A Ru-Based Complex for Sustainable One-Pot Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Assembly of Ru Catalyst (4)
2.2. Catalytic Performance
2.2.1. Catalytic Performance of the Ru Catalyst in the Benzyl Alcohol Aerobic Oxidation Approach
2.2.2. Oxidation–Condensation Tandem Reaction
2.2.3. The Recycling of Ru Catalyst 4
2.2.4. Test for Heterogeneity of Ru Complex (4)
3. Experimental
3.1. General
3.2. Synthesis of 2,2′-(4,6-Dihydroxy-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic Acid) (3)
3.3. Synthesis of Ru Complex (4)
3.4. General Procedure for One-Pot Tandem Oxidation/Knoevenagel Condensation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parmentier, M.; Palamini, P.; Gosselin, B.; Jakobi, M.; Borda, V.; Wu, B.; Gallou, F. One-pot synthesis of substituted amides from nitriles under mild reaction conditions in aqueous surfactant TPGS-750-M. Catal. Today 2024, 442, 114915. [Google Scholar] [CrossRef]
- Chaudhary, H.R.; Patel, D.M. Recent trends for chemoselectivity modulation in one-pot organic transformations. RSC Adv. 2024, 14, 31072–31116. [Google Scholar] [CrossRef] [PubMed]
- Cicco, L.; Dilauro, G.; Pulpito, M.; Capriati, V. Recent advances in metal-, organo-, and biocatalyzed one-pot tandem reactions under environmentally responsible conditions. Curr. Opin. Green Sustain. Chem. 2023, 41, 100799. [Google Scholar] [CrossRef]
- Feng, X.; Song, Y.; Lin, W. Dimensional Reduction of Lewis Acidic Metal-Organic Frameworks for Multicomponent Reactions. J. Am. Chem. Soc. 2021, 143, 8184–8192. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Li, Z. Visible Light−Initiated Synergistic/Cascade Reactions over Metal-Organic Frameworks. Sol. RRL 2021, 5, 2000454. [Google Scholar] [CrossRef]
- Wang, D.; Li, Z. Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. J. Catal. 2016, 342, 151–157. [Google Scholar] [CrossRef]
- Hao, M.; Li, Z. Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr). Appl. Catal. B 2022, 305, 121031. [Google Scholar] [CrossRef]
- Wanga, D.; Li, Z. Bi-functional NH2-MIL-101(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds. Catal. Sci. Technol. 2015, 5, 1623–1628. [Google Scholar] [CrossRef]
- Huang, L.S.; Lai, Y.H.; Yang, C.; Xu, D.Z. Iron-catalyzed one-pot oxidation/Knoevenagel condensation reaction using air as an oxidant. Appl. Organomet. Chem. 2019, 33, e4910. [Google Scholar] [CrossRef]
- Cho, H.J.; Xu, B.J. Enabling selective tandem reactions via catalyst architecture engineering. Trends Chem. 2020, 2, 929–941. [Google Scholar] [CrossRef]
- Tokala, R.; Bora, D.; Shankaraiah, N. Contribution of Knoevenagel Condensation Products toward the Development of Anticancer Agents: An Updated Review. ChemMedChem 2022, 17, e202100736. [Google Scholar] [CrossRef] [PubMed]
- Ebead, E.E.; Aboelnaga, A.; Nassar, E.; Naguib, M.M.; Ismail, M.F. Ultrasonic-induced synthesis of novel diverse arylidenes via Knoevenagel condensation reaction. Antitumor, QSAR, docking and DFT assessment. RSC Adv. 2023, 13, 29749–29767. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, H.S.; Sapra, S.; Gupta, M.; Nepali, K.; Gautam, R.; Yadav, S.; Kumar, R.; Jachak, S.M.; Chugh, M.; Gupta, M.K.; et al. Synthesis and biological evaluation of arylidene analogues of Meldrum’s acid as a new class of antimalarial and antioxidant agents. Bioorg. Med. Chem. 2010, 18, 5626–5633. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, H.M.; Chen, J.Z.; Zhang, R.; Guo, L.; Gan, H.M.; Song, B.N.; Zhu, W.W.; Hua, L.; Hou, Z.S. One-pot tandem catalytic synthesis of alpha, beta-unsaturated nitriles from alcohol with nitriles in aqueous phase. Catal. Commun. 2014, 47, 49–53. [Google Scholar] [CrossRef]
- Chan-Thaw, C.E.; Villa, A.; Katekomol, P.; Su, D.S.; Thomas, A.; Prati, L. Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett. 2010, 10, 537–541. [Google Scholar] [CrossRef]
- Jin, R.H.; Zheng, D.S.; Liu, R.; Liu, G.H. Silica-supported molecular catalysts for tandem reactions. ChemCatChem 2018, 10, 1739–1752. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.W.C.E.; Brink, G.J.T.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 2002, 35, 774–781. [Google Scholar] [CrossRef]
- Piera, J.; Backvall, J.E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer—A biomimetic approach. Angew. Chem. Int. Ed. 2008, 47, 3506–3523. [Google Scholar] [CrossRef]
- Lu, T.L.; Du, Z.T.; Liu, J.X.; Ma, H.; Xu, J. Aerobic oxidation of primary aliphatic alcohols over bismuth oxide supported platinum catalysts in water. Green Chem. 2013, 15, 2215–2221. [Google Scholar] [CrossRef]
- Abednatanzi, S.; Derakhshandeh, P.G.; Abbasi, A.; Van der Voort, P.; Leus, K. Direct synthesis of an Iridium(III) bipyridine metal-organic framework as a heterogeneous catalyst for aerobic alcohol oxidation. ChemCatChem 2016, 8, 3672–3679. [Google Scholar] [CrossRef]
- Zeng, X.M.; Chen, J.M.; Yoshimura, A.; Middleton, K.; Zhdankin, V.V. SiO2–supported RuCl3/3–(dichloroiodo)benzoic acid: Green catalytic system for the oxidation of alcohols and sulfides in water. RSC Adv. 2011, 1, 973–977. [Google Scholar] [CrossRef]
- Yang, Z.W.; Kang, Q.X.; Quan, F.; Lei, Z.Q. Oxidation of alcohols using iodosylbenzene as oxidant catalyzed by ruthenium complexes under mild reaction conditions. J. Mol. Catal. A Chem. 2007, 261, 190–195. [Google Scholar] [CrossRef]
- Ganesamoorthy, S.; Tamizh, M.M.; Shanmugasundaram, K.; Karvembu, R. Immobilization of Ru(III) complex on silica: A heterogenized catalyst for selective oxidation of alcohols in water at room temperature. Tetrahedron Lett. 2013, 54, 7035–7039. [Google Scholar] [CrossRef]
- Kananovich, D.; Elek, G.Z.; Lopp, M.; Borovkov, V. Aerobic Oxidations in Asymmetric Synthesis: Catalytic Strategies and Recent Developments. Front. Chem. 2021, 9, 614944. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.G.; Krishnamoorthi, S.; Thiruneelakandan, R.; Karvembu, R. V2O5 Anchored RuO2: An efficient nanocatalyst for aerial oxidation of alcohols. Catal. Lett. 2014, 144, 1245–1252. [Google Scholar] [CrossRef]
- Wang, S.-S.; Zhang, J.; Zhou, C.-L.; Vo-Thanh, G.; Liu, Y. An ionic compound containing Ru(III)–complex cation and phosphotungstate anion as the efficient and recyclable catalyst for clean aerobic oxidation of alcohols. Catal. Commun. 2012, 28, 152–154. [Google Scholar] [CrossRef]
- Guo, H.; Liu, W.-D.; Yin, G. Aerobic oxidation of alcohols to aldehydes and ketones using ruthenium(III)/Et3N catalyst. Appl. Organomet. Chem. 2011, 25, 836–842. [Google Scholar] [CrossRef]
- Sodhi, R.K.; Paul, S.; Clark, J.H. A comparative study of different metal acetylacetonates covalently anchored onto amine-functionalized silica: A study of the oxidation of aldehydes and alcohols to corresponding acids in water. Green Chem. 2012, 14, 1649–1656. [Google Scholar] [CrossRef]
- Pérez, R.; Escalante, K.E. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. ChemPlusChem 2024, 89, e202300660. [Google Scholar] [CrossRef]
- Hekimoğlu, S. A Review on Sonochemistry and Its Environmental Applications. Acoustics 2020, 2, 766–775. [Google Scholar] [CrossRef]
- Javahershenas, R.; Nikzat, S. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles. Ultrason. Sonochem. 2024, 102, 106741. [Google Scholar] [CrossRef] [PubMed]
- Sommer, R.D. How to grow crystals for X-ray crystallography. Acta Cryst. 2024, 80, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Soliman, I.A.; Bacchus, A.; Zare, R.; Sutradhar, S.; Fatehi, P. Cationic lignin as an efficient and sustainable homogenous catalyst for aqueous Knoevenagel condensation reactions. RSC Advances 2024, 14, 29595–29605. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Soliman, A.; Abdelhamid, H.N. Metal-organic framework (ZIF-8) for Knoevenagel condensation and multi-components Biginelli Reaction. J. Solid State Chem. 2024, 332, 124534. [Google Scholar] [CrossRef]
- Meng, S.-S.; Lin, R.; Luo, X.; Lv, J.; Zhao, L.; Chan, A.S.C. Aerobic oxidation of alcohols with air catalyzed by decacarbonyldimanganese. Green Chem. 2019, 21, 6187. [Google Scholar] [CrossRef]
- Cicco, L.; Roggio, M.; Aguilar, M.L.; Martín, M.R.; Perna, F.M.; Álvarez, J.G.; Vitale, P.; Capriati, V. Selective Aerobic Oxidation of Alcohols in Low Melting Mixtures and Water and Use for Telescoped One-Pot Hybrid Reactions. ChemistryOpen 2022, 11, e202200160. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.Y.; Wang, L.; Zhang, Y.; Zhang, Y.; Zhao, J. Ru/UiO-66 catalyst for the reduction of nitroarenes and tandem reaction of alcohol oxidation/Knoevenagel condensation. ACS Omega 2018, 3, 4199–4212. [Google Scholar] [CrossRef]
- Oudi, S.; Oveisi, A.R.; Daliran, S.; Khajeh, M.; Dhakshinamoorthy, A.; García, H. A Porphyrin-Based Covalent Organic Framework as Metal-Free Visible-LED-Light Photocatalyst for One-Pot Tandem Benzyl Alcohol Oxidation/Knoevenagel Condensation. Nanomaterials 2023, 13, 558. [Google Scholar] [CrossRef]
- Daliran, S.; Khajeh, M.; Oveisi, A.R.; Albero, J.; García, H. CsCu2I3 Nanoparticles Incorporated within a Mesoporous Metal–Organic Porphyrin Framework as a Catalyst for One-Pot Click Cycloaddition and Oxidation/Knoevenagel Tandem. ACS Appl. Mater. Interfaces 2022, 14, 36515–36526. [Google Scholar] [CrossRef]
- Watson, G.; Derakhshandeh, P.G.; Abednatanzi, S.; Schmidt, J.; Leus, K.; Van Der Voort, P. A Ru-Complex Tethered to a N-Rich Covalent Triazine Framework for Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules 2021, 26, 838. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, H.Y.; Wang, L.; Zhang, Y.; Zhao, J. Ru(OH)x supported on polyethylenimine modified magnetic nanoparticles coated with silica as catalyst for one-pot tandem aerobic oxidation/Knoevenagel condensation of alcohols and active methylene compounds. React. Kinet. Mech. Catal. 2018, 125, 789–806. [Google Scholar] [CrossRef]
- Daliran, S.; Khajeh, M.; Oveisi, A.R.; García, H.; Luque, R. Porphyrin Catecholate Iron-Based Metal-Organic Framework for Efficient Visible Light-Promoted One-Pot Tandem C-C Couplings. ACS Sustain. Chem. Eng. 2022, 10, 5315–5322. [Google Scholar] [CrossRef]
- Sun, J.; Abednatanzi, S.; Chen, H.; Liu, Y.-Y.; Leus, K.; Van Der Voort, P. Bifunctional Noble-Metal-Free Catalyst for the Selective Aerobic Oxidation-Knoevenagel One-Pot Reaction: Encapsulation of Polyoxometalates into an Alkylamine-Modified MIL-101 Framework. ACS Appl. Mater. Interfaces 2021, 13, 23558–23566. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Aguila, B.; Ma, S. A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Mater. Chem. Front. 2017, 1, 1310–1316. [Google Scholar] [CrossRef]
- Wu, J.; Hua, W.; Yue, Y.; Gao, Z. A Highly Efficient Bifunctional Catalyst CoOx/tri-g-C3N4 for One-Pot Aerobic Oxidation-Knoevenagel Condensation Reaction. Catalysts 2020, 10, 712. [Google Scholar] [CrossRef]
Entry | Method | Catalyst (mol%) | Base | Solvent | Temp. (°C) | Time (h) | Yield (%) |
---|---|---|---|---|---|---|---|
1. | Silent | no | Na2CO3 | H2O | 100 | 12 | ND |
2. | Silent | 4 (0.1 mol%) | Na2CO3 | H2O | 100 | 12 | 46 |
3. | US | 4 (0.1 mol%) | Na2CO3 | H2O | 40 | 3 | 82 |
4. | US | 4 (0.1 mol%) | Na2CO3 | Toluene | 40 | 3 | 58 |
5. | US | 4 (0.1 mol%) | Na2CO3 | Ethyl acetate | 40 | 3 | 50 |
6. | US | 4 (0.1 mol%) | Na2CO3 | THF | 40 | 3 | 55 |
7. | US | 4 (0.1 mol%) | Na2CO3 | H2O | rt | 3 | 37 |
8. | US | 4 (0.1 mol%) | Na2CO3 | H2O | 50 | 2 | 92 |
9. | US | 4 (0.1 mol%) | Na2CO3 | H2O | 60 | 1.5 | 95 |
10. | US | 4 (0.1 mol%) | Na2CO3 | H2O | 70 | 1.5 | 93 |
11. | US | 4 (0.1 mol%) | K2CO3 | H2O | 60 | 1.5 | 95 |
12. | US | 4 (0.1 mol%) | Cs2CO3 | H2O | 60 | 1.5 | 96 |
13. | US | 4 (0.1 mol%) | Cs2CO3 | H2O | 60 | 1.5 | 99 b |
14. | US | 4 (0.1 mol%) | Cs2CO3 | H2O | 60 | 1.5 | ND c |
15. | US | 4 (0.05 mol%) | Cs2CO3 | H2O | 60 | 1.5 | 88 |
16. | US | 4 (0.2 mol%) | Cs2CO3 | H2O | 60 | 1.5 | 97 |
17. | US | 4 (0.5 mol%) | Cs2CO3 | H2O | 60 | 1.5 | 95 |
18. | US | RuCl3.H2O | Cs2CO3 | H2O | 60 | 1.5 | 43 |
19. | US | Ru(DMSO)4Cl2 | Cs2CO3 | H2O | 60 | 1.5 | 37 |
Entry | Catalyst | Time (h) | Yield (%) | Ref. |
---|---|---|---|---|
1. | UiO-66-Ru | 6 * | 89.3 | [37] |
2. | Porph-UOZ-COF | 60 | 93 | [38] |
3. | CsCu2I3@PCN-222(Fe) | 15 | 96 | [39] |
4. | RuIII@bipy-CTF | 13 * | 99 | [40] |
5. | Fe3O4@SiO2@PEI@Ru(OH)x | 22 * | 90.2 | [41] |
6. | PorphCat-Fe | 24 | 91 | [42] |
7. | CsCu2I3@PCN-222(Fe) | 15 | 96 | [39] |
8. | PMoV2@DETA-MIL-101 | 36 * | 99 | [43] |
9. | Pd/COF-TaPa-Py | 5.5 * | 98 | [44] |
10. | CoOx/tri-g-C3N4 | 6 | 96.5 | [45] |
11. | Ru catalyst (4) | 1.5 | 99 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arafa, W.A.A.; Nayl, A.A.; Ahmed, I.M.; Youssef, A.M.S.; Mourad, A.K.; Bräse, S. A Ru-Based Complex for Sustainable One-Pot Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules 2024, 29, 5114. https://doi.org/10.3390/molecules29215114
Arafa WAA, Nayl AA, Ahmed IM, Youssef AMS, Mourad AK, Bräse S. A Ru-Based Complex for Sustainable One-Pot Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules. 2024; 29(21):5114. https://doi.org/10.3390/molecules29215114
Chicago/Turabian StyleArafa, Wael A. A., AbdElAziz A. Nayl, Ismail M. Ahmed, Ayman M. S. Youssef, Asmaa K. Mourad, and Stefan Bräse. 2024. "A Ru-Based Complex for Sustainable One-Pot Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions" Molecules 29, no. 21: 5114. https://doi.org/10.3390/molecules29215114
APA StyleArafa, W. A. A., Nayl, A. A., Ahmed, I. M., Youssef, A. M. S., Mourad, A. K., & Bräse, S. (2024). A Ru-Based Complex for Sustainable One-Pot Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules, 29(21), 5114. https://doi.org/10.3390/molecules29215114