Improved Adhesion of Bacterial Cellulose on Plasma-Treated Cotton Fabric for Development of All-Cellulose Biocomposites
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Plasma Treatment of Cotton Fabric
3.3. In Situ Production of All-Cellulose Biocomposites
3.4. Scanning Electron Microscopy (SEM)
3.5. X-Ray Photoelectron Spectroscopy (XPS)
3.6. Dynamical Mechanical Analysis (DMA)
3.7. Adhesion Assessment of Biocomposites Using the Tape Test Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, X.-S. An Introduction to composite materials. In Composite Materialsn Engineering; Volume 1 Fundamentals of Composite Materials; Yi, X.-s., Du, S., Zhang, L., Eds.; Chemical Industry Press: Beijing, China; Springer Nature: Singapore, 2018; pp. 1–61. [Google Scholar]
- Širvaitienė, A.; Jankauskaitė, V.; Bekampienė, P.; Kondratas, A. Influence of natural fibre treatment on interfacial adhesion in biocomposites. Fibres Text. East. Eur. 2013, 21, 123–129. [Google Scholar]
- Črešnar, K.P.; Plohl, O.; Zemljič, L.F. Functionalised Fibres as a Coupling Reinforcement Agent in Recycled Polymer Composites. Materials 2024, 17, 2739. [Google Scholar] [CrossRef] [PubMed]
- Črešnar, K.P.; Bek, M.; Luxbacher, T.; Brunčko, M.; Zemljič, L.F. Insight into the Surface Properties of Wood Fiber-Polymer Composites. Polymers 2021, 13, 1535. [Google Scholar] [CrossRef]
- Andrew, J.J.; Dhakal, H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Compos. Part C Open Access 2022, 7, 100220. [Google Scholar] [CrossRef]
- Nishino, T.; Matsuda, I.; Hirao, K. All-Cellulose Composite. Macromolecules 2004, 37, 7683–7687. [Google Scholar] [CrossRef]
- Uusi-Tarkka, E.-K.; Skrifvars, M.; Haapala, A. Fabricating Sustainable All-Cellulose Composites. Appl. Sci. 2021, 11, 10069. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Ren, J.; Wu, B.; Luo, Q.; Liu, X.; Pei, C. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces. J. Agric. Food Chem. 2020, 68, 2696–2701. [Google Scholar] [CrossRef]
- Grozdanov, A.; Jordanov, I.; Gentile, G.; Errico, M.E.; Avollio, R.; Avella, M. All-cellulose Composites Based on Cotton Textile Woven Preforms. Fibers Polym. 2019, 20, 1243–1249. [Google Scholar] [CrossRef]
- Soykeabkaew, N.; Sian, C.; Gea, S.; Nishino, T.; Peijs, T. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 2009, 16, 435–444. [Google Scholar] [CrossRef]
- Xu, Q.; Fan, L.; Yuan, Y.; Wei, C.; Bai, Z.; Xu, J. All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 2016, 23, 3987–3997. [Google Scholar] [CrossRef]
- Meftahi, A.; Khajavi, R.; Rashidi, A.; Sattari, M.; Yazdanshenas, M.E.; Torabi, M. The effects of cotton gauze coating with microbial cellulose. Cellulose 2010, 17, 199–204. [Google Scholar] [CrossRef]
- Naeem, M.A.; Alfred, M.; Saba, H.; Siddiqui, Q.; Naveed, T.; Shahbaz, U.; Wei, Q. A preliminary study on the preparation of seamless tubular bacterial cellulose-electrospun nanofibers-based nanocomposite fabrics. J. Compos. Mater. 2019, 53, 3715–3724. [Google Scholar] [CrossRef]
- Naeem, M.A.; Siddiqui, Q.; Mushtaq, M.; Farooq, A.; Pang, Z.; Wei, Q. Insitu Self-Assembly of Bacterial Cellulose on Banana Fibers Extracted from Peels. J. Nat. Fibers 2020, 17, 1317–1328. [Google Scholar] [CrossRef]
- Naeem, M.A.; Siddiqui, Q.; Khan, M.R.; Mushtaq, M.; Wasim, M.; Farooq, A.; Naveed, T.; Wei, Q. Bacterial cellulose-natural fiber composites produced by fibers extracted from banana peel waste. J. Ind. Text. 2022, 51, 990S–1006S. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Y.; Huang, J.; Lv, P.; Hussain, T.; Wei, Q. In situ formed active and intelligent bacterial cellulose/cotton fiber composite containing curcumin. Cellulose 2020, 27, 9371–9382. [Google Scholar] [CrossRef]
- Mizuno, M.; Kamiya, Y.; Katsuta, T.; Oshima, N.; Nozaki, K.; Amano, Y. Creation of Bacterial Cellulose-Fabric Complexed Material. Sen’i Gakkaishi 2012, 68, 42–47. [Google Scholar] [CrossRef]
- Juntaro, J.; Pommet, M.; Mantalaris, A.; Shaffer, M.; Bismarck, A. Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos. Interfaces 2007, 14, 753–762. [Google Scholar] [CrossRef]
- Pommet, M.; Juntaro, J.; Heng, J.Y.Y.; Mantalaris, A.; Lee, A.F.; Wilson, K.; Kalinka, G.; Shaffer, M.S.P.; Bismarck, A. Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites. Biomacromolecules 2008, 9, 1643–1651. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Bharadia, P.; Blaker, J.J.; Bismarck, A. Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2065–2074. [Google Scholar] [CrossRef]
- Qiu, K.; Netravali, A. In Situ Produced Bacterial Cellulose Nanofiber-Based Hybrids for Nanocomposites. Fibers 2017, 5, 31. [Google Scholar] [CrossRef]
- Gardner, D.J.; Oporto, G.S.; Mills, R.; Samir, M.A.S.A. Adhesion and Surface Issues in Cellulose and Nanocellulose. J. Adhes. Sci. Technol. 2008, 22, 545–567. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008; 987p. [Google Scholar]
- Zhang, X.; Zhang, Z.-K.; Cao, J.-X.; Liu, Y.; Yu, P.-C. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas. AIP Adv. 2018, 8, 035121. [Google Scholar] [CrossRef]
- Zaplotnik, R.; Vesel, A.; Mozetic, M. Transition from E to H mode in inductively coupled oxygen plasma: Hysteresis and the behaviour of oxygen atom density. Europhys. Lett. 2011, 95, 55001. [Google Scholar] [CrossRef]
- Haji, A.; Kan, C.-W. Plasma treatment for sustainable functionalization of textiles. In The Textile Institute Book Series, Green Chemistry for Sustainable Textiles; Ibrahim, N., Hussain, C.M., Eds.; Woodhead Publishing: London, UK, 2021; pp. 265–277. [Google Scholar]
- Vaideki, K.; Jayakumar, S.; Thilagavathi, G.; Rajendran, R. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics. Appl. Surf. Sci. 2007, 253, 7323–7329. [Google Scholar] [CrossRef]
- Peran, J.; Ercegović Ražić, S. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2020, 90, 1174–1197. [Google Scholar] [CrossRef]
- Gorgieva, S.; Jančič, U.; Cepec, E.; Trček, J. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. Int. J. Biol. Macromol. 2023, 244, 125368. [Google Scholar] [CrossRef]
- Ogrizek, L.; Lamovšek, J.; Čuš, F.; Leskovšek, M.; Gorjanc, M. Properties of Bacterial Cellulose Produced Using White and Red Grape Bagasse as a Nutrient Source. Processes 2021, 9, 1088. [Google Scholar] [CrossRef]
- Vazquez, A.; Foresti, M.L.; Cerrutti, P.; Galvagno, M. Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus. J. Polym. Environ. 2013, 21, 545–554. [Google Scholar] [CrossRef]
- Provin, A.P.; Cubas, A.L.V.; Dutra, A.R.d.A.; Schulte, N.K. Textile industry and environment: Can the use of bacterial cellulose in the manufacture of biotextiles contribute to the sector? Clean Technol. Environ. Policy 2021, 23, 2813–2825. [Google Scholar] [CrossRef]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef]
- Comyn, J. Adhesion Science; Royal Society of Chemistry: Cambridge, UK, 1997; p. 160. [Google Scholar]
- Johansson, L.-S. Monitoring Fibre Surfaces with XPS in Papermaking Processes. Microchim. Acta 2002, 138, 217–223. [Google Scholar] [CrossRef]
- Thomas, S.; Paul, S.A.; Pothan, L.A.; Deepa, B. Chapter 1: Natural Fibres: Structure, Properties and Applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia, S., Kaith, B.S., Kaur, I., Eds.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 3–42. [Google Scholar]
- Topalovic, T.; Nierstrasz, V.A.; Bautista, L.; Jocic, D.; Navarro, A.; Warmoeskerken, M.M.C.G. XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf. A Physicochem. Eng. Asp. 2007, 296, 76–85. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.-R.; Cui, L.; Wang, P.; Wu, J.; Chen, J. Plasma-Aided Cotton Bioscouring: Dielectric Barrier Discharge Versus Low-Pressure Oxygen Plasma. Plasma Chem. Plasma Process. 2009, 29, 399–409. [Google Scholar] [CrossRef]
- Gorjanc, M.; Jazbec, K.; Zaplotnik, R. Tailoring surface morphology of cotton fibers using mild tetrafluoromethane plasma treatment. J. Text. Inst. 2014, 105, 1178–1185. [Google Scholar] [CrossRef]
- Jazbec, K.; Šala, M.; Mozetič, M.; Vesel, A.; Gorjanc, M. Functionalization of Cellulose Fibres with Oxygen Plasma and ZnO Nanoparticles for Achieving UV Protective Properties. J. Nanomater. 2015, 2015, 346739. [Google Scholar] [CrossRef]
- Puač, N.; Lazović, S.; Zaplotnik, R.; Mozetič, M.; Petrović, Z.L.; Cvelbar, U. Effect of dissipated power due to antenna resistive heating on E- to H-mode transition in inductively coupled oxygen plasma. Indian J. Phys. 2015, 89, 635–640. [Google Scholar] [CrossRef]
- Doliška, A.; Vesel, A.; Kolar, M.; Stana-Kleinschek, K.; Mozetič, M. Interaction between model poly(ethylene terephthalate) thin films and weakly ionised oxygen plasma. Surf. Interface Anal. 2012, 44, 56–61. [Google Scholar] [CrossRef]
- Vesel, A.; Kolar, M.; Doliska, A.; Stana-Kleinschek, K.; Mozetic, M. Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma. Surf. Interface Anal. 2012, 44, 1565–1571. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Mozetič, M.; Primc, G. Surface modification of PS polymer by oxygen-atom treatment from remote plasma: Initial kinetics of functional groups formation. Appl. Surf. Sci. 2021, 561, 150058. [Google Scholar] [CrossRef]
- ASTM D3359; Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2017.
- Kelechava, B. Tape Test Methods for Measuring Adhesion. Available online: https://blog.ansi.org/astm-d3359-tape-test-methods-measuring-adhesion/ (accessed on 25 August 2024).
- Horkavcová, D.; Plešingerová, B.; Helebrant, A.; Vojtko, M.; Procházka, V. Adhesion of the bioactive layer on titanium alloy substrate by tape-test. Ceram.-Silik. 2008, 52, 130–138. [Google Scholar]
- Sadough-Vanini, A.; Yang, D.Q.; Martinu, L.; Sacher, E. The Adhesion of Evaporated Copper to Dow Cyclotene 3022®, Determined by Microscratch Testing. J. Adhes. 2001, 77, 309–321. [Google Scholar] [CrossRef]
- Horkavcova, D. Testing of adhesion and cytotoxicity of sol-gel coatings applied by dip-coating on porous and non-porous titanium. Ceram.-Silik. 2022, 66, 255–261. [Google Scholar] [CrossRef]
- Drdácký, M.; Lesák, J.; Rescic, S.; Slížková, Z.; Tiano, P.; Valach, J. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater. Struct. 2012, 45, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, Z.; Rao, W.; Fan, L.; Xia, Z.; Xu, W.; Xu, J. A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns. Cellulose 2019, 26, 1169–1181. [Google Scholar] [CrossRef]
- Paxton, N.C.; Woodruff, M.A. Measuring contact angles on hydrophilic porous scaffolds by implementing a novel raised platform approach: A technical note. Polym. Adv. Technol. 2022, 33, 3759–3765. [Google Scholar] [CrossRef]
- Lee, L.H. Adhesive Bonding; Springer Science & Business Media: New York, NY, USA, 2013; ISBN 978-1-4757-9006-1. [Google Scholar]
- Gordon, S. Identifying plant fibres in textiles: The case of cotton. In Identification of Textile Fibers; Houck, M.M., Ed.; Woodhead Publishing Limited: London, UK, 2009; pp. 3–26. [Google Scholar]
Sample | C | O | O/C |
---|---|---|---|
CO-UN | 65.1 | 34.9 | 0.5 |
CO-A | 51.9 | 48.1 | 0.9 |
CO-E | 55.4 | 44.6 | 0.8 |
CO-H | 55.9 | 44.1 | 0.8 |
Samples | C–C | C–O | O–C–O/C=O | O=C–O |
---|---|---|---|---|
CO-UN | 43.0 | 47.4 | 9.7 | - |
CO-A | 9.4 | 64.9 | 17.1 | 8.5 |
CO-E | 22.7 | 56.3 | 13.5 | 7.5 |
CO-H | 24.0 | 56.6 | 11.3 | 8.1 |
Sample | E′ (GPa) | E″ (GPa) | tan δ |
---|---|---|---|
BC membrane | 0.216 | 0.015 | 0.068 |
CO-UN-BC | 0.058 | 0.006 | 0.058 |
CO-A-BC | 0.070 | 0.006 | 0.079 |
CO-E-BC | 0.086 | 0.008 | 0.090 |
CO-H-BC | 0.035 | 0.005 | 0.136 |
Sample | Adhesion Rating |
---|---|
CO-UN-BC | 1A |
CO-A-BC | 4A |
CO-E-BC | 1A |
CO-H-BC | 5A |
Mode of Operation | Time (s) | Power (W) | Distance of CO Sample from Coil (cm) |
---|---|---|---|
Afterglow | 60 | 90 | 30 |
E-mode | 20 | 110 | 0 |
H-mode | 1 | 350 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogrizek, L.; Lamovšek, J.; Primc, G.; Leskovšek, M.; Vesel, A.; Mozetič, M.; Gorjanc, M. Improved Adhesion of Bacterial Cellulose on Plasma-Treated Cotton Fabric for Development of All-Cellulose Biocomposites. Molecules 2024, 29, 5009. https://doi.org/10.3390/molecules29215009
Ogrizek L, Lamovšek J, Primc G, Leskovšek M, Vesel A, Mozetič M, Gorjanc M. Improved Adhesion of Bacterial Cellulose on Plasma-Treated Cotton Fabric for Development of All-Cellulose Biocomposites. Molecules. 2024; 29(21):5009. https://doi.org/10.3390/molecules29215009
Chicago/Turabian StyleOgrizek, Linda, Janja Lamovšek, Gregor Primc, Mirjam Leskovšek, Alenka Vesel, Miran Mozetič, and Marija Gorjanc. 2024. "Improved Adhesion of Bacterial Cellulose on Plasma-Treated Cotton Fabric for Development of All-Cellulose Biocomposites" Molecules 29, no. 21: 5009. https://doi.org/10.3390/molecules29215009
APA StyleOgrizek, L., Lamovšek, J., Primc, G., Leskovšek, M., Vesel, A., Mozetič, M., & Gorjanc, M. (2024). Improved Adhesion of Bacterial Cellulose on Plasma-Treated Cotton Fabric for Development of All-Cellulose Biocomposites. Molecules, 29(21), 5009. https://doi.org/10.3390/molecules29215009