Ideal Photothermal Materials Based on Ge Subwavelength Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Generation of SWS
2.2. Effects of Process Parameters on SWS Formation
2.3. Optical Properties
2.4. Radiant Heat Absorption
2.5. Hydrophilicity Test
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Maka, A.O.M.; Alabid, J.M. Solar energy technology and its roles in sustainable development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Pakulska, T. The Energy Crisis—Looking at the Renewable Transition. Energies 2023, 16, 5705. [Google Scholar] [CrossRef]
- Goldemberg, J. World Energy Assessment. Energy and the Challenge of Sustainability; United Nations Department of Economic and Social Affairs/World Energy Council: New York, NY, USA, 2001; 528p. [Google Scholar]
- Krebs, F.C.; Tromholt, T.; Jørgensen, M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2010, 2, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Han, C.; Xu, Y.-J.; Foley IV, J.J.; Zhang, D.; Codrington, J.; Gray, S.K.; Sun, Y. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics 2016, 10, 473–482. [Google Scholar] [CrossRef]
- Kennedy, C.E. Review of Mid- to High-Temperature Solar Selective Absorber Materials; National Renewable Energy Lab: Golden, CO, USA, 2002; 58p.
- Sanyal, A.; Ahmed, M.D.F.; Mohanta, J.C. Recent Developments and Challenges in Solar Harvesting of Photovoltaic System: A Review. In Emerging Trends in Mechanical and Industrial Engineering: Select Proceedings of ICETMIE 2022; Li, X., Rashidi, M.M., Lather, R.S., Raman, R., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 251–275. [Google Scholar]
- Zhang, S.; Wu, Z.; Liu, Z.; Lv, Y.; Hu, Z. Nanostructured Broadband Solar Absorber for Effective Photothermal Conversion and Electricity Generation. Energies 2022, 15, 1354. [Google Scholar] [CrossRef]
- Wu, X.; Chen, G.Y.; Owens, G.; Chu, D.; Xu, H. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy 2019, 12, 277–296. [Google Scholar] [CrossRef]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal nanomaterials: A powerful light-to-heat converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Tian, B.; Liu, S.; Feng, L.; Liu, S.; Gai, S.; Dai, Y.; Xie, L.; Liu, B.; Yang, P.; Zhao, Y. Renal-Clearable Nickel-Doped Carbon Dots with Boosted Photothermal Conversion Efficiency for Multimodal Imaging-Guided Cancer Therapy in the Second Near-Infrared Biowindow. Adv. Funct. Mater. 2021, 31, 2100549. [Google Scholar] [CrossRef]
- Chen, T.; Yao, T.; Peng, H.; Whittaker, A.K.; Li, Y.; Zhu, S.; Wang, Z. An Injectable Hydrogel for Simultaneous Photothermal Therapy and Photodynamic Therapy with Ultrahigh Efficiency Based on Carbon Dots and Modified Cellulose Nanocrystals. Adv. Funct. Mater. 2021, 31, 2106079. [Google Scholar] [CrossRef]
- Sun, S.; Chen, J.; Jiang, K.; Tang, Z.; Wang, Y.; Li, Z.; Liu, C.; Wu, A.; Lin, H. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Appl. Mater. Interfaces 2019, 11, 5791–5803. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Guo, Q.; Zhi, J. Nanodiamond-Based Theranostic Platform for Drug Delivery and Bioimaging. Small 2019, 15, 1902238. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Gu, R.; Xu, W.; Huang, H.; Xue, L.; Wang, W.; Zhang, Y.; Si, W.; Dong, X. Near-Infrared Light-Harvesting Fullerene-Based Nanoparticles for Promoted Synergetic Tumor Phototheranostics. ACS Appl. Mater. Interfaces 2019, 11, 44970–44977. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liang, N.; Jiang, W.; Zhai, T.; Wang, Z. Rylene-Fullerene Hybrid an Emerging Electron Acceptor for High-Performing and Photothermal-Stable Ternary Solar Cells. Small 2022, 18, 2104060. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Wang, W.; Li, H.; Xia, D.; Dai, Q.; Wu, X.; Wang, M.; Li, J.; Papavassiliou, D.V.; Xiao, R. Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Appl. Energ. 2020, 261, 114410. [Google Scholar] [CrossRef]
- Zhang, Z.; Mu, P.; He, J.; Zhu, Z.; Sun, H.; Wei, H.; Liang, W.; Li, A. Facile and Scalable Fabrication of Surface-Modified Sponge for Efficient Solar Steam Generation. ChemSusChem 2019, 12, 426–433. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, T.; Cao, Y.; Sun, J.; Zhou, Q.; Chen, H.; Guo, S.; Wang, Y.; Zhen, Y.; Liang, X.-J.; et al. Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS Nano 2021, 15, 6517–6529. [Google Scholar] [CrossRef]
- Xiao, P.; He, J.; Ni, F.; Zhang, C.; Liang, Y.; Zhou, W.; Gu, J.; Xia, J.; Kuo, S.-W.; Chen, T. Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy. Nano Energy 2020, 68, 104385. [Google Scholar] [CrossRef]
- Li, Z.; Lei, H.; Kan, A.; Xie, H.; Yu, W. Photothermal applications based on graphene and its derivatives: A state-of-the-art review. Energy 2021, 216, 119262. [Google Scholar] [CrossRef]
- Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y.-L.; Han, D.-D.; Sun, H.-B. Laser-Induced Graphene Tapes as Origami and Stick-On Labels for Photothermal Manipulation via Marangoni Effect. Adv. Funct. Mater. 2021, 31, 2006179. [Google Scholar] [CrossRef]
- Wei, W.; Guan, Q.; You, C.; Yu, J.; Yuan, Z.; Qiang, P.; Zhou, C.; Ren, Y.; You, Z.; Zhang, F. Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation. J. Mater. Chem. A 2020, 8, 13927–13934. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Ito, Y.; Tanabe, Y.; Han, J.; Fujita, T.; Tanigaki, K.; Chen, M. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization. Adv. Mater. 2015, 27, 4302–4307. [Google Scholar] [CrossRef]
- Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449. [Google Scholar] [CrossRef]
- Katumba, G.; Olumekor, L.; Forbes, A.; Makiwa, G.; Mwakikunga, B.; Lu, J.; Wäckelgård, E. Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers. Sol. Energ. Mat. Sol. Cells 2008, 92, 1285–1292. [Google Scholar] [CrossRef]
- Jung, H.S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J.L.; Kim, J.S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Wu, S.; Xu, B.; Xu, H. Multilayer Polypyrrole Nanosheets with Self-Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion. Adv. Mater. 2019, 31, 1807716. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, X.; Yang, X.; Sun, J.; Geng, J. Recent Advances in Polymer-Based Photothermal Materials for Biological Applications. ACS Appl. Polym. Mater. 2020, 2, 4273–4288. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, H.-M.; Song, G.; Li, Z.; Zhang, X.-B. Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy. ACS Appl. Polym. Mater. 2020, 2, 4258–4272. [Google Scholar] [CrossRef]
- Jia, J.; Liu, G.; Xu, W.; Tian, X.; Li, S.; Han, F.; Feng, Y.; Dong, X.; Chen, H. Fine-Tuning the Homometallic Interface of Au-on-Au Nanorods and Their Photothermal Therapy in the NIR-II Window. Angew. Chem. Int. Edit. 2020, 59, 14443–14448. [Google Scholar] [CrossRef]
- Zhong, Q.; Feng, J.; Jiang, B.; Fan, Y.; Zhang, Q.; Chen, J.; Yin, Y. Strain-Modulated Seeded Growth of Highly Branched Black Au Superparticles for Efficient Photothermal Conversion. J. Am. Chem. Soc. 2021, 143, 20513–20523. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Huang, Y.; You, S.; Xiang, Y.; Cai, E.; Mao, R.; Pan, W.; Tong, X.; Dong, W.; Ye, F.; et al. Engineering Robust Ag-Decorated Polydopamine Nano-Photothermal Platforms to Combat Bacterial Infection and Prompt Wound Healing. Adv. Sci. 2022, 9, 2106015. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, J.; Wu, Q.; Wang, Z.; Wang, Z.; Sun, J.; Liu, C.-J. Plasmon Based Double-Layer Hydrogel Device for a Highly Efficient Solar Vapor Generation. Adv. Funct. Mater. 2019, 29, 1901312. [Google Scholar] [CrossRef]
- Chang, M.; Hou, Z.; Wang, M.; Yang, C.; Wang, R.; Li, F.; Liu, D.; Peng, T.; Li, C.; Lin, J. Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy. Angew. Chem. Int. Edit. 2021, 60, 12971–12979. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, S.; Wang, F.; He, J.; Tian, Z.; Zhao, H.; Zhu, Z.; Sun, H.; Liang, W.; Li, A. The assembly of a polymer and metal nanoparticle coated glass capillary array for efficient solar desalination. J. Mater. Chem. A 2020, 8, 25904–25912. [Google Scholar] [CrossRef]
- Li, N.; Yang, D.-J.; Shao, Y.; Liu, Y.; Tang, J.; Yang, L.; Sun, T.; Zhou, W.; Liu, H.; Xue, G. Nanostructured Black Aluminum Prepared by Laser Direct Writing as a High-Performance Plasmonic Absorber for Photothermal/Electric Conversion. ACS Appl. Mater. Interfaces 2021, 13, 4305–4315. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Kim, C.; Kim, K. Solar Steam Generation and Desalination Using Ultra-Broadband Absorption in Plasmonic Alumina Nanowire Haze Structure–Graphene Oxide–Gold Nanoparticle Composite. Langmuir 2020, 36, 12494–12503. [Google Scholar] [CrossRef]
- Chen, J.; Feng, J.; Yang, F.; Aleisa, R.; Zhang, Q.; Yin, Y. Space-Confined Seeded Growth of Cu Nanorods with Strong Surface Plasmon Resonance for Photothermal Actuation. Angew. Chem. Int. Edit. 2019, 58, 9275–9281. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef]
- Sun, W.; Zhong, G.; Kübel, C.; Ali, F.M.; Qian, C.; Wang, L.; Ebrahimi, M.; Reyes, L.M.; Helmy, A.S.; Ozin, G.A. Size-Tunable Photothermal Germanium Nanocrystals. Angew. Chem. Int. Edit. 2017, 56, 6329–6334. [Google Scholar] [CrossRef]
- Li, Q.; Fan, H.; Xu, Y.; Liu, M.; Liu, J.; Xu, L.; Zou, M.; Cheng, Q.; Zhang, Y.; Liang, T.; et al. NIR-responsive hollow germanium nanospheres mediate photothermal/photodynamic therapy and restrain immunosuppression to cooperatively eradicate primary and metastatic tumors. Chem. Eng. J. 2023, 458, 141314. [Google Scholar] [CrossRef]
- Boltasseva, A.; Atwater, H.A. Low-Loss Plasmonic Metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- García de Abajo, F.J. Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides. J. Phys. Chem. C 2008, 112, 17983–17987. [Google Scholar] [CrossRef]
- McMahon, J.M.; Gray, S.K.; Schatz, G.C. Nonlocal Optical Response of Metal Nanostructures with Arbitrary Shape. Phys. Rev. Lett. 2009, 103, 097403. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv. Mater. 2016, 28, 1917–1933. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S.S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, W.; Guan, G.; Song, G.; Zou, R.; Hu, J. Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics. Acc. Chem. Res. 2017, 50, 2529–2538. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jian, H.; Wang, W.; Yu, D. Highly efficient solar vapour generation via self-floating three-dimensional Ti2O3-based aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 128031. [Google Scholar] [CrossRef]
- Neumann, O.; Urban, A.S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N.J. Solar vapor generation enabled by nanoparticles. ACS Nano 2013, 7, 42–49. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730. [Google Scholar] [CrossRef] [PubMed]
- Xin, Q.; Shah, H.; Nawaz, A.; Xie, W.; Akram, M.Z.; Batool, A.; Tian, L.; Jan, S.U.; Boddula, R.; Guo, B.; et al. Antibacterial Carbon-Based Nanomaterials. Adv. Mater. 2019, 31, 1804838. [Google Scholar] [CrossRef]
- Truong, V.T. Thermal degradation of polypyrrole: Effect of temperature and film thickness. Synthrtic Met. 1992, 52, 33–44. [Google Scholar] [CrossRef]
- Norton, S.J.; Vo-Dinh, T. Photothermal effects of plasmonic metal nanoparticles in a fluid. J. Appl. Phys. 2016, 119, 083105. [Google Scholar] [CrossRef]
- Shang, M.; He, Y.; Yu, J.; Yan, J.; Xie, H.; Li, J. Preparation, Characterization and Photothermal Study of PVA/Ti2O3 Composite Films. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2024, 39, 658–663. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Shu, X.; Wan, D.; Wei, N.; Yu, X.; Breese, M.B.; Venkatesan, T.; Xue, J.M.; Liu, Y. From titanium sesquioxide to titanium dioxide: Oxidation-induced structural, phase, and property evolution. Chem. Mater. 2018, 30, 4383–4392. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.; Wang, M.; Zhao, M.; Xue, J.; Chen, J.; Wu, T.; Chambers, S.A. Recent progress on titanium sesquioxide: Fabrication, properties, and applications. Adv. Funct. Mater. 2022, 32, 2203491. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, Y.; Liu, Z.; Duan, G.; Yang, D.; Cheng, P. Perfect Solar Absorber with Extremely Low Infrared Emissivity. Photonics 2022, 9, 574. [Google Scholar] [CrossRef]
- Ye, X.; Shao, T.; Sun, L.; Wu, J.; Wang, F.; He, J.; Jiang, X.; Wu, W.-D.; Zheng, W. Plasma-Induced, Self-Masking, One-Step Approach to an Ultrabroadband Antireflective and Superhydrophilic Subwavelength Nanostructured Fused Silica Surface. ACS Appl. Mater. Interfaces 2018, 10, 13851–13859. [Google Scholar] [CrossRef]
- Wu, J.; Ye, X.; Sun, L.; Huang, J.; Wen, J.; Geng, F.; Zeng, Y.; Li, Q.; Yi, Z.; Jiang, X.; et al. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica. Opt. Express 2018, 26, 1361–1374. [Google Scholar] [CrossRef]
- Wilkinson, C.; Rahman, M. Dry etching and sputtering. Philos. T. R. Soc. A 2004, 362, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Kokkoris, G. Towards control of plasma-induced surface roughness: Simultaneous to plasma etching deposition. Eur. Phys. J.-Appl. Phys. 2011, 56, 24012. [Google Scholar] [CrossRef]
- Kokkoris, G.; Constantoudis, V.; Angelikopoulos, P.; Boulousis, G.; Gogolides, E. Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors. Phys. Rev. B 2007, 76, 193405. [Google Scholar] [CrossRef]
Sample | Etching Time (min) | Pressure (Pa) | Power (W) | Gas Ratio (CHF3:SF6:He (SCCM)) |
---|---|---|---|---|
a | 40 | 3 | 400 | 35/10/5 |
b | 40 | 3 | 400 | 40/10/5 |
c | 40 | 3 | 400 | 45/10/5 |
d | 40 | 3 | 400 | 50/10/5 |
e | 35 | 3 | 400 | 40/10/10 |
f | 40 | 3 | 400 | 40/10/10 |
g | 45 | 3 | 400 | 40/10/10 |
h | 50 | 3 | 400 | 40/10/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, K.; Wei, C.; Ma, J.; Xu, H.; Zheng, W.; Zhu, R. Ideal Photothermal Materials Based on Ge Subwavelength Structure. Molecules 2024, 29, 5008. https://doi.org/10.3390/molecules29215008
Wu J, Wang K, Wei C, Ma J, Xu H, Zheng W, Zhu R. Ideal Photothermal Materials Based on Ge Subwavelength Structure. Molecules. 2024; 29(21):5008. https://doi.org/10.3390/molecules29215008
Chicago/Turabian StyleWu, Jingjun, Kaixuan Wang, Cong Wei, Jun Ma, Hongbo Xu, Wanguo Zheng, and Rihong Zhu. 2024. "Ideal Photothermal Materials Based on Ge Subwavelength Structure" Molecules 29, no. 21: 5008. https://doi.org/10.3390/molecules29215008
APA StyleWu, J., Wang, K., Wei, C., Ma, J., Xu, H., Zheng, W., & Zhu, R. (2024). Ideal Photothermal Materials Based on Ge Subwavelength Structure. Molecules, 29(21), 5008. https://doi.org/10.3390/molecules29215008