Assessment of Ethanolic Extraction of Chlorogenic Acid, Cynarin, and Polyphenols from Burdock (Arctium lappa L.) Roots Under Ultrasound
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Different Extraction Modes
2.2. Effect of Solid-to-Liquid Ratio
2.3. Effect of Extraction Time
2.4. Effect of Extraction Mode on the Morphological Structure of Burdock Roots
3. Materials and Methods
3.1. Materials
3.2. Ethanolic Extraction Under Ultrasound and Shaking
3.3. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.4. Determination of Ferric-Reducing Antioxidant Power (FRAP)
3.5. HPLC Analysis of CGA and Cynarin
3.6. Analysis of Surface Morphology
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fierascu, R.C.; Georgiev, M.I.; Fierascu, I.; Ungureanu, C.; Avramescu, S.M.; Ortan, A.; Georgescu, M.I.; Sutan, A.N.; Zanfirescu, A.; Dinu-Pirvu, C.E.; et al. Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem. Toxicol. 2018, 111, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Evangelopoulos, D.; Bhakta, S.; Gray, A.I.; Seidel, V. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J. Ethnopharmacol. 2014, 155, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Y.; Yu, J.; Li, Y.B.; Wang, L.; Hu, L.; Zhang, L.; Zhou, Y.H. Extraction and antioxidant activities of polysaccharides from roots of Arctium lappa L. Int. J. Biol. Macromol. 2019, 123, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.M.A.; Clerici, M.T.P.S. Burdock (Arctium lappa L.) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications. Food Res. Int. 2021, 141, 109889. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, R.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. [Google Scholar] [CrossRef]
- Yari, S.; Karamian, R.; Asadbegy, M.; Hoseini, E.; Farida, S.H.M. The protective effects of Arctium lappa L. extract on testicular injuries induced by ethanol in rats. Andrologia 2018, 50, e13086. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Rasheed, H.; Ahmad, D.; Bao, J. Genetic diversity and health properties of polyphenols in potato. Antioxidants 2022, 11, 603. [Google Scholar] [CrossRef]
- Wu, C.; Chen, S.; Liu, Y.; Kong, B.; Yan, W.; Jiang, T.; Tian, H.; Liu, Z.; Qi Shi, Q.; Wang, Y.; et al. Cynarin suppresses gouty arthritis induced by monosodium urate crystals. Bioengineered 2022, 13, 11782–11793. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, J.; Ma, J.; Jiang, Y.; Wang, M.; Ren, G.; Chen, F. Cynarin-rich sunflower (Helianthus annuus) sprouts possess both antiglycative and antioxidant activities. J. Agric. Food Chem. 2012, 60, 3260–3265. [Google Scholar] [CrossRef]
- El-Hefny, N.E. Chemical kinetics and reaction mechanisms in solvent extraction: New trends and applications. J. Phys. Sci. 2017, 28, 129–156. [Google Scholar] [CrossRef]
- Su, D.; Zhang, R.; Hou, F.; Zhang, M.; Guo, J.; Huang, F.; Deng, Y.; Wei, Z. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complement. Altern. Med. 2014, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Passos, C.P.; Costa, R.M.; Ferreira, S.S.; Lopes, G.R.; Cruz, M.T.; Coimbra, M.A. Role of coffee caffeine and chlorogenic acids adsorption to polysaccharides with impact on brew immunomodulation effects. Foods 2021, 10, 378. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Su, J.Y.; Yang, C.Y. Ultrasound-assisted aqueous extraction of chlorogenic acid and cynarin with the impact of inulin from Burdock (Arctium lappa L.) roots. Antioxidants 2022, 11, 1219. [Google Scholar] [CrossRef]
- Su, J.Y.; Chen, Y.; Yang, C.Y. Impact of nutrient from aqueous extract of burdock roots and ultrasonic stress on the growth and β-glucosidase activity of Lactiplantibacillus plantarum FEL112. LWT Food Sci. Technol. 2023, 175, 114495. [Google Scholar] [CrossRef]
- Naskar, B.; Dan, A.; Ghosh, S.; Moulik, S.P. Viscosity and solubility behavior of the polysaccharide inulin in water, water + dimethyl sulfoxide, and water + isopropanol media. J. Chem. Eng. Data 2010, 55, 2424–2427. [Google Scholar] [CrossRef]
- Ku, Y.; Jansen, O.; Oles, C.J.; Lazar, E.Z.; Rader, J.I. Precipitation of inulins and oligoglucoses by ethanol and other solvents. Food Chem. 2003, 81, 125–132. [Google Scholar] [CrossRef]
- Apolinário, A.C.; de Lima Damasceno, B.P.G.; de Macêdo Beltrão, N.E.; Pessoa, A.; Converti, A.; da Silva, J.A. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym. 2014, 101, 368–378. [Google Scholar] [CrossRef]
- Martins, V.F.R.; Ribeiro, T.B.; Lopes, A.I.; Pintado, M.E.; Morais, R.M.S.C.; Morais, A.M.M.B. Comparison among different green extraction methods of polyphenolic compounds from exhausted olive oil pomace and the bioactivity of the extracts. Molecules 2024, 29, 1935. [Google Scholar] [CrossRef]
- Hu, Y.; Qian, W.; Fan, S.; Yang, Y.; Liao, H.; Zhuang, G.; Gao, S. Ultrasonic-assisted extraction of phenolic compounds from Lonicera similis flowers at three harvest periods: Comparison of composition, characterization, and antioxidant activity. Molecules 2024, 29, 3280. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Y.; Tian, Y.; Zhang, M.; Cheng, K.; Zhang, X.; Zhou, M.; Hui, M.; Zhang, Y. Extraction, characterization, and antioxidant activity of Eucommia ulmoides polysaccharides. Molecules 2024, 29, 4793. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Bui, A.T.H.; Cozzolino, D.; Zisu, B.; Chandrapala, J. Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products—A review. J. Dairy. Res. 2020, 87, 501–512. [Google Scholar]
- Naik, A.S.; Suryawanshi, D.; Kumar, M.; Waghmare, R. Ultrasonic treatment: A cohort review on bioactive compounds, allergens and physico-chemical properties of food. Curr. Res. Food Sci. 2021, 4, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Demesa, A.G.; Saavala, S.; Pöysä, M.; Koiranen, T. Overview and toxicity assessment of ultrasound-assisted extraction of natural ingredients from plants. Foods 2024, 13, 3066. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Asakura, Y.; Koda, S.; Yasuda, K. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrason. Sonochem. 2017, 39, 301–306. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Ding, J.; Li, Y.; Cao, G.; Zhu, L.; Bian, Y.; Liu, Y. Extraction, structure and bioactivities of polysaccharide from root of Arctium lappa L.: A review. Int. J. Biol. Macromol. 2024, 265, 131035. [Google Scholar] [CrossRef]
- Wu, C.M.; Yang, C.Y. Impacts of ultrasonic treatment for black soybean okara culture medium containing choline chloride on the β-Glucosidase activity of Lactiplantibacillus plantarum BCRC 10357. Foods 2023, 12, 3781. [Google Scholar] [CrossRef]
Extraction Mode | Extract Yield (% of DBR) | TPC (mg-GAE/g-DBR) | TFC (mg-RE/g-DBR) | FRAP (mg-TE/g-DBR) |
---|---|---|---|---|
S120 | 20.97 ± 0.67 b | 2.670 ± 0.167 c | 4.912 ± 0.299 c | 3.147 ± 0.138 c |
U40 | 23.67 ± 0.36 a | 4.682 ± 0.237 a | 8.798 ± 0.274 a | 5.296 ± 0.146 a |
U120 | 20.84 ± 0.24 b | 3.949 ± 0.242 b | 7.547 ± 0.134 b | 3.483 ± 0.108 b |
Extraction Mode | S/L Ratio (g/mL-Solvent) | Extract Yield (% of DBR) | TPC (mg-GAE/g-DBR) | TFC (mg-RE/g-DBR) | FRAP (mg-TE/g-DBR) |
---|---|---|---|---|---|
U40 | 1/5 | 13.31 ± 1.95 d | 2.563 ± 0.178 c | 5.242 ± 0.533 c | 3.133 ± 0.276 c |
1/10 | 15.93 ± 0.62 c | 3.214 ± 0.278 b | 6.957 ± 0.299 b | 3.939 ± 0.123 b | |
1/20 | 19.07 ± 0.41 b | 3.501 ± 0.116 b | 8.572 ± 0.157 a | 4.031 ± 0.104 b | |
1/30 | 23.67 ± 0.36 a | 4.682 ± 0.237 a | 8.798 ± 0.274 a | 5.296 ± 0.146 a | |
U120 | 1/5 | 12.29 ± 1.76 d | 2.480 ± 0.254 c | 5.151 ± 0.484 c | 3.076 ± 0.341 b |
1/10 | 15.26 ± 0.32 c | 2.462 ± 0.017 c | 6.029 ± 0.093 b | 3.082 ± 0.124 b | |
1/20 | 17.25 ± 0.42 b | 3.270 ± 0.130 b | 5.982 ± 0.286 b | 2.935 ± 0.142 b | |
1/30 | 20.84 ± 0.24 a | 3.949 ± 0.242 a | 7.547 ± 0.134 a | 3.483 ± 0.108 a |
Extraction Mode | Extraction Time (min) | Extract Yield (% of DBR) | FRAP (mg-TE/g-DBR) |
---|---|---|---|
U40 | 10 | 20.93 ± 0.24 c | 3.817 ± 0.022 c |
20 | 22.74 ± 0.42 b | 4.564 ± 0.077 b | |
30 | 22.82 ± 0.60 b | 4.729 ± 0.284 b | |
60 | 23.65 ± 0.30 a | 4.739 ± 0.063 b | |
120 | 23.67 ± 0.36 a | 5.296 ± 0.146 a | |
U120 | 10 | 21.47 ± 0.08 b | 3.876 ± 0.024 a |
20 | 21.67 ± 0.85 b | 3.863 ± 0.103 a | |
30 | 22.69 ± 0.58 a | 4.014 ± 0.168 a | |
60 | 23.13 ± 0.37 a | 4.021 ± 0.087 a | |
120 | 20.84 ± 0.24 b | 3.483 ± 0.108 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, Y.-C.; Yang, C.-Y. Assessment of Ethanolic Extraction of Chlorogenic Acid, Cynarin, and Polyphenols from Burdock (Arctium lappa L.) Roots Under Ultrasound. Molecules 2024, 29, 5115. https://doi.org/10.3390/molecules29215115
Hsu Y-C, Yang C-Y. Assessment of Ethanolic Extraction of Chlorogenic Acid, Cynarin, and Polyphenols from Burdock (Arctium lappa L.) Roots Under Ultrasound. Molecules. 2024; 29(21):5115. https://doi.org/10.3390/molecules29215115
Chicago/Turabian StyleHsu, Yi-Chun, and Chun-Yao Yang. 2024. "Assessment of Ethanolic Extraction of Chlorogenic Acid, Cynarin, and Polyphenols from Burdock (Arctium lappa L.) Roots Under Ultrasound" Molecules 29, no. 21: 5115. https://doi.org/10.3390/molecules29215115
APA StyleHsu, Y. -C., & Yang, C. -Y. (2024). Assessment of Ethanolic Extraction of Chlorogenic Acid, Cynarin, and Polyphenols from Burdock (Arctium lappa L.) Roots Under Ultrasound. Molecules, 29(21), 5115. https://doi.org/10.3390/molecules29215115