anti-Inflammatory and Antioxidative Effects in Experimental Inflammation. Antioxidants 2020, 9, 921. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Boskabady, M.H.; Hosseini, M. The Effect of Chronic Supplementation of Nigella sativa on Splenocytes Response in Rats Following Treadmill Exercise. Drug Chem. Toxicol. 2021, 44, 487–492. [Google Scholar] [CrossRef]
- Liang, Q.; Dong, J.; Wang, S.; Shao, W.; Ahmed, A.F.; Zhang, Y.; Kang, W. Immunomodulatory Effects of Nigella sativa Seed Polysaccharides by Gut Microbial and Proteomic Technologies. Int. J. Biol. Macromol. 2021, 184, 483–496. [Google Scholar] [CrossRef]
- Anand, U.; Nandy, S.; Mundhra, A.; Das, N.; Pandey, D.K.; Dey, A. A Review on Antimicrobial Botanicals, Phytochemicals and Natural Resistance Modifying Agents from Apocynaceae Family: Possible Therapeutic Approaches against Multidrug Resistance in Pathogenic Microorganisms. Drug Resist. Updates 2020, 51, 100695. [Google Scholar] [CrossRef]
- Adebayo-Tayo, B.C.; Briggs-Kamara, A.I.; Salaam, A. Phytochemical Composition, Antioxidant, Antimicrobial Potential and Gc-Ms Analysis of Crude and Partitioned Fractions of Nigella sativa Seed Extract. Acta Microbiol. Bulg 2021, 37, 34–45. [Google Scholar]
- Badger-Emeka, L.I.; Emeka, P.M.; Ibrahim, H.I.M. A Molecular Insight into the Synergistic Mechanism of Nigella sativa (Black Cumin) with β-Lactam Antibiotics against Clinical Isolates of Methicillin-Resistant Staphylococcus Aureus. Appl. Sci. 2021, 11, 3206. [Google Scholar] [CrossRef]
- Arif, S.; Saqib, H.; Mubashir, M.; Malik, S.I.; Mukhtar, A.; Saqib, S.; Ullah, S.; Show, P.L. Comparison of Nigella sativa and Trachyspermum Ammi via Experimental Investigation and Biotechnological Potential. Chem. Eng. Process.—Process Intensif. 2021, 161, 108313. [Google Scholar] [CrossRef]
- Raveesha, K.A. Antibacterial Activity and Time-Kill Assay of Terminalia Catappa L. and Nigella sativa L. against Selected Human Pathogenic Bacteria. J. Pure Appl. Microbiol. 2021, 15, 285–299. [Google Scholar]
- Dera, A.A.; Ahmad, I.; Rajagopalan, P.; Al Shahrani, M.; Saif, A.; Alshahrani, M.Y.; Alraey, Y.; Alamri, A.M.; Alasmari, S.; Makkawi, M. Synergistic Efficacies of Thymoquinone and Standard Antibiotics against Multi-Drug Resistant Isolates. Saudi Med. J. 2021, 42, 196–204. [Google Scholar] [CrossRef]
- Habib, N.; Choudhry, S. HPLC Quantification of Thymoquinone Extracted from Nigella sativa L.(Ranunculaceae) Seeds and Antibacterial Activity of Its Extracts against Bacillus Species. Evid.-Based Complement. Altern. Med. 2021, 2021, 6645680. [Google Scholar] [CrossRef]
- Nazarparvar, M.; Shakeri, A.; Ranjbariyan, A. Chemical Composition and Antimicrobial Activity against Food Poisoning of Alcoholic Extract of Nigella sativa L. Biointerface Res. Appl. Chem. 2020, 10, 6991–7001. [Google Scholar]
- Ismail, N.; Ismail, M.; Latiff, L.A.; Mazlan, M.; Mariod, A.A. Black Cumin Seed (Nigella sativa Linn.) Oil and Its Fractions Protect against Beta Amyloid Peptide-induced Toxicity in Primary Cerebellar Granule Neurons. J. Food Lipids 2008, 15, 519–533. [Google Scholar] [CrossRef]
- Al-Naggar, T.; Gomez-Serranillos, M.; Carretero, M.; Villar, A. Neuropharmacological Activity of Nigella sativa L. Extracts. J. Ethnopharmacol. 2003, 88, 63–68. [Google Scholar] [CrossRef]
- El-Naggar, T.; Gómez-Serranillos, M.P.; Palomino, O.M.; Arce, C.; Carretero, M.E. Nigella sativa L. Seed Extract Modulates the Neurotransmitter Amino Acids Release in Cultured Neurons in Vitro. J. Biomed. Biotechnol. 2010, 2010, 398312. [Google Scholar] [CrossRef]
- Islam, M.H.; Ahmad, I.Z.; Salman, M.T. Neuroprotective Effects of Nigella sativa Extracts during Germination on Central Nervous System. Pharmacogn. Mag. 2015, 11, S182–S189. [Google Scholar] [CrossRef]
- Sabzghabaee, A.M.; Dianatkhah, M.; Sarrafzadegan, N.; Asgary, S.; Ghannadi, A. Clinical Evaluation of Nigella sativa Seeds for the Treatment of Hyperlipidemia: A Randomized, Placebo Controlled Clinical Trial. Med. Arch. 2012, 66, 198–200. [Google Scholar] [CrossRef]
- Al-Naqeep, G.; Al-Zubairi, A.S.; Ismail, M.; Amom, Z.H.; Esa, N.M. Antiatherogenic Potential of Nigella sativa Seeds and Oil in Diet-Induced Hypercholesterolemia in Rabbits. Evid.-Based Complement. Altern. Med. 2011, 2011, 213628. [Google Scholar] [CrossRef]
- Nader, M.A.; El-Agamy, D.S.; Suddek, G.M. Protective Effects of Propolis and Thymoquinone on Development of Atherosclerosis in Cholesterol-Fed Rabbits. Arch. Pharmacal Res. 2010, 33, 637–643. [Google Scholar] [CrossRef]
- Zaoui, A.; Cherrah, Y.; Alaoui, K.; Mahassine, N.; Amarouch, H.; Hassar, M. Effects of Nigella sativa Fixed Oil on Blood Homeostasis in Rat. J. Ethnopharmacol. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Bhatti, I.U.; Rehman, F.U.; Khan, M.A.; Marwat, S.K. Effect of Prophetic Medicine Kalonji (Nigella sativa L.) on Lipid Profile of Human Beings: An in Vivo Approach. World Appl. Sci. J. 2009, 6, 1053–1057. [Google Scholar]
- Randhawa, M.A.; Alghamdi, M.S. Anticancer Activity of Nigella sativa (Black Seed)—A Review. Am. J. Chin. Med. 2011, 39, 1075–1091. [Google Scholar] [CrossRef]
- Swamy, S.M.K.; Tan, B.K.H. Cytotoxic and Immunopotentiating Effects of Ethanolic Extract of Nigella sativa L. Seeds. J. Ethnopharmacol. 2000, 70, 1–7. [Google Scholar] [CrossRef]
- Kumara, S.S.M.; Huat, B.T.K. Extraction, Isolation and Characterisation of Antitumor Principle, α-Hederin, from the Seeds of Nigella sativa. Planta Medica 2001, 67, 29–32. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Cytotoxicity of Nigella sativa Seed Oil and Extract against Human Lung Cancer Cell Line. Asian Pac. J. Cancer Prev. 2014, 15, 983–987. [Google Scholar] [CrossRef]
- Farah, I.O.; Begum, R.A. Effect of Nigella sativa (N. sativa L.) and Oxidative Stress on the Survival Pattern of MCF-7 Breast Cancer Cells. Biomed. Sci. Instrum. 2003, 39, 359–364. [Google Scholar]
- Salim, E.I.; Fukushima, S. Chemopreventive Potential of Volatile Oil From Black Cumin (Nigella sativa L.) Seeds Against Rat Colon Carcinogenesis. Nutr. Cancer 2003, 45, 195–202. [Google Scholar] [CrossRef]
- Shaheen, N.; Azam, A.; Ganguly, A.; Anwar, S.; Parvez, M.S.A.; Punyamurtula, U.; Hasan, M.K. Anti-Inflammatory and Analgesic Activities of Black Cumin (BC, Nigella sativa L.) Extracts in in Vivo Model Systems. Bull. Natl. Res. Cent. 2022, 46, 26. [Google Scholar] [CrossRef]
- Alrashidi, M.; Derawi, D.; Salimon, J.; Yusoff, M.F. The Effects of Different Extraction Solvents on the Yield and Antioxidant Properties of Nigella sativa Oil from Saudi Arabia. J. Taibah Univ. Sci. 2022, 16, 330–336. [Google Scholar] [CrossRef]
- Lorina Badger, E.; Promise Madu, E.; Tahir Mehmood, K. Antimicrobial Activity of Nigella sativa L. Seed Oil against Multi-Drug Resistant Staphylococcus Aureus Isolated from Diabetic Wounds. Pak. J. Pharm. Sci. 2015, 28, 1985–1990. [Google Scholar]
- Hanafy, M.S.M.; Hatem, M.E. Studies on the Antimicrobial Activity of Nigella sativa Seed (Black Cumin). J. Ethnopharmacol. 1991, 34, 275–278. [Google Scholar] [CrossRef]
- Abo-Neima, S.E.; El-Sheekh, M.M.; Al-Zaban, M.I.; EL-Sayed, A.I.M. Antibacterial and Anti-Corona Virus (229E) Activity of Nigella sativa Oil Combined with Photodynamic Therapy Based on Methylene Blue in Wound Infection: In Vitro and in Vivo Study. BMC Microbiol. 2023, 23, 274. [Google Scholar] [CrossRef]
- Khan, A.; Chen, H.-C.; Tania, M.; Zhang, D.-Z. Anticancer Activities of Nigella sativa (Black Cumin). Afr. J. Tradit. Complement. Altern. Med. 2011, 8. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, B.; Zhou, L.; Ma, C.; Waterhouse, G.I.N.; Liu, Z.; Ahmed, A.F.; Sun-Waterhouse, D.; Kang, W. Nigella sativa: A Dietary Supplement as an Immune-Modulator on the Basis of Bioactive Components. Front. Nutr. 2021, 8, 722813. [Google Scholar] [CrossRef]
- Wei, J.; Wang, B.; Chen, Y.; Wang, Q.; Ahmed, A.F.; Zhang, Y.; Kang, W. The Immunomodulatory Effects of Active Ingredients From Nigella sativa in RAW264.7 Cells Through NF-κB/MAPK Signaling Pathways. Front. Nutr. 2022, 9, 899797. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and Anti-Inflammatory Action of Nigella sativa and Thymoquinone: A Comprehensive Review. Int. Immunopharmacol. 2015, 28, 295–304. [Google Scholar] [CrossRef]
- Boskabady, M.-H.; Keyhanmanesh, R.; Khameneh, S.; Doostdar, Y.; Khakzad, M.-R. Potential Immunomodulation Effect of the Extract of Nigella sativa on Ovalbumin Sensitized Guinea Pigs. J. Zhejiang Univ. Sci. B 2011, 12, 201–209. [Google Scholar] [CrossRef]
- Ebru, U.; Burak, U.; Yusuf, S.; Reyhan, B.; Arif, K.; Faruk, T.H.; Emin, M.; Aydın, K.; Lhan Atilla, İ.; Semsettin, S.; et al. Cardioprotective Effects of Nigella sativa Oil on Cyclosporine A-Induced Cardiotoxicity in Rats. Basic Clin. Pharmacol. Toxicol. 2008, 103, 574–580. [Google Scholar] [CrossRef]
- Hassan, M.Q.; Akhtar, M.; Ahmed, S.; Ahmad, A.; Najmi, A.K. Nigella sativa Protects against Isoproterenol-Induced Myocardial Infarction by Alleviating Oxidative Stress, Biochemical Alterations and Histological Damage. Asian Pac. J. Trop. Biomed. 2017, 7, 294–299. [Google Scholar] [CrossRef]
- Hamdan, A.; Haji Idrus, R.; Mokhtar, M.H. Effects of Nigella sativa on Type-2 Diabetes Mellitus: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 4911. [Google Scholar] [CrossRef]
- Maideen, N.M.P. Antidiabetic Activity of Nigella sativa (Black Seeds) and Its Active Constituent (Thymoquinone): A Review of Human and Experimental Animal Studies. Chonnam Med. J. 2021, 57, 169–175. [Google Scholar] [CrossRef]
- Mathur, M.L.; Gaur, J.; Sharma, R.; Haldiya, K.R. Antidiabetic Properties of a Spice Plant Nigella sativa. J. Endocrinol. Metab. 2011, 1, 1–8. [Google Scholar] [CrossRef]
- Beheshti, F.; Khazaei, M.; Hosseini, M. Neuropharmacological Effects of Nigella sativa. Avicenna J. Phytomed. 2016, 6, 104–116. [Google Scholar]
- Seghatoleslam, M.; Alipour, F.; Shafieian, R.; Hassanzadeh, Z.; Edalatmanesh, M.A.; Sadeghnia, H.R.; Hosseini, M. The Effects of Nigella sativa on Neural Damage after Pentylenetetrazole Induced Seizures in Rats. J. Tradit. Complement. Med. 2016, 6, 262–268. [Google Scholar] [CrossRef]
- Saadat, S.; Aslani, M.R.; Ghorani, V.; Keyhanmanesh, R.; Boskabady, M.H. The Effects of Nigella sativa on Respiratory, Allergic and Immunologic Disorders, Evidence from Experimental and Clinical Studies, a Comprehensive and Updated Review. Phytother. Res. 2021, 35, 2968–2996. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Shakeri, F.; Saadat, S.; Ghorani, V.; Boskabady, M.H. Clinical and Experimental Effects of Nigella sativa and Its Constituents on Respiratory and Allergic Disorders. Avicenna J. Phytomed. 2019, 9, 195–212. [Google Scholar]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Helma, K.; Sokal, A.; Filip, R. Effect of Nigella sativa on Selected Gastrointestinal Diseases. Curr. Issues Mol. Biol. 2023, 45, 3016–3034. [Google Scholar] [CrossRef]
- Shakeri, F.; Gholamnezhad, Z.; Mégarbane, B.; Rezaee, R.; Boskabady, M.H. Gastrointestinal Effects of Nigella sativa and Its Main Constituent, Thymoquinone: A Review. Avicenna J. Phytomed. 2016, 6, 9–20. [Google Scholar]
- Eid, A.M.; Elmarzugi, N.A.; Abu Ayyash, L.M.; Sawafta, M.N.; Daana, H.I. A Review on the Cosmeceutical and External Applications of Nigella sativa. J. Trop. Med. 2017, 2017, e7092514. [Google Scholar] [CrossRef]
- Nasiri, N.; Ilaghi Nezhad, M.; Sharififar, F.; Khazaneha, M.; Najafzadeh, M.J.; Mohamadi, N. The Therapeutic Effects of Nigella sativa on Skin Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid.-Based Complement. Altern. Med. 2022, 2022, e7993579. [Google Scholar] [CrossRef]
- Rafati, S.; Niakan, M.; Naseri, M. Anti-Microbial Effect of Nigella sativa Seed Extract against Staphylococcal Skin Infection. Med. J. Islam. Repub. Iran 2014, 28, 42. [Google Scholar]
- Abu-Zinadah, O. Using Nigella sativa Oil to Treat and Heal Chemical Induced Wound of Rabbit Skin. JKAU Sci. 2009, 21, 335–346. [Google Scholar] [CrossRef]
- Widyaswari, M.S.; Noventi, I.; Sufriyana, H. Anti-Eczema Mechanism of Action of Nigella sativa for Atopic Dermatitis: Computer-Aided Prediction and Pathway Analysis Based on Protein-Chemical Interaction Networks. Biomol. Health Sci. J. 2019, 2, 68–74. [Google Scholar] [CrossRef]
- Ahmed, J.H.; Ibraheem, A.Y.; Al-Hamdi, K.I. Evaluation of Efficacy, Safety and Antioxidant Effect of Nigella sativa in Patients with Psoriasis: A Randomized Clinical Trial. J. Clin. Exp. Investig. 2014, 5, 186–193. [Google Scholar] [CrossRef]
- Parhizkar, S.; Latiff, L.A.; Parsa, A. Effect of Nigella sativa on Reproductive System in Experimental Menopause Rat Model. Avicenna J. Phytomed. 2016, 6, 95–103. [Google Scholar]
- Latiff, L.A.; Parhizkar, S.; Dollah, M.A.; Hassan, S.T.S. Alternative Supplement for Enhancement of Reproductive Health and Metabolic Profile among Perimenopausal Women: A Novel Role of Nigella sativa. Iran. J. Basic Med. Sci. 2014, 17, 980–985. [Google Scholar]
- Cho Ping, N.; Hashim, N.H.; Hasan Adli, D.S. Effects of Nigella sativa (Habbatus Sauda) Oil and Nicotine Chronic Treatments on Sperm Parameters and Testis Histological Features of Rats. Evid.-Based Complement. Altern. Med. 2014, 2014, e218293. [Google Scholar] [CrossRef]
- Mohammad, M.; Mohamad, M.; Daradka, H. Effects of Black Seeds (Nigella sativa) on Spermatogenesis and fertility of male albino rats. Res. J. Med. Med. Sci. 2009, 4, 386–390. [Google Scholar]
- Boka, J.; Mahdavi, A.; Samie, A.; Jahanian, R. Effect of Different Levels of Black Cumin (Nigella sativa L.) on Performance, Intestinal Escherichia coli Colonization and Jejunal Morphology in Laying Hens. J. Anim. Physiol. Anim. Nutr. 2014, 98, 373–383. [Google Scholar] [CrossRef]
- Kapan, M.; Tekin, R.; Onder, A.; Firat, U.; Evliyaoglu, O.; Taskesen, F.; Arikanoglu, Z. Thymoquinone Ameliorates Bacterial Translocation and Inflammatory Response in Rats with Intestinal Obstruction. Int. J. Surg. 2012, 10, 484–488. [Google Scholar] [CrossRef]
- Salem, E.M.; Yar, T.; Bamosa, A.O.; Al-Quorain, A.; Yasawy, M.I.; Alsulaiman, R.M.; Randhawa, M.A. Comparative Study of Nigella sativa and Triple Therapy in Eradication of Helicobacter Pylori in Patients with Non-Ulcer Dyspepsia. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2010, 16, 207–214. [Google Scholar]
- Ali, T.; Hussain, F.; Naeem, M.; Khan, A.; Al-Harrasi, A. Nanotechnology Approach for Exploring the Enhanced Bioactivities and Biochemical Characterization of Freshly Prepared Nigella sativa L. Nanosuspensions and Their Phytochemical Profile. Front. Bioeng. Biotechnol. 2022, 10, 888177. [Google Scholar] [CrossRef]
Country | Yield % | Reference | Country | Yield % | Reference |
---|---|---|---|---|---|
Morocco | 37 | [15] | Egypt | 34.8 | [16] |
Italy | 13–23 | [17] | Iran | 40 | [18] |
Tunisia | 28 31.7 | [19] | Turkey | 32 30–36 | [20] |
Pakistan | 31.2 | [21] | Bangladesh | 32 | [22] |
Yemen | 36.8–38.4 | [23] | Saudi Arabia | 38.2 | [24] |
Compound Type | Bioactive Compounds | Activity Against Microorganism | Mode of Action | Reference |
---|---|---|---|---|
Quinones | ||||
Thymoquinone | Staphylococcus aureus (ATCC 9144) | Inhibition of bacterial cell wall synthesis | [122] | |
Dithymoquinone | SARS-CoV-19 | Inhibition of viral replication | [123] | |
Terpenes and Terpenoids | ||||
Alpha-hederin | EV71 subgenotypes C3 and C4a | Inhibition of viral replication | [124] | |
Carvacrol | Candida albicans | Disruption of fungal cell membranes | [125] | |
Thymol | Molds | Disruption of fungal cell membranes | [126] | |
P-cymene | Salmonella typhi (ATCC 14028) | Inhibition of bacterial growth | [127] | |
Camphene | Candida albicans | Disruption of fungal cell membranes | [128] | |
Alkaloids | ||||
Nigellidine | Escherichia coli (ATCC 25922) | Inhibition of bacterial enzymes | [129] | |
Nigellimine | COVID-19 | Inhibition of viral entry | [80] | |
Nigellimine-N-oxide | NA | NA | NA | |
Melanthin | Toxic | NA | NA | |
Nigellidine | COVID-19 | Inhibition of viral replication | [82] | |
Nigellucin | NA | NA | NA | |
Fatty Acids and Sterols | ||||
Linoleic Acid | Alternaria solani, Candida albicans, Crinipellis pernicosa, Fusarium oxysporum, Pyrenophora avanae, Pythium ultimum, and Rhizoctonia solani | Disruption of fungal cell membranes | [130] | |
Palmitic Acid | Aspergillus flavus | Disruption of fungal cell membranes | [131] | |
Beta-sitosterol | Human Immunodeficiency Virus | Inhibition of viral entry | [132] | |
Myristic Acid | NA | NA | NA | |
Arachidonic Acid | Staphylococcus aureus | Lipid Peroxidation | [133] | |
Oleic Acid | Candida glabrata | Disruption of fungal cell membranes | [134] | |
Gamma-linolenic Acid | HIV | Destroys HIV-infected cells | [135] | |
Phenolic Compound | ||||
Eugenol | Trichophyton rubrum | Disruption of fungal cell membranes | [136] | |
Tocols | ||||
Alpha-Tocopherol | - | Scavenging free radicals | [137] | |
Gamma-Tocopherol | - | Inhibition of pro-inflammatory mediators | [138] |
Sr. No. | Compound Name | PubChem CID | MolWeight (g/mol) | Mutagenic | Tumorigenic | Irritant |
---|---|---|---|---|---|---|
1 | Nigellidine | 136828302 | 294.3 | N 1 | N | N |
2 | Nigellimine | 20725 | 203.24 | N | N | N |
3 | Pentyl hexadec-12-enoate | 74340768 | 324.5 | Y 2 | N | Y |
4 | Pentyl (Z)-pentadec-11-enoate | 171120962 | 310.5 | Y | N | Y |
5 | Lauric Acid | 3893 | 200.32 | Y | Y | Y |
6 | Myristic Acid | 11005 | 228.37 | Y | N | Y |
7 | Palmitic Acid | 985 | 256.42 | N | Y | Y |
8 | Vanillic acid | 8468 | 168.15 | Y | N | N |
9 | Epicatechin | 72276 | 290.27 | N | N | N |
10 | Quercetin | 5280343 | 302.23 | Y | Y | N |
11 | Apigenin | 5280443 | 270.24 | Y | N | N |
12 | 3-Hydroxybenzoic acid | 7420 | 138.12 | N | N | N |
13 | Flavone | 10680 | 222.24 | Y | N | N |
14 | Myricetin | 5281672 | 318.23 | Y | N | N |
16 | Naringenin | 439246 | 272.25 | Y | N | N |
17 | Kaempferol | 5280863 | 286.24 | Y | N | N |
18 | Chrysin | 5281607 | 254.24 | N | N | N |
19 | Pinocembrin | 68071 | 256.25 | N | N | N |
20 | Galangin | 5281616 | 270.24 | Y | N | N |
21 | Camphene | 6616 | 136.23 | Y | N | N |
22 | Linalool | 6549 | 154.25 | Y | N | Y |
23 | Camphor | 2537 | 152.23 | Y | Y | Y |
24 | Nerol | 643820 | 154.25 | N | N | N |
25 | Carvone | 7439 | 150.22 | Y | Y | Y |
26 | Thymoquinone | 10281 | 164.2 | Y | N | N |
27 | Umbellulone | 442504 | 150.22 | N | N | N |
28 | Carvacrol | 10364 | 150.22 | N | N | Y |
29 | Longifolene | 289151 | 204.35 | N | N | N |
30 | Cyclosativene | 519960 | 204.35 | N | N | N |
31 | Aromadendrene | 91354 | 204.35 | N | Y | Y |
32 | Myrcene | 31253 | 136.23 | N | Y | Y |
33 | p-CYMENE | 7463 | 134.22 | N | Y | Y |
34 | Limonene | 22311 | 136.23 | Y | Y | Y |
35 | Terpinolene | 11463 | 136.23 | N | N | N |
36 | Citronellyl acetate | 9017 | 198.3 | N | N | Y |
37 | Thymohydroquinone | 95779 | 166.22 | Y | Y | N |
38 | Tricyclene | 79035 | 136.23 | N | N | N |
39 | Borneol | 1201518 | 154.25 | Y | N | Y |
40 | Myrtenol | 10582 | 152.23 | N | N | Y |
41 | Cuminaldehyde | 326 | 148.2 | N | N | Y |
42 | Bornyl acetate | 6448 | 196.29 | N | N | Y |
43 | Thymol | 6989 | 150.22 | Y | N | N |
44 | Methyl geranate | 5365910 | 182.26 | Y | N | Y |
45 | Neryl acetate | 1549025 | 196.29 | Y | Y | Y |
46 | Sabinene | 18818 | 136.23 | N | N | N |
47 | Estragole | 8815 | 148.2 | Y | Y | Y |
48 | Myristicin | 4276 | 192.21 | N | N | Y |
49 | Apiole | 10659 | 222.24 | Y | N | N |
50 | Eugenol | 3314 | 164.2 | N | N | N |
51 | Dodecanal | 8194 | 184.32 | Y | N | Y |
52 | Benzaldehyde | 240 | 106.12 | Y | Y | Y |
53 | Coumarin | 323 | 146.14 | Y | Y | N |
54 | Tetradecanal | 31291 | 212.37 | Y | N | Y |
55 | Methyl linoleate | 5284421 | 294.5 | N | N | N |
Sr. No. | Compound Name | cLogP | Solubility | TPSA | Drug-Likeness | Drug Score |
---|---|---|---|---|---|---|
1 | Nigellidine | 1.54 | −2.29 | 43.8 | 1.51 | 0.83 |
2 | Nigellimine | 2.11 | −2.83 | 31.4 | −0.42 | 0.64 |
3 | Pentyl hexadec-12-enoate | 8.01 | −5.25 | 26.3 | −27.08 | 0.09 |
4 | Pentyl (Z)-pentadec-11-enoate | 7.55 | −4.98 | 26.3 | −27.06 | 0.08 |
5 | Lauric Acid | 4.24 | −3.16 | 37.3 | −25.22 | 0.08 |
6 | Myristic Acid | 5.15 | −3.7 | 37.3 | −25.22 | 0.12 |
7 | Palmitic Acid | 6.06 | −4.24 | 37.3 | −25.01 | 0.09 |
8 | Vanillic acid | 0.73 | −1.35 | 66.8 | −1.31 | 0.35 |
9 | Epicatechin | 1.51 | −1.76 | 110 | 1.92 | 0.87 |
10 | Quercetin | 1.49 | −2.49 | 127 | 1.6 | 0.3 |
11 | Apigenin | 2.34 | −2.86 | 87 | 1.21 | 0.47 |
12 | 3-Hydroxybenzoic acid | 0.8 | −1.33 | 57.5 | −4.27 | 0.3 |
13 | Flavone | 3.37 | −3.74 | 26.3 | 1.85 | 0.45 |
14 | Myricetin | 1.14 | −2.2 | 147 | 0.75 | 0.46 |
16 | Naringenin | 2.16 | −2.64 | 87 | 1.9 | 0.51 |
17 | Kaempferol | 1.84 | −2.79 | 107 | 0.9 | 0.46 |
18 | Chrysin | 2.68 | −3.15 | 66.8 | 0.97 | 0.75 |
19 | Pinocembrin | 2.5 | −2.94 | 66.8 | 1.95 | 0.83 |
20 | Galangin | 2.18 | −3.08 | 87 | 0.66 | 0.44 |
21 | Camphene | 2.8 | −2.69 | 0 | −5.86 | 0.27 |
22 | Linalool | 3.23 | −2.15 | 20.2 | −6.68 | 0.16 |
23 | Camphor | 2.18 | −2.45 | 17.1 | −3.71 | 0.06 |
24 | Nerol | 3.49 | −1.89 | 20.2 | −3.57 | 0.45 |
25 | Carvone | 2.65 | −2.19 | 17.1 | −18.99 | 0.1 |
26 | Thymoquinone | 1.64 | −1.68 | 34.1 | −1.2 | 0.35 |
27 | Umbellulone | 2.07 | −2.17 | 17.1 | −2.81 | 0.5 |
28 | Carvacrol | 2.84 | −2.53 | 20.2 | −2.59 | 0.29 |
29 | Longifolene | 4.06 | −3.81 | 0 | −7.76 | 0.37 |
30 | Cyclosativene | 3.71 | −3.77 | 0 | −6.86 | 0.39 |
31 | Aromadendrene | 4 | −3.79 | 0 | −7.14 | 0.14 |
32 | Myrcene | 4.29 | −2.5 | 0 | −7.82 | 0.09 |
33 | p-CYMENE | 3.19 | −2.83 | 0 | −5.63 | 0.21 |
34 | Limonene | 3.36 | −2.54 | 1.7 | −21.85 | 0.06 |
35 | Terpinolene | 3.45 | −2.34 | 1.9 | −3.02 | 0.46 |
36 | Citronellyl acetate | 3.83 | −2.56 | 26.3 | −4.29 | 0.25 |
37 | Thymohydroquinone | 2.5 | −2.24 | 40.5 | −6.33 | 0.22 |
38 | Tricyclene | 2.45 | −2.67 | 0 | −2.38 | 0.5 |
39 | Borneol | 2.04 | −2.4 | 20.2 | −3.53 | 0.17 |
40 | Myrtenol | 1.79 | −2.01 | 20.2 | −1.56 | 0.33 |
41 | Cuminaldehyde | 2.78 | −2.81 | 17.1 | −11.1 | 0.27 |
42 | Bornyl acetate | 2.52 | −2.81 | 26.3 | −3.69 | 0.28 |
43 | Thymol | 2.84 | −2.53 | 20.2 | −3.02 | 0.17 |
44 | Methyl geranate | 3.56 | −2 | 26.3 | −10.38 | 0.21 |
45 | Neryl acetate | 3.97 | −2.3 | 26.3 | −2.88 | 0.1 |
46 | Sabinene | 2.86 | −2.69 | 0 | −6.78 | 0.45 |
47 | Estragole | 2.62 | −2.35 | 9.23 | −3.75 | 0.1 |
48 | Myristicin | 2.73 | −3.06 | 27.7 | −2.29 | 0.17 |
49 | Apiole | 2.66 | −3.08 | 36.9 | −4.67 | 0.27 |
50 | Eugenol | 2.27 | −2.05 | 29.5 | −2.78 | 0.11 |
51 | Dodecanal | 4.38 | −3.39 | 17.1 | −22.31 | 0.08 |
52 | Benzaldehyde | 1.59 | −1.94 | 17.1 | −4.05 | 0.11 |
53 | Coumarin | 1.5 | −2.37 | 26.3 | −1.83 | 0.12 |
54 | Tetradecanal | 5.29 | −3.93 | 17.1 | −22.3 | 0.07 |
55 | Methyl linoleate | 6.89 | −4.45 | 26.3 | −35.73 | 0.22 |
Pharmacological Application | Formulation | Mechanism of Action | Potential Side Effects | Clinical Evidence | References |
---|---|---|---|---|---|
Anti-inflammatory Effects | Nigella sativa oil or extract | Inhibition of inflammatory pathways, such as NF-κB, by active component thymoquinone. | Limited reports of gastrointestinal discomfort. | Some studies support anti-inflammatory effects in various conditions. | [141,143,198,224] |
Antioxidant Properties | Nigella sativa seed extract or oil | Presence of antioxidants (e.g., thymoquinone) to neutralize free radicals and reduce oxidative stress. | Generally well tolerated; rare reports of allergic reactions. | Evidence supports antioxidant properties in vitro and in animal studies. | [79,141,143,225] |
Antimicrobial Activity | Nigella sativa seed oil | Thymoquinone exhibits antimicrobial properties, disrupting cell membranes and inhibiting protein synthesis. | Limited reports of skin irritation; caution in pregnant women. | Limited clinical evidence; more research is needed for specific infections. | [147,226,227,228] |
Anticancer Potential | Nigella sativa oil or thymoquinone | Induction of apoptosis, inhibition of cell proliferation, and anti-inflammatory effects. | Limited studies; potential interactions with cancer treatments. | Some promising preclinical evidence; more research is needed in humans. | [75,229] |
Immunomodulatory Effects | Nigella sativa extract | Modulation of the immune system, enhancing activity of immune cells (e.g., T cells and natural killer cells), and regulating cytokine production. | Rare reports of allergic reactions; caution in autoimmune diseases. | Limited clinical evidence; potential benefits observed in some studies. | [175,230,231,232,233] |
Cardioprotective Effects | Nigella sativa oil or extract | Reduction of oxidative stress, inflammation, and improvement of lipid profiles. | Generally well tolerated; caution in individuals with bleeding disorders. | Positive effects on cardiovascular risk factors were observed in some studies. | [44,234,235] |
Antidiabetic Effects | Nigella sativa seed powder or oil | Potential hypoglycemic effects, improving insulin sensitivity and reducing complications associated with diabetes. | Caution in hypoglycemic individuals: monitor blood sugar levels. | Some studies suggest improved glycemic control; more research is needed. | [76,231,236,237,238] |
Neuroprotective Properties | Nigella sativa oil or extract | Neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in certain neurological conditions. | Generally well tolerated; caution in individuals with neurological disorders. | Positive effects observed in preclinical models; limited human studies. | [79,212,232,239,240] |
Respiratory Health | Nigella sativa essential oil | Potential bronchodilator effects, easing symptoms of asthma and improving respiratory function. | Limited reports of throat irritation; avoid in excessive amounts. | Limited clinical evidence; more research is needed for respiratory conditions. | [232,241,242] |
Gastrointestinal Health | Nigella sativa seed powder | Gastroprotective effects promote the healing of gastric ulcers and reduce gastrointestinal disorder symptoms. | Rare reports of nausea and bloating; consult with a healthcare professional. | Some evidence for gastroprotective effects in animal studies. | [238,243,244] |
Skin Health | Nigella sativa oil or cream | Anti-inflammatory and antioxidant properties may benefit skin conditions, such as eczema and psoriasis. | Patch test recommended; rare reports of skin irritation. | There is limited clinical evidence; more research is needed for specific skin conditions. | [245,246,247,248,249,250] |
Reproductive Health | Nigella sativa supplementation | Potential fertility benefits in both men and women, may regulate menstrual cycles and improve sperm parameters. | Consultation with a healthcare provider is advised, especially during pregnancy. | Limited clinical evidence; more research is needed for fertility outcomes. | [251,252,253,254] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Gururani, M.A.; Ali, A.; Bajwa, S.; Hassan, R.; Batool, S.W.; Imam, M.; Wei, D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024, 29, 4914. https://doi.org/10.3390/molecules29204914
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules. 2024; 29(20):4914. https://doi.org/10.3390/molecules29204914
Chicago/Turabian StyleAbbas, Munawar, Mayank Anand Gururani, Amjad Ali, Sakeena Bajwa, Rafia Hassan, Syeda Wajiha Batool, Mahreen Imam, and Dongqing Wei. 2024. "Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review" Molecules 29, no. 20: 4914. https://doi.org/10.3390/molecules29204914
APA StyleAbbas, M., Gururani, M. A., Ali, A., Bajwa, S., Hassan, R., Batool, S. W., Imam, M., & Wei, D. (2024). Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules, 29(20), 4914. https://doi.org/10.3390/molecules29204914