Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt
Abstract
:1. Introduction
2. Results and Discussion
2.1. Heat Transfer Theory
2.2. Choice of the MonoTrapTM Adsorbent Phase Through a Chemometric Approach
2.3. Vacuum Effect on HS-MMSE-MonoTrapTM Sampling
3. Materials and Methods
3.1. Reagents
3.2. Vac-HS-MMSE-MonotrapTM TD Procedure
3.3. Sample and Sampling
3.4. Three-Axis Autosampler and Multi-Mode GC Inlet Systems
3.5. GC–MS/O
3.6. Chemometric Tool
3.7. Identification of VOCs by LTPRI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polvara, E.; Roveda, L.; Invernizzi, M.; Capelli, L.; Sironi, S. Estimation of Emission Factors for Hazardous Air Pollutants from Petroleum Refineries. J. Atmos. 2021, 12, 1531. [Google Scholar] [CrossRef]
- Wojnarowska, M.; Plichta, G.; Sagan, A.; Plichta, J.; Stobiecka, J.; Sołtysik, M. Odour nuisance and urban residents quality of life: A case study in Kraków’s Plaszow district. Urban Clim. 2020, 34, 100704. [Google Scholar] [CrossRef]
- Milad, A.; Babalghaith, A.M.; Al-Sabaeei, A.M.; Dulaimi, A.; Ali, A.; Reddy, S.S.; Bilema, M.; Yusoff, N.I.M. A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. Int. J. Environ. Res. Public Health 2022, 19, 14863. [Google Scholar] [CrossRef]
- Heidari, M.; Bahrami, A.; Ghiasvand, A.R.; Shahna, F.G.; Soltanian, A.R. A novel needle trap device with single wall carbon nanotubes sol–gel sorbent packed for sampling and analysis of volatile organohalogen compounds in air. Talanta 2012, 101, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.K.; Pereira, N.C.; Hung, Y.-T. Air Pollution Control Engineering; Humana Press Inc.: Totowa, NJ, USA, 2004. [Google Scholar]
- Demeestere, K.; Dewulf, J.; De Witte, B.; Van Langenhove, H. Sample preparation for the analysis of volatile organic compounds in air and water matrices. J. Chromatogr. A 2007, 1153, 130–144. [Google Scholar] [CrossRef]
- Technical Overview of Volatile Organic Compounds. EPA. 3 May 2024. Available online: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#definition (accessed on 3 July 2024).
- Site Remediation and Waste Management Program and Department of Environmental Protection. Capping of Volatile Contaminants for the Impact to Ground Water Pathway. 2019. Available online: https://www.nj.gov/dep/srp/guidance/rs/igw_vo_capping.pdf (accessed on 3 July 2024).
- Health Canada. Government of Canada. Available online: https://www.canada.ca/en/health-canada.html (accessed on 3 July 2024).
- Bokowa, A.; Diaz, C.; Koziel, J.A.; McGinley, M.; Barclay, J.; Schauberger, G.; Guillot, J.-M.; Sneath, R.; Capelli, L.; Zorich, V.; et al. Summary and Overview of the Odour Regulations Worldwide. Atmosphere 2021, 12, 206. [Google Scholar] [CrossRef]
- Li, J.; Zou, K.; Li, W.; Wang, G.; Yang, W. Olfactory Characterization of Typical Odorous Pollutants Part I: Relationship Between the Hedonic Tone and Odor Concentration. Atmosphere 2019, 10, 524. [Google Scholar] [CrossRef]
- Ministero dell’Ambiente e della Sicurezza Energetica. Decreto Direttoriale MinAmbiente 28 Giugno 2023, n. 309. Rete Ambiente: Osservatorio Normativa Ambientale. Available online: https://www.reteambiente.it/normativa/51893/decreto-direttoriale-minambiente-28-giugno-2023-n-309/ (accessed on 3 July 2024).
- Emissioni da Sorgente Fissa—Determinazione della Concentrazione di Odore Mediante Olfattometria Dinamica e della Portata di Odore. UNI EN 13725: 2022. Available online: https://store.uni.com/uni-en-13725-2022 (accessed on 7 August 2024).
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; De Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef]
- Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green analytical chemistry: Social dimension and teaching. TrAC Trends Anal. Chem. 2019, 111, 185–196. [Google Scholar] [CrossRef]
- Dugheri, S.; Bonari, A.; Gentili, M.; Cappelli, G.; Pompilio, I.; Bossi, C.; Arcangeli, G.; Campagna, M.; Mucci, N. High-Throughput Analysis of Selected Urinary Hydroxy Polycyclic Aromatic Hydrocarbons by an Innovative Automated Solid-Phase Microextraction. Molecules 2018, 23, 1869. [Google Scholar] [CrossRef]
- Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Solid Phase Microextraction Techniques Used for Gas Chromatography: A Review. Acta Chromatogr. 2020, 32, 1–9. [Google Scholar] [CrossRef]
- Dugheri, S.; Mucci, N.; Cappelli, G.; Trevisani, L.; Bonari, A.; Bucaletti, E.; Squillaci, D.; Arcangeli, G. Advanced Solid-Phase Microextraction Techniques and Related Automation: A Review of Commercially Available Technologies. J. Anal. Methods Chem. 2022, 2022, 8690569. [Google Scholar] [CrossRef] [PubMed]
- Hjertén, S.; Liao, J.-L.; Zhang, R. High-Performance Liquid Chromatography on Continuous Polymer Beds. J. Chromatogr. A 1989, 473, 273–275. [Google Scholar] [CrossRef]
- China-Japan-Korea Symposium on Analytical Chemistry: Novel Approach for Aroma Components Analysis Using Monolithic Material Sorptive Extraction Method. In Proceedings of the JAIMA Conference at Makuhari, Chiba, Japan, 31 August–2 September 2009. Available online: https://www.jsac.or.jp/~gc/pdf/2009CJK/2009CJKsymposiumabstract.pdf (accessed on 3 June 2024).
- Hashi, Y.; Son, H.H.; Cha, E.J.; Lee, D.S. China-Japan-Korea Symposium on Analytical Chemistry. In Proceedings of the JAIMA Conference: New Approach of Simple Pretreatment for GCMS Analysis by Using Monolithic Material Sorption Extraction for Determination of 16 PAHs, Chiba, Japan, 31 August–2 September 2009; Available online: http://www.jsac.or.jp/~gc/pdf/2009CJK/2009CJKProgramtable_oral.pdf (accessed on 3 June 2024).
- Sato, A.; Terashima, H.; Takei, Y. Monolith Adsorbent and Method and Apparatus for Adsorbing Samples with the Same—EP2161573A1. European Patent Office. 2008. Available online: https://patents.google.com/patent/EP2161573A1/en (accessed on 3 June 2024).
- Brunton, N.P.; Cronin, D.A.; Monahan, F.J. The Effects of Temperature and Pressure on the Performance of Carboxen/PDMS Fibres During Solid Phase Microextraction (SPME) of Headspace Volatiles from Cooked and Raw Turkey Breast. Flavour Fragr. J. 2001, 16, 294–302. [Google Scholar] [CrossRef]
- Psillakis, E.; Yiantzi, E.; Sanchez-Prado, L.; Kalogerakis, N. Vacuum-Assisted Headspace Solid Phase Microextraction: Improved Extraction of Semivolatiles by Non-Equilibrium Headspace Sampling Under Reduced Pressure Conditions. Anal. Chim. Acta 2012, 742, 30–36. [Google Scholar] [CrossRef]
- Psillakis, E. The Effect of Vacuum: An Emerging Experimental Parameter to Consider During Headspace Microextraction Sampling. Anal. Bioanal. Chem. 2020, 412, 5989–5997. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Pino, V.; Psillakis, E.; Anderson, J.L.; Ayala, J.H.; Yiantzi, E.; Afonso, A.M. Vacuum-Assisted Headspace-Solid Phase Microextraction for Determining Volatile Free Fatty Acids and Phenols. Investigations on the Effect of Pressure on Competitive Adsorption Phenomena in a Multicomponent System. Anal. Chim. Acta 2017, 962, 41–51. [Google Scholar] [CrossRef]
- Thomas, S.L.; Myers, C.; Herrington, J.S.; Schug, K.A. Investigation of Operational Fundamentals for Vacuum-Assisted Headspace High-Capacity Solid-Phase Microextraction and Gas Chromatographic Analysis of Semivolatile Compounds from a Model Solid Sample. J. SeSci. 2024, 47, 2300779. [Google Scholar] [CrossRef]
- Sýkora, M.; Vítová, E.; Jeleń, H.H. Application of Vacuum Solid-Phase Microextraction for the Analysis of Semi-Hard Cheese Volatiles. Eur. Food Res. Technol. 2020, 246, 573–580. [Google Scholar] [CrossRef]
- Autelitano, F.; Bianchi, F.; Giuliani, F. Airborne Emissions of Asphalt/Wax Blends for Warm Mix Asphalt Production. J. Clean. Prod. 2017, 164, 749–756. [Google Scholar] [CrossRef]
- Autelitano, F.; Giuliani, F. Analytical Assessment of Asphalt Odor Patterns in Hot Mix Asphalt Production. J. Clean. Prod. 2018, 172, 1212–1223. [Google Scholar] [CrossRef]
- Chlebnikovas, A.; Marčiulaitienė, E.; Šernas, O.; Škulteckė, J.; Januševičius, T. Research on Air Pollutants and Odour Emissions from Paving Hot-Mix Asphalt with End-of-Life Tyre Rubber. Environ. Int. 2023, 181, 108281. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, Y.; Zhang, X.; Shan, B.; Liu, C. Emission Characteristics, Environmental Impacts, and Health Risks of Volatile Organic Compounds from Asphalt Materials: A State-of-the-Art Review. Energy Fuels 2024, 38, 4787–4802. [Google Scholar] [CrossRef]
- International Labour Office. International Chemical Control Toolkit-Draft Guidelines. Available online: https://webapps.ilo.org/static/english/protection/safework/ctrl_banding/toolkit/icct/guide.pdf (accessed on 3 July 2024).
- Yoko, Y.; Eiichiro, N. Measurement of Odor Threshold by Triangular Odor Bag Method. 2003. Available online: https://www.env.go.jp/en/air/odor/measure/02_3_2.pdf (accessed on 3 July 2024).
- Royal Society of Chemistry. ChemSpider—Search and Share Chemistry. Available online: https://www.chemspider.com/ (accessed on 3 July 2024).
- Giri, A.; Osako, K.; Okamoto, A.; Ohshima, T. Olfactometric Characterization of Aroma Active Compounds in Fermented Fish Paste in Comparison with Fish Sauce, Fermented Soy Paste and Sauce Products. Food Res. Int. 2010, 43, 1027–1040. [Google Scholar] [CrossRef]
- Jeleń, H.; Gracka, A. Characterization of Aroma Compounds: Structure, Physico-Chemical and Sensory Properties. In Flavour, 1st ed.; Guichard, E., Salles, C., Morzel, M., Le Bon, A., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 126–153. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Siraki, A.G.; Shangari, N. Aldehyde Sources, Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human Health. Crit. Rev. Toxicol. 2005, 35, 609–662. [Google Scholar] [CrossRef]
- LoPachin, R.M.; Gavin, T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; Available online: https://hyominsite.wordpress.com/wp-content/uploads/2015/03/fundamentals-of-heat-and-mass-transfer-6th-edition.pdf (accessed on 1 July 2024).
- Koziel, J.; Jia, M.; Pawliszyn, J. Air Sampling with Porous Solid-Phase Microextraction Fibers. Anal. Chem. 2000, 72, 5178–5186. [Google Scholar] [CrossRef] [PubMed]
- Marrubini, G.; Dugheri, S.; Cappelli, G.; Arcangeli, G.; Mucci, N.; Appelblad, P.; Melzi, C.; Speltini, A. Experimental Designs for Solid-Phase Microextraction Method Development in Bioanalysis: A Review. Anal. Chim. Acta 2020, 1119, 77–100. [Google Scholar] [CrossRef]
- Leardi, R. Experimental Design in Chemistry: A Tutorial. Anal. Chim. Acta 2009, 652, 161–172. [Google Scholar] [CrossRef]
- Marrubini, G.; Melzi, C. Trattamento dei Dati e Progettazione degli Esperimenti per le Scienze Chimiche e Farmaceutiche; McGraw-Hill: New York, NY, USA, 2024; Volume 1, Available online: https://www.mheducation.it/trattamento-dei-dati-e-progettazione-degli-esperimenti-per-le-scienze-chimiche-e-farmaceutiche-9788838613463-italy (accessed on 1 July 2024).
- Psillakis, E. Vacuum-Assisted Headspace Solid-Phase Microextraction: A Tutorial Review. Anal. Chim. Acta 2017, 986, 12–24. [Google Scholar] [CrossRef]
- Psillakis, E.; Yiantzi, E.; Kalogerakis, N. Downsizing Vacuum-Assisted Headspace Solid Phase Microextraction. J. Chromatogr. A 2013, 1300, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Vakinti, M.; Mela, S.-M.; Fernández, E.; Psillakis, E. Room Temperature and Sensitive Determination of Haloanisoles in Wine Using Vacuum-Assisted Headspace Solid-Phase Microextraction. J. Chromatogr. A 2019, 1602, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Glykioti, M.-L.; Yiantzi, E.; Psillakis, E. Room Temperature Determination of Earthy-Musty Odor Compounds in Water Using Vacuum-Assisted Headspace Solid-Phase Microextraction. Anal. Methods 2016, 8, 8065–8071. [Google Scholar] [CrossRef]
- Fatima, S.; Govardhan, B.; Kalyani, S.; Sridhar, S. Extraction of Volatile Organic Compounds from Water and Wastewater by Vacuum-Driven Membrane Process: A Comprehensive Review. Chem. Eng. J. 2022, 434, 134664. [Google Scholar] [CrossRef]
- Jury, W.A.; Russo, D.; Streile, G.; El Abd, H. Evaluation of Volatilization by Organic Chemicals Residing Below the Soil Surface. Water Resour. Res. 1990, 26, 13–20. [Google Scholar] [CrossRef]
- Yiantzi, E.; Kalogerakis, N.; Psillakis, E. Vacuum-Assisted Headspace Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons in Solid Samples. Anal. Chim. Acta 2015, 890, 108–116. [Google Scholar] [CrossRef]
- Solomou, N.; Bicchi, C.; Sgorbini, B.; Psillakis, E. Vacuum-Assisted Headspace Sorptive Extraction: Theoretical Considerations and Proof-of-Concept Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples. Anal. Chim. Acta 2020, 1096, 100–107. [Google Scholar] [CrossRef]
- Pollien, P.; Ott, A.; Montigon, F.; Baumgartner, M.; Muñoz-Box, R.; Chaintreau, A. Hyphenated Headspace-Gas Chromatography-Sniffing Technique: Screening of Impact Odorants and Quantitative Aromagram Comparisons. J. Agric. Food Chem. 1997, 45, 2630–2637. [Google Scholar] [CrossRef]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 20 June 2024).
- Kováts, E. Gas-Chromatographische Charakterisierung Organischer Verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Pacenti, M.; Dugheri, S.; Gagliano-Candela, R.; Strisciullo, G.; Franchi, E.; Degli Esposti, F.; Perchiazzi, N.; Boccalon, P.; Arcangeli, G.; Cupelli, V. Analysis of 2-Chloroacetophenone in Air by Multi-Fiber Solid-Phase Microextraction and Fast Gas Chromatography-Mass Spectrometry. Acta Chromatogr. 2009, 21, 379–397. [Google Scholar] [CrossRef]
- Ji, S.; Gu, S.; Wang, X.; Wu, N. Comparison of Olfactometrically Detected Compounds and Aroma Properties of Four Different Edible Parts of Chinese Mitten Crab. Fish. Sci. 2015, 81, 1157–1167. [Google Scholar] [CrossRef]
- Wu, N.; Gu, S.; Tao, N.; Wang, X.; Ji, S. Characterization of Important Odorants in Steamed Male Chinese Mitten Crab (Eriocheir sinensis) Using Gas Chromatography-Mass Spectrometry-Olfactometry. J. Food Sci. 2014, 79, C1250–C1259. [Google Scholar] [CrossRef] [PubMed]
- Pacenti, M.; Dugheri, S.; Traldi, P.; Degli Esposti, F.; Perchiazzi, N.; Franchi, E.; Calamante, M.; Kikic, I.; Alessi, P.; Bonacchi, A.; et al. New Automated and High-Throughput Quantitative Analysis of Urinary Ketones by Multifiber Exchange-Solid Phase Microextraction Coupled to Fast Gas Chromatography/Negative Chemical-Electron Ionization/Mass Spectrometry. J. Autom. Methods Manag. Chem. 2010, 2010, 972926. [Google Scholar] [CrossRef]
- Lee, M.L.; Vassilaros, D.L.; White, C.M. Retention Indices for Programmed-Temperature Capillary-Column Gas Chromatography of Polycyclic Aromatic Hydrocarbons. Anal. Chem. 1979, 51, 768–773. [Google Scholar] [CrossRef]
Num. | Compound ** (Name/ Formula) | CAS n. | MW Da | BP a,d,e °C | VP a,d,e Pa | RVD *,a Air = 1 | LTPRI b Estimated | Retention Times (RTs) | Peak Area Score Units f | Odor Smell | OT c ppb |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Acetaldehyde/C2H4O | 75-07-0 | 44 | 20 | 101,000 | 1.5 | 412 | 8.342 | + | Pungent, fruity | 1.5 |
2 | Ethanol/C2H6O | 64-17-5 | 46 | 78 | 5800 | 1.6 | 458 | 8.501 | + | Weak | 520 |
3 | Propanal/C3H6O | 123-38-6 | 58 | 49 | 31,000 | 2.0 | 471 | 9.117 | +++ | Pungent, choking | 1.0 |
4 | tert-Butyl alcohol/C4H10O | 75-65-0 | 74 | 83 | 4100 | 2.6 | 476 | 9.304 | + | Camphorous | 4500 |
5 | Acetone/C3H6O | 67-64-1 | 58 | 56 | 24,000 | 2.0 | 478 | 9.398 | + | Fruity | 42,000 |
6 | 1-Propanol/C3H8O | 71-23-8 | 60 | 97 | 2000 | 2.1 | 533 | 10.087 | + | Weak | 94 |
7 | Acetic acid/C2H4O2 | 64-19-7 | 60 | 118 | 1500 | 2.1 | 543 | 10.228 | + | Strong, vinegar-like | 6 |
8 | 2-Butanone/C4H8O | 78-93-3 | 72 | 79 | 10,500 | 2.41 | 548 | 10.431 | ++ | Mint | 440 |
9 | Butanal/C4H8O | 123-72-8 | 72 | 75 | 12,200 | 2.5 | 556 | 10.535 | +++ | Pungent | 0.6 |
10 | Butanedione/C4H6O2 | 431-03-8 | 86 | 88 | 7600 | 3.0 | 567 | 11.079 | ++ | Chlorine-like | 0.05 |
11 | Butanol/C4H10O | 71-36-3 | 74 | 117 | 580 | 2.6 | 607 | 11.187 | + | Harsh | 38 |
12 | 2-Pentanone/C5H10O | 107-87-9 | 86 | 101 | 1600 | 3.0 | 647 | 11.328 | +++ | Aceton-like | 28 |
13 | n-Pentanal/C5H10O | 110-62-3 | 86 | 103 | 3400 | 3.0 | 664 | 11.488 | ++++ | Acrid, pungent | 0.41 |
14 | 1-Pentanol/C5H12O | 71-41-0 | 88 | 138 | 600 | 3.0 | 742 | 12.136 | + | Fusel-like | 100 |
15 | 2-Ethylfuran/C6H8O | 3208-16-0 | 96 | 92 | 6666 | - | 756 | 12.375 | ++ | Smoky burn | - |
16 | 2-Ethylbutanal/C6H12O | 97-96-1 | 100 | 116 | 2000 | - | 762 | 13.108 | ++ | Pungent | - |
17 | 2-Hexanone/C6H12O | 591-78-6 | 100 | 126 | 360 | 3.5 | 770 | 13.247 | +++ | Sharp | 24 |
18 | 1-Hexanal/C6H12O | 66-25-1 | 100 | 129 | 1100 | - | 780 | 13.378 | ++++ | Strong, green grass | 0.28 |
19 | 2-Hexanol/C6H14O | 626-93-7 | 102 | 136 | 2300 | 3.5 | 795 | 14.087 | + | Sweet | 6 |
20 | 2-Heptanone/C7H14O | 110-43-0 | 114 | 151 | 200 | 3.9 | 859 | 14.252 | ++ | Penetrating-spicy | 6.8 |
21 | Heptanal/C7H14O | 111-71-7 | 114 | 153 | 3500 | - | 878 | 15.143 | ++++ | Pungent, fatty | 0.18 |
22 | Cyclohexanone/C6H10O | 108-94-1 | 98 | 156 | 500 | 3.4 | 891 | 15.369 | ++ | Peppermint-like | - |
23 | 1-Heptanol/C7H16O | 111-70-6 | 116 | 175 | 15 | 4.01 | 920 | 16.065 | + | Aromatic | 4.8 |
24 | 6-Methyl-2-heptanone/C8H16O | 928-68-7 | 128 | 168 | 173 | - | 941 | 16.297 | ++ | Camphorous | - |
25 | 3-Octanone/C8H16O | 106-68-3 | 128 | 168 | 503 | - | 951 | 16.386 | +++ | Sharp, mild fruit | - |
26 | Octanal/C8H16O | 124-13-0 | 128 | 171 | 206 | - | 965 | 16.584 | ++++ | Pungent citrus-like | 0.01 |
27 | 1-Octanol/C8H18O | 111-87-5 | 130 | 194 | 10 | 4.5 | 984 | 17.308 | ++ | Strong, aromatic | 2.7 |
28 | 2-Nonanone/C9H18O | 821-55-6 | 142 | 192 | 63 | - | 1038 | 18.131 | ++ | Herbaceous | - |
29 | Nonanal/C9H18O | 124-19-6 | 142 | 195 | 37 | - | 1061 | 18.465 | ++++ | Orange–rose | 0.34 |
30 | 1-Nonanol/C9H20O | 143-08-8 | 144 | 213 | 10 | - | 1078 | 19.448 | ++ | Citronella oil-like | 0.9 |
31 | 2-Decanone/C10H20O | 693-54-9 | 156 | 210 | 25 | - | 1146 | 20.092 | +++ | Orange, fatty peach | - |
32 | Decanal/C10H20O | 112-31-2 | 156 | 212 | 10 | - | 1167 | 20.241 | ++++ | Penetrating waxy | 0.4 |
33 | 1-Decanol/C10H22O | 112-30-1 | 158 | 230 | 1 | 5.5 | 1254 | 20.462 | ++ | Fruity | 0.7 |
34 | 2-Undecanone/C11H22O | 112-12-9 | 170 | 231 | 10 | - | 1268 | 22.138 | + | Strong | - |
35 | Undecanal/C11H22O | 112-44-7 | 170 | 223 | 10 | - | 1276 | 23.087 | +++ | Penetrating orange | - |
Num. | Compound Name | Atmospheric Pressure | Vacuum | ||||
---|---|---|---|---|---|---|---|
Dg cm2/s | Uptake ng/s | SR mL/min | Dg cm2/s | Uptake ng/s | SR mL/min | ||
1 | Acetaldehyde | 0.13 | 0.08 | 9.10 | 12.10 | 1.26 | 151 |
2 | Ethanol | 0.12 | 0.07 | 8.66 | 11.40 | 1.21 | 146 |
3 | Propanal | 0.11 | 0.07 | 8.20 | 10.00 | 1.12 | 134 |
4 | tert-Butyl alcohol | 0.091 | 0.06 | 7.29 | 8.40 | 1.01 | 121 |
5 | Acetone | 0.11 | 0.07 | 8.20 | 10.00 | 1.12 | 134 |
6 | 1-Propanol | 0.1 | 0.06 | 7.73 | 9.50 | 1.08 | 130 |
7 | Acetic acid | 0.11 | 0.07 | 8.20 | 10.40 | 1.15 | 138 |
8 | 2-Butanone | 0.094 | 0.06 | 7.44 | 8.70 | 1.03 | 123 |
9 | Butanal | 0.094 | 0.06 | 7.44 | 8.70 | 1.03 | 123 |
10 | Butanedione | 0.092 | 0.06 | 7.34 | 8.40 | 1.01 | 121 |
11 | Butanol | 0.091 | 0.06 | 7.29 | 8.30 | 1.00 | 120 |
12 | 2-Pentanone | 0.084 | 0.06 | 6.94 | 7.70 | 0.95 | 114 |
13 | n-Pentanal | 0.084 | 0.06 | 6.94 | 7.70 | 0.95 | 114 |
14 | 1-Pentanol | 0.082 | 0.06 | 6.84 | 7.50 | 0.94 | 112 |
15 | 2-Ethylfuran | 0.08 | 0.06 | 6.73 | 7.40 | 0.93 | 112 |
16 | 2-Ethylbutanal | 0.077 | 0.05 | 6.58 | 7.10 | 0.91 | 109 |
17 | 2-Hexanone | 0.077 | 0.05 | 6.58 | 7.00 | 0.90 | 108 |
18 | 1-Hexanal | 0.077 | 0.05 | 6.58 | 7.00 | 0.90 | 108 |
19 | 2-Hexanol | 0.075 | 0.05 | 6.47 | 6.90 | 0.89 | 107 |
20 | 2-Heptanone | 0.071 | 0.05 | 6.25 | 6.50 | 0.86 | 103 |
21 | Heptanal | 0.071 | 0.05 | 6.25 | 6.50 | 0.86 | 103 |
22 | Cyclohexanone | 0.078 | 0.06 | 6.63 | 7.20 | 0.91 | 110 |
23 | 1-Heptanol | 0.069 | 0.05 | 6.14 | 6.30 | 0.84 | 101 |
24 | 6-Methyl-2-heptanone | 0.066 | 0.05 | 5.98 | 6.10 | 0.82 | 98.9 |
25 | 3-Octanone | 0.066 | 0.05 | 5.98 | 6.10 | 0.82 | 98.9 |
26 | Octanal | 0.066 | 0.05 | 5.98 | 6.10 | 0.82 | 98.9 |
27 | 1-Octanol | 0.065 | 0.05 | 5.92 | 5.90 | 0.81 | 96.9 |
28 | 2-Nonanone | 0.062 | 0.05 | 5.75 | 5.70 | 0.79 | 94.9 |
29 | Nonanal | 0.062 | 0.05 | 5.75 | 5.70 | 0.79 | 94.9 |
30 | 1-Nonanol | 0.061 | 0.05 | 5.69 | 5.60 | 0.78 | 93.8 |
31 | 2-Decanone | 0.058 | 0.05 | 5.52 | 5.40 | 0.76 | 91.7 |
32 | Decanal | 0.058 | 0.05 | 5.52 | 5.40 | 0.76 | 91.7 |
33 | 1-Decanol | 0.058 | 0.05 | 5.52 | 5.30 | 0.76 | 90.7 |
34 | 2-Undecanone | 0.056 | 0.04 | 5.40 | 5.10 | 0.74 | 88.5 |
35 | Undecanal | 0.056 | 0.04 | 5.40 | 5.10 | 0.74 | 88.5 |
Experimental Matrix | Experimental Plan | |||||
---|---|---|---|---|---|---|
Exp | x1 | x2 | x3 | MonoTrapTM | Vac | Equilibration min |
1 | −1 | −1 | −1 | RGPS TD | No | 8 |
2 | 1 | −1 | −1 | RGC18 TD | No | 8 |
3 | −1 | 1 | −1 | RGPS TD | Yes | 8 |
4 | 1 | 1 | −1 | RGC18 TD | Yes | 8 |
5 | −1 | −1 | 1 | RGPS TD | No | 4 |
6 | 1 | −1 | 1 | RGC18 TD | No | 4 |
7 | −1 | 1 | 1 | RGPS TD | Yes | 4 |
8 | 1 | 1 | 1 | RGC18 TD | Yes | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugheri, S.; Cappelli, G.; Fanfani, N.; Squillaci, D.; Rapi, I.; Venturini, L.; Vita, C.; Gori, R.; Sirini, P.; Cipriano, D.; et al. Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules 2024, 29, 4943. https://doi.org/10.3390/molecules29204943
Dugheri S, Cappelli G, Fanfani N, Squillaci D, Rapi I, Venturini L, Vita C, Gori R, Sirini P, Cipriano D, et al. Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules. 2024; 29(20):4943. https://doi.org/10.3390/molecules29204943
Chicago/Turabian StyleDugheri, Stefano, Giovanni Cappelli, Niccolò Fanfani, Donato Squillaci, Ilaria Rapi, Lorenzo Venturini, Chiara Vita, Riccardo Gori, Piero Sirini, Domenico Cipriano, and et al. 2024. "Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt" Molecules 29, no. 20: 4943. https://doi.org/10.3390/molecules29204943
APA StyleDugheri, S., Cappelli, G., Fanfani, N., Squillaci, D., Rapi, I., Venturini, L., Vita, C., Gori, R., Sirini, P., Cipriano, D., Sajewicz, M., & Mucci, N. (2024). Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules, 29(20), 4943. https://doi.org/10.3390/molecules29204943