Micronized Rose Petal Powder: A Valuable Edible Floral Food Ingredient Containing Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size Characterization of Micronized Rose Flower Powders
2.2. Color Parameters of Micronized Rose Flower Powders
2.3. Analysis of the Micronized Rose Petal Powders Using Infrared Spectroscopy-FTIR
2.4. Sugar Contents in Micronized Rose Flower Powders
2.5. Identification of Phenolic Compounds in Micronized Rose Flower Powders
2.6. Total Phenolics and Antioxidant Potential of Micronized Rose Flower Powders
2.7. Electronic Nose Research Results
2.8. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Materials
3.2. Micronization of Freeze-Dried Rose Flower Powders
3.3. Particle Size Analysis
3.4. Color Evaluations
3.5. ATR-FTIR Spectra Measurements
3.6. Determination of Sugars
3.7. Determination of Total Phenolic Compounds
3.8. Analyzing Phenolic Compounds Using HPLC-DAD
3.9. Identification of Phenolic Compounds
3.10. Antiradical Activity
3.11. Photochemiluminescence Assay
3.12. Electronic Nose Procedure
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Różyło, R.; Szymańska-Chargot, M.; Gawlik-Dziki, U.; Dziki, D. Spectroscopic, mineral, and antioxidant characteristics of blue colored powders prepared from cornflower aqueous extracts. Food Chem. 2021, 346, e128889. [Google Scholar] [CrossRef] [PubMed]
- Różyło, R.; Szymańska-Chargot, M.; Zdunek, A.; Gawlik-Dziki, U.; Dziki, D. Microencapsulated Red Powders from Cornflower Extract—Spectral (FT-IR and FT-Raman) and Antioxidant Characteristics. Molecules 2022, 27, 3094. [Google Scholar] [CrossRef] [PubMed]
- De Lima Franzen, F.; De Oliveira, M.S.R.; Lidório, H.F.; Menegaes, J.F.; Fries, L.L.M. Chemical composition of rose, sunflower and calendula flower petals for human food use. Ciencia Tecnol. Agropec. 2019, 20, 159–168. [Google Scholar]
- Hegde, A.S.; Gupta, S.; Sharma, S.; Srivatsan, V.; Kumari, P. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Res. Int. 2022, 162, e111977. [Google Scholar] [CrossRef]
- Baibuch, S.; Zema, P.; Bonifazi, E.; Cabrera, G.; Mondragón Portocarrero, A.D.C.; Campos, C.; Malec, L. Effect of the Drying Method and Optimization of Extraction on Antioxidant Activity and Phenolic of Rose Petals. Antioxidants 2023, 12, 681. [Google Scholar] [CrossRef]
- Rusanov, K.E.; Kovacheva, N.M.; Atanassov, I.I. Comparative GC/MS analysis of rose flower and distilled oil volatiles of the oil bearing rose Rosa damascena. Biotechnol. Biotechnologic. Equip. 2011, 25, 2210–2216. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Singh, A.; Yadav, A.K. Volatile constituents of essential oil and rose water of damask rose (Rosa damascena mill.) cultivars from north indian hills. Nat. Product Res. 2011, 25, 1577–1584. [Google Scholar] [CrossRef]
- Omidi, M.; Khandan-Mirkohi, A.; Kafi, M.; Rasouli, O.; Shaghaghi, A.; Kiani, M.; Zamani, Z. Comparative study of phytochemical profiles and morphological properties of some Damask roses from Iran. Chem. Biol. Technol. Agricult. 2022, 9, 51. [Google Scholar] [CrossRef]
- Agarwal, S.G.; Gupta, A.; Kapahi, B.K.; Thappa, B.R.K.; Suri, O.P. Chemical composition of rose water volatiles. J. Essent. Oil Res. 2005, 17, 265–267. [Google Scholar] [CrossRef]
- Bianchi, G.; Nuzzi, M.; Leva, A.A.; Rizzolo, A. Development of a headspace-solid phase micro extraction method to monitor changes in volatile profile of rose (Rosa hybrida, cv David Austin) petals during processing. J. Chromat. A 2007, 1150, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, A.; Yao, J.; Zhou, J.; Zhang, J.; Wei, L.; Zhang, Z. Dynamic profiles of rose jam metabolomes reveal sugar-pickling impacts on their nutrient content. Food Biosci. 2022, 49, e101947. [Google Scholar] [CrossRef]
- Xia, A.N.; Liu, L.X.; Tang, X.J.; Lei, S.M.; Meng, X.S.; Liu, Y.G. Dynamics of microbial communities, physicochemical factors and flavor in rose jam during fermentation. LWT-Food Sci. Technol. 2022, 155, e112920. [Google Scholar] [CrossRef]
- Chanukya, B.S.; Rastogi, N.K. A Comparison of Thermal Processing, Freeze Drying and Forward Osmosis for the Downstream Processing of Anthocyanin from Rose Petals. J. Food Process. Preserv. 2016, 40, 1289–1296. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Shim, I.; Hong, E.; Kim, S. Drying Operation Effects on the Pigments and Phytochemical Properties of Rose Cultivars. J. AOAC Int. 2021, 104, 1148–1154. [Google Scholar] [CrossRef]
- Chen, W.; Gast, K.L.B.; Smithey, S. The effects of different freeze-drying processes on the moisture content, color, and physical strength of roses and carnations. Scientia Horticul. 2000, 84, 321–332. [Google Scholar] [CrossRef]
- Taskin, O.; Izli, G.; Izli, N. Physicochemical and Morphological Properties of European Cranberrybush Powder Manufactured by Freeze Drying. Int. J. Fruit Sci. 2021, 21, 1008–1017. [Google Scholar] [CrossRef]
- Fredes, C.; Becerra, C.; Parada, J.; Robert, P. The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules 2018, 23, 1227. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Cao, G.; Li, S.; Yang, H. Effects of ball milling micronization on amino acids profile and antioxidant activities of Polygonatum cyrtonema Hua tuber powder. J. Food Measur. Charact. 2019, 13, 2106–2113. [Google Scholar] [CrossRef]
- Różyło, R.; Amarowicz, R.; Janiak, M.A.; Domin, M.; Gawłowski, S.; Kulig, R.; Matwijczuk, A. Micronized Powder of Raspberry Pomace as a Source of Bioactive Compounds. Molecules 2023, 28, 4871. [Google Scholar] [CrossRef]
- Różyło, R.; Piekut, J.; Dziki, D.; Smolewska, M.; Gawłowski, S.; Wójtowicz, A.; Gawlik-Dziki, U. Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems. Molecules 2022, 27, 8174. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Peller, J.; Erasmus, S.W.; Elliott, C.T.; van Ruth, S.M. Interpreting the variation in particle size of ground spice by high-resolution visual and spectral imaging: A ginger case study. Food Res. Int. 2023, 170, e113023. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ameer, K.; Jiang, G. Effects of superfine grinding on the physicochemical properties and antioxidant activities of Sanchi (Panax notoginseng) flower powders. J. Food Sci. Technol. 2021, 58, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Moscoso-Moscoso, E.; Huamán-Carrión, M.L.; Ramos-Pacheco, B.S.; Peralta-Guevara, D.E.; Aroni-Huamán, J. Obtaining and Characterizing Andean Multi-Floral Propolis Nanoencapsulates in Polymeric Matrices. Foods 2022, 11, 3153. [Google Scholar] [CrossRef]
- Das, C.; Chakraborty, S.; Acharya, K.; Bera, N.K.; Chattopadhyay, D.; Karmakar, A.; Chattopadhyay, S. FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta 2017, 171, 327–334. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Nuriahmetov, I.F.; Nishchak, O.Y.; Pavlikov, A.V.; Savchenko, N.F. Resistive Gas Sensors Based on Porous Sp-Containing Films Obtained by Dehydrohalogenation of PVDC and PVDC-PVC Copolymer. C-J. Carbon Res. 2023, 9, 82. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR spectroscopy for carbon family study. Crit. Rev. Analyt. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Waghmode, M.S.; Gunjal, A.B.; Nawani, N.N.; Patil, N.N. Management of Floral Waste by Conversion to Value-Added Products and Their Other Applications. Waste Biomass Valorizat. 2018, 9, 33–43. [Google Scholar] [CrossRef]
- Chen, C.; Yu, J.; Zhang, C.; Ye, X.; Shen, A.H. Nature of Pigments in Orange and Purple Coloured Chinese Freshwater Cultured Pearls: Insights from Experimental Raman Spectroscopy and DFT Calculations. Minerals 2023, 13, 959. [Google Scholar] [CrossRef]
- Dastangoo, S.; Hamed Mosavian, M.T.; Yeganehzad, S. Optimization of pulsed electric field conditions for sugar extraction from carrots. Food Sci. Nutr. 2020, 8, 2025–2034. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, B.; Chen, H.; Yu, J.; Yan, H.; Luo, Y.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; et al. Comparisons of the micronization, steam explosion, and gamma irradiation treatment on chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. Food Chem. 2022, 366, e130618. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M.; Kolniak-Ostek, J. Profile of the Phenolic Compounds of Rosa rugosa Petals. J. Food Qual. 2017, e941347. [Google Scholar]
- Mohsen, E.; Younis, I.Y.; Farag, M.A. Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Indust. Crop. Product. 2020, 155, e112818. [Google Scholar]
- Dias, M.I.; Barros, L.; Morales, P.; Cámara, M.; Alves, M.J.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Wild: Fragaria vesca L. fruits: A rich source of bioactive phytochemicals. Food Funct. 2016, 7, 4523–4532. [Google Scholar] [CrossRef] [PubMed]
- Selvi, K.Ç.; Kabutey, A.; Gürdil, G.A.K.; Herak, D.; Kurhan, Ş.; Klouček, P. The effect of infrared drying on color, projected area, drying time, and total phenolic content of rose (Rose electron) petals. Plants 2020, 9, 236. [Google Scholar] [CrossRef]
- Vun, V.F.; Poh, S.C.; Yim, H.S. Rose, a potential nutraceutical: An assessment of the total phenolic content and antioxidant activity. J. Pharm. Nutr. Sci. 2013, 3, 30–37. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Hallmann, E. Properties of raspberry powder obtained by a new method of fluidized-bed jet milling and drying compared to other drying methods. J. Sci. Food Agric. 2020, 100, 4303–4309. [Google Scholar] [CrossRef]
- Sheng, K.; Qu, H.; Liu, C.; Yan, L.; You, J.; Shui, S.; Zheng, L. A comparative assess of high hydrostatic pressure and super-fine grinding on physicochemical and antioxidant properties of grape pomace. Int. J. Food Sci. Technol. 2017, 52, 2106–2114. [Google Scholar] [CrossRef]
- Rosa, N.N.; Barron, C.; Gaiani, C.; Dufour, C.; Micard, V. Ultra-fine grinding increases the antioxidant capacity of wheat bran. J. Cereal Sci. 2013, 57, 84–90. [Google Scholar] [CrossRef]
- Gong, P.; Huang, Z.; Guo, Y.; Wang, X.; Yue, S.; Yang, W.; Chen, L. The effect of superfine grinding on physicochemical properties of three kinds of mushroom powder. J. Food Sci. 2022, 87, 3528–3541. [Google Scholar] [CrossRef]
- Rusinek, R.; Dobrzański, B., Jr.; Gawrysiak-Witulska, M.; Siger, A.; Żytek, A.; Karami, H.; Umar, A.; Lipa, T.; Gancarz, M. Effect of the roasting level on the content of bioactive and aromatic compounds in Arabica coffee beans. Int. Agroph. 2024, 38, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Rusinek, R.; Żytek, A.; Stasiak, M.; Wiącek, J.; Gancarz, M. Application of MOX Sensors to Determine the Emission of Volatile Compounds in Corn Groats as a Function of Vertical Pressure in the Silo and Moisture Content of the Bed. Sensors 2024, 24, 2187. [Google Scholar] [CrossRef] [PubMed]
- Żytek, A.; Rusinek, R.; Oniszczuk, A.; Gancarz, M. Effect of the Consolidation Level on Organic Volatile Compound Emissions from Maize during Storage. Materialals 2023, 16, 3066. [Google Scholar] [CrossRef] [PubMed]
- Subhashree, S.N.; Sunoj, S.; Xue, J.; Bora, G.C. Quantification of browning in apples using colour and textural features by image analysis. Food Qualit. Saf. 2017, 1, 221–226. [Google Scholar] [CrossRef]
- Southgate, D.A.T. Determination of Food Carbohydrates, 2nd ed.; Elsevier Applied Science: Amsterdam, The Netherlands, 1991; Chapter 3. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian airies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Amarowicz, R.; Troszyńska, A.; Baryłko-Pikielna, N.; Shahidi, F. Polyphenolics extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipid. 2004, 11, 278–286. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analyt. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Name of Sample | D [3;2] (µm) | D [4;3] (µm) | d10 (µm) | d50 (µm) | d90 (µm) |
---|---|---|---|---|---|
CR | 65.1 ± 1.27 a | 141.0 ± 6.48 a | 31.7 ± 0.65 a | 98.6 ± 3.10 a | 312.0 ± 19.61a |
10MR | 19.1 ± 0.49 b | 90.3 ± 0.71 b | 12.8 ± 0.14 b | 45.9 ± 0.65 b | 189.3 ± 7.48 b |
20MR | 17.8 ± 1.00 b | 81.4 ± 4.37 c | 10.2 ± 0.21 c | 39.9 ± 0.32 c | 168.7 ± 10.61c |
Kind of Sample | L* | a* | b* | C* | h* | ΔE | BI |
---|---|---|---|---|---|---|---|
CR | 49.9 ± 0.33 a | 21.9 ± 0.12 a | −7.3 ± 0.02 a | 23.1 ± 0.08 a | 341.3 ± 0.04 a | – | 15 |
10MR | 33.4 ± 0.18 b | 26.1 ± 0.04 b | −8.3 ± 0.13 b | 26.8 ± 0.05 b | 340.9 ± 0.72 a | 17.1 | 25 |
20MR | 30.6 ± 0.42 c | 28.9 ± 0.18 c | −10.2 ± 0.34 c | 30.7 ± 0.26 c | 340.5 ± 0.50 a | 20.7 | 26 |
FTIR | Type and Origin of Vibrations |
---|---|
Band Position [cm−1] | |
3298 | (intra-)molecular hydrogen bonding and ν(O-H) in H2O and polysaccharide molecules |
2974 2906 | asymmetrical and symmetrical: ν(C-H) in CH2 and CH3 groups |
2873 2849 | |
1732 | ν(C=O) free and hydrogen-bonded |
1655 | ν(C=C) and δ(O-H) adsorbed H2O |
1609 | |
1537 | ν (C=C) |
1440 1408 | δ (CH2) and δ (C-H) significantly enhanced by δ (-OH in plane) |
1367 1337 | Δ(O-H), mainly from deformation C-H |
1225 1193 | δ(C-H) and asymmetrical bridge oxygen stretching -OH in-plane bending |
1146 | ν(C-O-C) and very strong stretching vibrations of C-O and vibrations in polysaccharide systems and stretching vibrations of C-C |
1024 with band enhancements on both sides | |
914 871 812 | β-linkage of cellulose/ring breathing and asymmetrical out of phase stretching -OH out-of-plane bending and CH2 rocking |
762 594 |
Sample | Fructose (mg/g) | Glucose (mg/g) | Sucrose (mg/g) |
---|---|---|---|
CR 10MR 20MR | 132.9 ± 0.5 b 171.0 ± 3.2 a 168.2 ± 1.2 a | 77.9 ± 0.2 b 91.6 ± 1.7 a 88.7 ± 1.9 a | 5.97 ± 0.54 a 6.13 ± 0.24 a 6.74 ± 0.69 a |
Number | Compound | Ionization | MS | MS/MS |
---|---|---|---|---|
1 2 3 4 5 6 7 | Bis-HHDP-hexose isomer Cyanidin 3,5-di-O-glucoside Bis-HHDP-hexose isomer Peonidin 3,5-di-O-glucoside Galloyl-bis-HHDP-hexose isomer Galloyl-bis-HHDP-hexose isomer Galloyl-bis-HHDP-hexose isomer | [M-H]− [M-H]+ [M-H]− [M-H]+ [M-H]− [M-H]− [M-H]− | 783 611 783 625 935 935 935 | 301 449, 287 301 463, 301 633, 301 633, 301 633, 301 |
Antioxidant Potential | CR | 10MR | 20MR |
---|---|---|---|
Total phenolics (mg GAE/g) ABTS (mmol TE/g) DPPH (mmol TE/g) FRAP (mmol Fe2+/g) | 71.8 ± 1.4 b 0.876 ± 0.004 b 0.820 ± 0.019 c 1.595 ± 0.013 c | 90.5 ± 1.7 a 1.139 ± 0.015 a 1.124 ± 0.023 b 1.938 ± 0.031 b | 93.3 ± 1.2 a 1.192 ± 0.019 a 1.168 ± 0.008 a 2.139 ± 0.024 a |
Sample | 2602 | AMS-MLV-P2 | 2610 | 2611 | 2620 | 2600 |
---|---|---|---|---|---|---|
CR | 3.40 ± 0.21a | 0.47 ± 0.12 a | 1.45 ± 0.09 a | 1.56 ± 0.28 a | 1.91 ± 0.29 a | 1.80 ± 0.26 a |
10MR | 2.41 ± 0.58 b | 0.29 ± 0.04 b | 1.42 ± 0.24 a | 1.51 ± 0.14 a | 1.69 ± 0.22 b | 1.59 ± 0.20 b |
20MR | 1.30 ± 0.41 c | 0.27 ± 0.06 c | 0.73 ± 0.22 b | 0.71 ± 0.21 b | 0.95 ± 0.25 c | 0.84 ± 0.21 c |
Type | Description | Detecting Range (ppm) |
---|---|---|
TGS2600–B00 | General air contaminants, hydrogen, and carbon monoxide | 1–3 (H2) |
TGS2610–C00 | LP gas, butane | 500–10,000 |
TGS2602–B00 | Ammonia, Hydrogen sulfide (high sensitivity to VOC and odorous gasses) | 1–30 (EtOH) |
TGS2611–C00 | Natural gas, methane | 500–10,000 |
TGS2603–B01 | Odors generated from spoiled foods | 1–10 (EtOH) |
TGS2612–D00 | Methane, propane, and butane | 1–25%LEL |
TGS2620–C00 | Solvent vapors, volatile vapors, alcohol | 50–5000 |
AS–MLV–P2 | CO, butane, methane, ethanol, hydrogen. Specifically designed for volatile organic compounds (VOCs) | 10–10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różyło, R.; Amarowicz, R.; Janiak, M.A.; Domin, M.; Różyło, I.; Rząd, K.; Matwijczuk, A.; Rusinek, R.; Gancarz, M. Micronized Rose Petal Powder: A Valuable Edible Floral Food Ingredient Containing Bioactive Compounds. Molecules 2024, 29, 4931. https://doi.org/10.3390/molecules29204931
Różyło R, Amarowicz R, Janiak MA, Domin M, Różyło I, Rząd K, Matwijczuk A, Rusinek R, Gancarz M. Micronized Rose Petal Powder: A Valuable Edible Floral Food Ingredient Containing Bioactive Compounds. Molecules. 2024; 29(20):4931. https://doi.org/10.3390/molecules29204931
Chicago/Turabian StyleRóżyło, Renata, Ryszard Amarowicz, Michał Adam Janiak, Marek Domin, Igor Różyło, Klaudia Rząd, Arkadiusz Matwijczuk, Robert Rusinek, and Marek Gancarz. 2024. "Micronized Rose Petal Powder: A Valuable Edible Floral Food Ingredient Containing Bioactive Compounds" Molecules 29, no. 20: 4931. https://doi.org/10.3390/molecules29204931
APA StyleRóżyło, R., Amarowicz, R., Janiak, M. A., Domin, M., Różyło, I., Rząd, K., Matwijczuk, A., Rusinek, R., & Gancarz, M. (2024). Micronized Rose Petal Powder: A Valuable Edible Floral Food Ingredient Containing Bioactive Compounds. Molecules, 29(20), 4931. https://doi.org/10.3390/molecules29204931