Rapid Liquid Chromatography–Tandem Mass Spectrometry Method for Determination of Total and Free Testosterone in Human Serum and Its Application to Monitoring Biomarker Response of Elite Athletes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of FT from TT
2.2. Method Validation
2.2.1. Ultrafiltration for FT
2.2.2. Specificity
2.2.3. Linearity and Lower Limit of Quantitation (LLOQ)
2.2.4. Accuracy and Precision
2.2.5. Recovery
2.2.6. Matrix Effect
2.2.7. Stability of Extracts
2.3. Application for Real Serum Samples of Elite Athletes
3. Materials and Methods
3.1. Materials and Ethical Approval
3.2. Instrumentation and Analytical Conditions
3.3. Preparation of Standard Solutions
3.4. Sample Preparation of TT
3.5. Sample Preparation of FT
3.6. Method Validation
3.6.1. Ultrafiltration for FT
3.6.2. Specificity
3.6.3. Linearity and LLOQ
3.6.4. Accuracy and Precision
3.6.5. Recovery
3.6.6. Matrix Effect
3.6.7. Stability of Extracts
3.7. Application to Real Athlete Serum Samples
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brownlee, K.K.; Moore, A.W.; Hackney, A.C. Relationship between circulating cortisol and testosterone: Influence of physical exercise. J. Sports Sci. Med. 2005, 4, 76–83. [Google Scholar] [PubMed]
- Zitzmann, M.; Nieschlag, E. Testosterone levels in healthy men and the relation to behavioural and physical characteristics: Facts and constructs. Eur. J. Endocrinol. 2001, 144, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Greenham, G.; Buckley, J.D.; Garrett, J.; Eston, R.; Norton, K. Biomarkers of physiological responses to periods of intensified, non-resistance-based exercise training in well-trained male athletes: A systematic review and meta-analysis. Sports Med. 2018, 48, 2517–2548. [Google Scholar] [CrossRef] [PubMed]
- Huggins, R.A.; Fortunati, A.R.; Curtis, R.M.; Looney, D.P.; West, C.A.; Lee, E.C.; Fragala, M.S.; Hall, M.L.; Casa, D.J. Monitoring blood biomarkers and training load throughout a collegiate soccer season. J. Strength Cond. Res. 2019, 33, 3065–3077. [Google Scholar] [CrossRef]
- Flavio, A.C.; Claudio, E.K. Basal hormones and biochemical markers as predictors of overtraining syndrome in male athletes: The eros-basal study. J. Athl. Train. 2019, 54, 906–914. [Google Scholar]
- Anderson, T.; Haake, S.; Lane, A.R.; Hackney, A.C. Changes in resting salivary testosterone, cortisol and interleukin-6 as biomarkers of overtraining. Balt. J. Sport Health Sci. 2016, 101, 2–7. [Google Scholar] [CrossRef]
- Hermans, E.J.; Putman, P.; Baas, J.M.; Koppeschaar, H.P.; van Honk, J. A single administration of testosterone reduces fear-potentiated startle in humans. Biol. Psychiatry 2006, 59, 872–874. [Google Scholar] [CrossRef]
- Goldman, A.L.; Bhasin, S.; Wu, F.C.W.; Krishna, M.; Matsumoto, A.M.; Jasuja, R. A Reappraisal of Testosterone’s Binding in Circulation: Physiological and Clinical Implications. Endocr. Rev. 2017, 38, 302–324. [Google Scholar] [CrossRef]
- Jasuja, R.; Pencina, K.M.; Peng, L.; Bhasin, S. Accurate Measurement and Harmonized Reference Ranges for Total and Free Testosterone Levels. Endocrinol. Metab. Clin. N. Am. 2022, 51, 63–75. [Google Scholar] [CrossRef]
- Dunn, J.F.; Nisula, B.C.; Rodbard, D. Transport of steroid hormones: Binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J. Clin. Endocrinol. Metab. 1981, 53, 58–68. [Google Scholar] [CrossRef]
- Marinelli, M.; Roi, G.S.; Giacometti, M.; Bonini, P.; Banfi, G. Cortisol, testosterone, and free testosterone in athletes performing a marathon at 4000 m altitude. Horm. Res. 1994, 41, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Dipalo, M.; Buonocore, R.; Gnocchi, C.; Aloe, R.; Delsignore, R. Analytical Evaluation of Free Testosterone and Cortisol Immunoassays in Saliva as a Reliable Alternative to Serum in Sports Medicine. J. Clin. Lab. Anal. 2016, 30, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Tsunekawa, K.; Shoho, Y.; Ushiki, K.; Yanagawa, Y.; Matsumoto, R.; Shimoda, N.; Aoki, T.; Yoshida, A.; Nakajima, K.; Kimura, T.; et al. Assessment of exercise-induced stress via automated measurement of salivary cortisol concentrations and the testosterone-to-cortisol ratio: A preliminary study. Sci. Rep. 2023, 13, 14532–14541. [Google Scholar] [CrossRef] [PubMed]
- Cupka, M.; Sedliak, M. Hungry runners-low energy availability in male endurance athletes and its impact on performance and testosterone: Mini-review. Eur. J. Transl. Myol. 2023, 33, 11104–11112. [Google Scholar] [CrossRef]
- Muscella, A.; My, G.; Okba, S.; Zangla, D.; Bianco, A.; Marsigliante, S. Effects of training on plasmatic cortisol and testosterone in football female referees. Physiol. Rep. 2022, 10, e15291–e15303. [Google Scholar] [CrossRef]
- Muscella, A.; Stefàno, E.; Marsigliante, S. The effects of training on hormonal concentrations and physical performance of football referees. Physiol. Rep. 2021, 9, e14740–e14750. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Jones, G.; Kouzios, D.; Desai, R. Evaluation of testosterone, estradiol and progesterone immunoassay calibrators by liquid chromatography mass spectrometry. Clin. Chem. Lab. Med. 2023, 61, 1612–1618. [Google Scholar] [CrossRef]
- Herati, A.S.; Cengiz, C.; Lamb, D.J. Assays of Serum Testosterone. Urol. Clin. N. Am. 2016, 43, 177–184. [Google Scholar] [CrossRef]
- Kanakis, G.A.; Tsametis, C.P.; Goulis, D.G. Measuring testosterone in women and men. Maturitas 2019, 125, 41–44. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, X.X. Antibody development to testosterone and its application in capillary electrophoresis-based immunoassay. Electrophoresis 2008, 29, 3406–3413. [Google Scholar] [CrossRef]
- Luque-Ramírez, M.; Jiménez-Mendiguchia, L.; García-Cano, A.; Fernández-Durán, E.; de Dios Rosa, V.; Nattero-Chávez, L.; Ortiz-Flores, A.E.; Escobar-Morreale, H.F. Certified testosterone immunoassays for hyperandrogenaemia. Eur. J. Clin. Investig. 2018, 48, e13029. [Google Scholar] [CrossRef] [PubMed]
- Keevil, B.G.; Adaway, J. Assessment of free testosterone concentration. J. Steroid Biochem. Mol. Biol. 2019, 190, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Teo, H.L.; Liu, H.; Loh, T.P.; Liu, Q.; Teo, T.L.; Lee, T.K.; Sethi, S.K. Simple and accurate candidate reference measurement procedure for total testosterone in human serum by one-step liquid-liquid extraction coupled with isotope dilution mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 7519–7528. [Google Scholar] [CrossRef]
- Botelho, J.C.; Shacklady, C.; Cooper, H.C.; Tai, S.S.; Van Uytfanghe, K.; Thienpont, L.M.; Vesper, H.W. Isotope-dilution liquid chromatography-tandem mass spectrometry candidate reference method for total testosterone in human serum. Clin. Chem. 2013, 59, 372–380. [Google Scholar] [CrossRef]
- Sun, G.; Xue, J.; Li, L.; Li, X.; Cui, Y.; Qiao, B.; Wei, D.; Li, H. Quantitative determination of human serum testosterone via isotope dilution ultra-performance liquid chromatography tandem mass spectrometry. Mol. Med. Rep. 2020, 22, 1576–1582. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Gatcombe, M.; Farris, J.; Botelho, J.C.; Caudill, S.P.; Vesper, H.W. Simultaneous measurement of total estradiol and testosterone in human serum by isotope dilution liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 5943–5954. [Google Scholar] [CrossRef]
- Wang, Y.; Gay, G.D.; Botelho, J.C.; Caudill, S.P.; Vesper, H.W. Total testosterone quantitative measurement in serum by LC-MS/MS. Clin. Chim. Acta 2014, 436, 263–267. [Google Scholar] [CrossRef]
- Shi, J.; Bird, R.; Schmeling, M.W.; Hoofnagle, A.N. Using mass spectrometry to overcome the longstanding inaccuracy of a commercially-available clinical testosterone immunoassay. J. Chromatogr. B. Analyt Technol. Biomed. Life Sci. 2021, 1183, 122969–122983. [Google Scholar] [CrossRef]
- Wang, C.; Catlin, D.H.; Demers, L.M.; Starcevic, B.; Swerdloff, R.S. Measurement of total serum testosterone in adult men: Comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J. Clin. Endocrinol. Metab. 2004, 89, 534–543. [Google Scholar] [CrossRef]
- Martínez-Escribano, A.; Maroto-García, J.; Ruiz-Galdón, M.; Barrios-Rodríguez, R.; Álvarez-Millán, J.J.; Cabezas-Sánchez, P.; Plaza-Andrades, I.; Molina-Vega, M.; Tinahones, F.J.; Queipo-Ortuño, M.I.; et al. Measurement of Serum Testosterone in Nondiabetic Young Obese Men: Comparison of Direct Immunoassay to Liquid Chromatography-Tandem Mass Spectrometry. Biomolecules 2020, 10, 1697. [Google Scholar] [CrossRef]
- French, D. Development and validation of a serum total testosterone liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay calibrated to NIST SRM 971. Clin. Chim. Acta 2013, 415, 109–117. [Google Scholar] [CrossRef] [PubMed]
- French, D.; Drees, J.; Stone, J.A.; Holmes, D.T.; van der Gugten, J.G. Comparison of four clinically validated testosterone LC-MS/MS assays: Harmonization is an attainable goal. Clin. Mass Spectrom. 2018, 11, 12–20. [Google Scholar] [CrossRef]
- Star-Weinstock, M.; Dey, S. Development of a CDC-certified total testosterone assay for adult and pediatric samples using LC-MS/MS. Clin. Mass Spectrom. 2019, 13, 27–35. [Google Scholar] [CrossRef]
- Huang, R.; Hong, Y.; Wu, Y.; Li, W.; Liu, W. Simultaneous quantification of total and free testosterone in human serum by LC-MS/MS. Anal. Bioanal. Chem. 2023, 415, 6851–6861. [Google Scholar] [CrossRef]
- Rhea, J.M.; French, D.; Molinaro, R.J. Direct total and free testosterone measurement by liquid chromatography tandem mass spectrometry across two different platforms. Clin. Biochem. 2013, 46, 656–664. [Google Scholar] [CrossRef]
- Fiers, T.; Wu, F.; Moghetti, P.; Vanderschueren, D.; Lapauw, B.; Kaufman, J.M. Reassessing Free-Testosterone Calculation by Liquid Chromatography-Tandem Mass Spectrometry Direct Equilibrium Dialysis. J. Clin. Endocrinol. Metab. 2018, 103, 2167–2174. [Google Scholar] [CrossRef]
- Cibotaru, D.; Celestin, M.N.; Kane, M.P.; Musteata, F.M. Comparison of liquid-liquid extraction, microextraction and ultrafiltration for measuring free concentrations of testosterone and phenytoin. Bioanalysis 2022, 14, 195–204. [Google Scholar] [CrossRef]
- Klock, E.; Kane, M.P.; Musteata, F.M. Measurement of free fraction, total concentration and protein binding for testosterone, triiodothyronine and thyroxine. Bioanalysis 2023, 15, 1355–1368. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, T.; Jiang, C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta. Pharm. Sin. B 2018, 8, 34–50. [Google Scholar] [CrossRef]
- Hammond, G.L.; Smith, C.L.; Goping, I.S.; Underhill, D.A.; Harley, M.J.; Reventos, J.; Musto, N.A.; Gunsalus, G.L.; Bardin, C.W. Primary structure of human corticosteroid binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitor. Proc. Natl. Acad. Sci. USA 1987, 84, 5153–5157. [Google Scholar] [CrossRef]
- Luo, Z.; Lei, H.; Sun, Y.; Liu, X.; Su, D.F. Orosomucoid, an acute response protein with multiple modulating activities. J. Physiol. Biochem. 2015, 71, 329–340. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH M10 on Bioanalytical Method Validation—Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-m10-bioanalytical-method-validation-scientific-guideline (accessed on 27 September 2024).
- U.S. Food & Drug Administration (FDA). Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 27 September 2024).
- Ryska, M. How to deal with the “matrix effect” as an unavoidable phenomenon. Eur. J. Mass Spectrom. 2015, 21, 423–432. [Google Scholar] [CrossRef]
- Van Eeckhaut, A.; Lanckmans, K.; Sarre, S.; Smolders, I.; Michotte, Y. Validation of bioanalytical LC-MS/MS assays: Evaluation of matrix effects. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2009, 877, 2198–2207. [Google Scholar] [CrossRef]
- Stahnke, H.; Kittlaus, S.; Kempe, G.; Alder, L. Reduction of matrix effects in liquid chromatography-electrospray ionization-mass spectrometry by dilution of the sample extracts: How much dilution is needed? Anal. Chem. 2012, 84, 1474–1482. [Google Scholar] [CrossRef]
- Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 2013, 115, 104–122. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 2013, 45, 186–205. [Google Scholar] [CrossRef]
- Hooper, D.R.; Kraemer, W.J.; Focht, B.C.; Volek, J.S.; DuPont, W.H.; Caldwell, L.K.; Maresh, C.M. Endocrinological Roles for Testosterone in Resistance Exercise Responses and Adaptations. Sports Med. 2017, 47, 1709–1720. [Google Scholar] [CrossRef]
- D’Andrea, S.; Spaggiari, G.; Barbonetti, A.; Santi, D. Endogenous transient doping: Physical exercise acutely increases testosterone levels-results from a meta-analysis. J. Endocrinol. Investig. 2020, 43, 1349–1371. [Google Scholar] [CrossRef]
- Fahrner, C.L.; Hackney, A.C. Effects of endurance exercise on free testosterone concentration and the binding affinity of sex hormone binding globulin (SHBG). Int. J. Sports Med. 1998, 19, 12–15. [Google Scholar] [CrossRef]
Female | Male | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | |
Filtered once (ng/mL) | 0.038 | 0.047 | 0.098 | 0.143 | 0.211 | 0.121 | 0.206 | 0.452 | 0.559 | 0.884 |
Filtered twice (ng/mL) | 0.021 | 0.059 | 0.071 | 0.167 | 0.182 | 0.139 | 0.172 | 0.401 | 0.522 | 0.829 |
RSD (%) | 1.2 | 0.8 | 1.9 | 1.7 | 2.1 | 1.3 | 2.4 | 3.6 | 2.6 | 3.9 |
Spiked (ng/mL) | Accuracy (%) (n = 15) | Precision (%) Intra-Batch | Inter-Batch (n = 15) | ||
---|---|---|---|---|---|
Batch 1 (n = 5) | Batch 2 (n = 5) | Batch 3 (n = 5) | |||
0.05 | 90.0–111.0 | 6.7 | 8.4 | 7.5 | 7.0 |
10 | 94.5–112.7 | 6.8 | 1.6 | 3.4 | 5.9 |
80 | 93.0–105.9 | 4.8 | 4.2 | 5.0 | 4.9 |
LQC (0.05 ng/mL) (%) | Avg. (%) | RSD (%) | MQC (10 ng/mL) (%) | Avg. (%) | RSD (%) | HQC (80 ng/mL) (%) | Avg. (%) | RSD (%) |
---|---|---|---|---|---|---|---|---|
94.0 | 96.7 | 6.9 | 96.0 | 97.8 | 4.3 | 95.5 | 96.0 | 5.9 |
102.0 | 92.6 | 98.2 | ||||||
102.2 | 98.3 | 103.7 | ||||||
86.4 | 104.2 | 88.1 | ||||||
99.0 | 97.7 | 94.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yu, H.; Shen, Y.; Yang, X.; Wang, Y. Rapid Liquid Chromatography–Tandem Mass Spectrometry Method for Determination of Total and Free Testosterone in Human Serum and Its Application to Monitoring Biomarker Response of Elite Athletes. Molecules 2024, 29, 5007. https://doi.org/10.3390/molecules29215007
Zhang J, Yu H, Shen Y, Yang X, Wang Y. Rapid Liquid Chromatography–Tandem Mass Spectrometry Method for Determination of Total and Free Testosterone in Human Serum and Its Application to Monitoring Biomarker Response of Elite Athletes. Molecules. 2024; 29(21):5007. https://doi.org/10.3390/molecules29215007
Chicago/Turabian StyleZhang, Jianli, Hang Yu, Yulin Shen, Xingya Yang, and Yan Wang. 2024. "Rapid Liquid Chromatography–Tandem Mass Spectrometry Method for Determination of Total and Free Testosterone in Human Serum and Its Application to Monitoring Biomarker Response of Elite Athletes" Molecules 29, no. 21: 5007. https://doi.org/10.3390/molecules29215007
APA StyleZhang, J., Yu, H., Shen, Y., Yang, X., & Wang, Y. (2024). Rapid Liquid Chromatography–Tandem Mass Spectrometry Method for Determination of Total and Free Testosterone in Human Serum and Its Application to Monitoring Biomarker Response of Elite Athletes. Molecules, 29(21), 5007. https://doi.org/10.3390/molecules29215007