Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease
Abstract
:1. Introduction
1.1. Pathophysiological Mechanisms and Symptoms of AD
1.2. Causes and Factors of AD
2. Disease-Modifying Therapeutics
2.1. Definition of DMT
2.2. Purpose of DMT
2.3. Mechanisms of Action
2.3.1. Amyloid Targeting Therapies
2.3.2. Tau-Targeting Therapies
2.3.3. Neuroprotective Therapies
3. AD Current Treatment Drugs
3.1. Oral Immunotherapies or Small Molecules Containing DMTs
3.2. Recent DMT’s Clinical Trials
- Challenges in AD Therapeutic Development
- Disease heterogeneity
- Blood–brain barrier penetration
- Biomarkers and patient selection
- Regulatory challenges
4. Future Directions and Emerging Therapies in DMT
- Novel targets for DMT
- Precision Medicine Approaches
- Combination Therapies
5. Prospects for the Future of Phytochemical Treatment of AD
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, S.; Miller, M.I.; Joshi, P.S.; Lee, J.C.; Xue, C.; Ni, Y.; Wang, Y.; De Anda-Duran, I.; Hwang, P.H.; Cramer, J.A.; et al. Multimodal Deep Learning for Alzheimer’s Disease Dementia Assessment. Nat. Commun. 2022, 13, 3404. [Google Scholar] [CrossRef]
- Hassan, N.A.; Alshamari, A.K.; Hassan, A.A.; Elharrif, M.G.; Alhajri, A.M.; Sattam, M.; Khattab, R.R. Advances on Therapeutic Strategies for Alzheimer’s Disease: From Medicinal Plant to Nanotechnology. Molecules 2022, 27, 4839. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, T.C.; Olasehinde, T.A.; Okaiyeto, K.; Okoh, A.I. Microbial Pathogenesis and Pathophysiology of Alzheimer’s Disease: A Systematic Assessment of Microorganisms’ Implications in the Neurodegenerative Disease. Front. Neurosci. 2021, 15, 648484. [Google Scholar] [CrossRef] [PubMed]
- Toader, C.; Dobrin, N.; Brehar, F.-M.; Popa, C.; Covache-Busuioc, R.-A.; Glavan, L.A.; Costin, H.P.; Bratu, B.-G.; Corlatescu, A.D.; Popa, A.A.; et al. From Recognition to Remedy: The Significance of Biomarkers in Neurodegenerative Disease Pathology. Int. J. Mol. Sci. 2023, 24, 16119. [Google Scholar] [CrossRef]
- Iwatsubo, T. Molecular Pathogenesis and Disease-modifying Therapies of Alzheimer’ s Disease and Related Disorders. JMA J. 2022, 5, 307–313. [Google Scholar] [PubMed]
- Assunção, S.S.; Sperling, R.A.; Ritchie, C.; Kerwin, D.R.; Aisen, P.S.; Lansdall, C.; Atri, A.; Cummings, J. Meaningful benefits: A framework to assess disease-modifying therapies in preclinical and early Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-R.; Huang, J.-B.; Yang, S.-L.; Hong, F.-F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar]
- Giacobini, E.; Cuello, A.C.; Fisher, A. Reimagining cholinergic therapy for Alzheimer’s disease. Brain 2022, 145, 2250–2275. [Google Scholar] [CrossRef]
- Conway, M.E. Alzheimer’s disease: Targeting the glutamatergic system. Biogerontology 2020, 21, 257–274. [Google Scholar] [CrossRef]
- Ma, C.; Hong, F.; Yang, S. Amyloidosis in Alzheimer’s Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules 2022, 27, 1210. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Muralidar, S.; Ambi, S.V.; Sekaran, S.; Thirumalai, D.; Palaniappan, B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020, 163, 1599–1617. [Google Scholar] [CrossRef]
- Arnsten, A.F.T.; Datta, D.; Del Tredici, K.; Braak, H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s Dement. 2020, 17, 115–124. [Google Scholar] [CrossRef]
- Sinyor, B.; Mineo, J.; Ochner, C. Alzheimer’s Disease, Inflammation, and the Role of Antioxidants. J. Alzheimer’s Dis. Rep. 2020, 4, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.-H.; Song, X.-X.; Liu, X.-L.; Chen, S.-D.; Tang, H.-D. Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Res. Rev. 2021, 68, 101317. [Google Scholar] [CrossRef] [PubMed]
- Wiatrak, B.; Balon, K.; Jawień, P.; Bednarz, D.; Jęśkowiak, I.; Szeląg, A. The Role of the Microbiota-Gut-Brain Axis in the Development of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 4862. [Google Scholar] [CrossRef] [PubMed]
- Doifode, T.; Giridharan, V.V.; Generoso, J.S.; Bhatti, G.; Collodel, A.; Schulz, P.E.; Forlenza, O.V.; Barichello, T. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol. Res. 2020, 164, 105314. [Google Scholar] [CrossRef]
- Jurcau, A.; Simion, A. Oxidative Stress in the Pathogenesis of Alzheimer’s Disease and Cerebrovascular Disease with Therapeutic Implications. CNS Neurol. Disord.—Drug Targets 2020, 19, 94–108. [Google Scholar]
- Bai, R.; Guo, J.; Ye, X.-Y.; Xie, Y.; Xie, T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022, 77, 101619. [Google Scholar] [CrossRef]
- Chen, L.-L.; Fan, Y.-G.; Zhao, L.-X.; Zhang, Q.; Wang, Z.-Y. The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorganic Chem. 2022, 131, 106301. [Google Scholar] [CrossRef] [PubMed]
- Di Meco, A.; Curtis, M.E.; Lauretti, E.; Praticò, D. Autophagy Dysfunction in Alzheimer’s Disease: Mechanistic Insights and New Therapeutic Opportunities. Biol. Psychiatry 2019, 87, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Hamano, T.; Hayashi, K.; Shirafuji, N.; Nakamoto, Y. The Implications of Autophagy in Alzheimer’s Disease. Curr. Alzheimer Res. 2018, 15, 1283–1296. [Google Scholar] [CrossRef] [PubMed]
- Liew, T.M. Neuropsychiatric symptoms in early stage of Alzheimer’s and non-Alzheimer’s dementia, and the risk of progression to severe dementia. Age Ageing 2021, 50, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. The Role of Neuropsychiatric Symptoms in Research Diagnostic Criteria for Neurodegenerative Diseases. Am. J. Geriatr. Psychiatry 2021, 29, 375–383. [Google Scholar] [CrossRef]
- Wiels, W.A.; Wittens, M.M.J.; Zeeuws, D.; Baeken, C.; Engelborghs, S. Neuropsychiatric Symptoms in Mild Cognitive Impairment and Dementia Due to AD: Relation with Disease Stage and Cognitive Deficits. Front. Psychiatry 2021, 12, 707580. [Google Scholar] [CrossRef]
- Devanand, D.P.; Lee, S.; Huey, E.D.; Goldberg, T.E. Associations Between Neuropsychiatric Symptoms and Neuropathological Diagnoses of Alzheimer Disease and Related Dementias. JAMA Psychiatry 2022, 79, 359. [Google Scholar] [CrossRef]
- Abbate, C.; Trimarchi, P.D.; Inglese, S.; Tomasini, E.; Bagarolo, R.; Giunco, F.; Cesari, M. Signs and symptoms method in neuropsychology: A preliminary investigation of a standardized clinical interview for assessment of cognitive decline in dementia. Appl. Neuropsychol. Adult 2019, 28, 282–296. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; Van Der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Monfared, A.A.T.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol. Ther. 2022, 11, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Savaş, S. Detecting the Stages of Alzheimer’s Disease with Pre-trained Deep Learning Architectures. Arab. J. Sci. Eng. 2021, 47, 2201–2218. [Google Scholar] [CrossRef]
- Rafii, M.S.; Aisen, P.S. Detection and treatment of Alzheimer’s disease in its preclinical stage. Nat. Aging 2023, 3, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Therriault, J.; Zimmer, E.R.; Benedet, A.L.; Pascoal, T.A.; Gauthier, S.; Rosa-Neto, P. Staging of Alzheimer’s disease: Past, present, and future perspectives. Trends Mol. Med. 2022, 28, 726–741. [Google Scholar] [CrossRef]
- Dubois, B.; Villain, N.; Frisoni, G.B.; Rabinovici, G.D.; Sabbagh, M.; Cappa, S.; Bejanin, A.; Bombois, S.; Epelbaum, S.; Teichmann, M.; et al. Clinical diagnosis of Alzheimer’s disease: Recommendations of the International Working Group. Lancet Neurol. 2021, 20, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Vu, M.; Mangal, R.; Stead, T.; Lopez-Ortiz, C.; Ganti, L. Impact of Alzheimer’s Disease on Caregivers in the United States. Health Psychol. Res. 2022, 10, 37454. [Google Scholar] [CrossRef] [PubMed]
- Kerwin, D.; Abdelnour, C.; Caramelli, P.; Ogunniyi, A.; Shi, J.; Zetterberg, H.; Traber, M. Alzheimer’s disease diagnosis and management: Perspectives from around the world. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2022, 14, 12334. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Prajapati, V.; Shinde, S.; Shrivastav, P.; Prajapati, B.G. New biologicals and biomaterials in the therapy of Alzheimer’s disease. In Alzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press: New York, NY, USA, 2024; pp. 93–114. [Google Scholar] [CrossRef]
- Bellenguez, C.; Grenier-Boley, B.; Lambert, J.-C. Genetics of Alzheimer’s disease: Where we are, and where we are going. Curr. Opin. Neurobiol. 2020, 61, 40–48. [Google Scholar] [CrossRef]
- Neuner, S.M.; Tcw, J.; Goate, A.M. Genetic architecture of Alzheimer’s disease. Neurobiol. Dis. 2020, 143, 104976. [Google Scholar] [CrossRef]
- Miyashita, A.; Kikuchi, M.; Hara, N.; Ikeuchi, T. Genetics of Alzheimer’s disease: An East Asian perspective. J. Hum. Genet. 2022, 68, 115–124. [Google Scholar] [CrossRef]
- Narayan, P.; Sienski, G.; Bonner, J.M.; Lin, Y.-T.; Seo, J.; Baru, V.; Haque, A.; Milo, B.; Akay, L.A.; Graziosi, A.; et al. PICALM Rescues Endocytic Defects Caused by the Alzheimer’s Disease Risk Factor APOE4. Cell Rep. 2020, 33, 108224. [Google Scholar] [CrossRef]
- Fu, W.-Y.; Ip, N.Y. The role of genetic risk factors of Alzheimer’s disease in synaptic dysfunction. Semin. Cell Dev. Biol. 2023, 139, 3–12. [Google Scholar] [CrossRef]
- Flores-Cordero, J.A.; Pérez-Pérez, A.; Jiménez-Cortegana, C.; Alba, G.; Flores-Barragán, A.; Sánchez-Margalet, V. Obesity as a Risk Factor for Dementia and Alzheimer’s Disease: The Role of Leptin. Int. J. Mol. Sci. 2022, 23, 5202. [Google Scholar] [CrossRef]
- Antoniadou, F.; Papamitsou, T.; Kavvadas, D.; Kapoukranidou, D.; Sioga, A.; Papaliagkas, V. Toxic Environmental Factors and their Association with the Development of Dementia: A Mini Review on Heavy Metals and Ambient Particulate Matter. Mater. Socio Medica 2020, 32, 299. [Google Scholar] [CrossRef]
- Amirrad, F.; Bousoik, E.; Shamloo, K.; Al-Shiyab, H.; Nguyen, V.-H.V.; Aliabadi, H.M. Alzheimer’s Disease: Dawn of a New Era? J. Pharm. Pharm. Sci. 2017, 20, 184. [Google Scholar] [CrossRef]
- Islam, F.; Shohag, S.; Akhter, S.; Islam, M.R.; Sultana, S.; Mitra, S.; Chandran, D.; Khandaker, M.U.; Ashraf, G.M.; Idris, A.M.; et al. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Front. Pharmacol. 2022, 13, 903099. [Google Scholar] [CrossRef]
- Rehman, Q.; Rehman, K.; Akash, M.S.H. Heavy Metals and Neurological Disorders: From Exposure to Preventive Interventions. In Emerging Contaminants and Associated Treatment Technologies; Springer International Publishing: Cham, Switzerland, 2021; pp. 69–87. [Google Scholar]
- Attademo, L.; Bernardini, F. Air Pollution as Risk Factor for Mental Disorders: In Search for a Possible Link with Alzheimer’s Disease and Schizophrenia. J. Alzheimer’s Dis. 2020, 76, 825–830. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Tang, J.; Zhang, T.; Lin, J.; Li, F.; Gu, X.; Chen, A.; Nevill, A.; Chen, R. Impact of air pollution exposure on the risk of Alzheimer’s disease in China: A community-based cohort study. Environ. Res. 2022, 205, 112318. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Keohane, L.M.; Pan, X.-F.; Qu, R.; Shu, X.-O.; Lipworth, L.; Braun, K.; Steinwandel, M.D.; Dai, Q.; Shrubsole, M.; et al. Association of Healthy Lifestyles with Risk of Alzheimer Disease and Related Dementias in Low-Income Black and White Americans. Neurology 2022, 99, e944–e953. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, A.; Deng, F.; Wells, K.; Ritchie, K.; Muniz-Terrera, G.; Ritchie, C.W.; Lawlor, B.; Naci, L. Modifiable Lifestyle Activities Affect Cognition in Cognitively Healthy Middle-Aged Individuals at Risk for Late-Life Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 91, 833–846. [Google Scholar] [CrossRef]
- Shafighi, K.; Villeneuve, S.; Neto, P.R.; Badhwar, A.; Poirier, J.; Sharma, V.; Medina, Y.I.; Silveira, P.P.; Dube, L.; Glahn, D.; et al. Social isolation is linked to classical risk factors of Alzheimer’s disease-related dementias. PLoS ONE 2023, 18, e0280471. [Google Scholar] [CrossRef] [PubMed]
- Gentreau, M.; Chuy, V.; Féart, C.; Samieri, C.; Ritchie, K.; Raymond, M.; Berticat, C.; Artero, S. Refined carbohydrate-rich diet is associated with long-term risk of dementia and Alzheimer’s disease in apolipoprotein E ε4 allele carriers. Alzheimer’s Dement. 2020, 16, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Frausto, D.M.; Forsyth, C.B.; Keshavarzian, A.; Voigt, R.M. Dietary Regulation of Gut-Brain Axis in Alzheimer’s Disease: Importance of Microbiota Metabolites. Front. Neurosci. 2021, 15, 736814. [Google Scholar] [CrossRef]
- Ellouze, I.; Sheffler, J.; Nagpal, R.; Arjmandi, B. Dietary Patterns and Alzheimer’s Disease: An Updated Review Linking Nutrition to Neuroscience. Nutrients 2023, 15, 3204. [Google Scholar] [CrossRef]
- Khemka, S.; Reddy, A.; Garcia, R.I.; Jacobs, M.; Reddy, R.P.; Roghani, A.K.; Pattoor, V.; Basu, T.; Sehar, U.; Reddy, P.H. Role of diet and exercise in aging, Alzheimer’s disease, and other chronic diseases. Ageing Res. Rev. 2023, 91, 102091. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.-Z.; Chen, M.-Q.; Zhang, Z.-W.; Wu, T.-Y.; Zhao, W.-H. Dietary fatty acids and risk for Alzheimer’s disease, dementia, and mild cognitive impairment: A prospective cohort meta-analysis. Nutrition 2021, 90, 111355. [Google Scholar] [CrossRef]
- Forester, B.P.; Patrick, R.E.; Harper, D.G. Setbacks and Opportunities in Disease-Modifying Therapies in Alzheimer Disease. JAMA Psychiatry 2020, 77, 7. [Google Scholar] [CrossRef]
- Morató, X.; Pytel, V.; Jofresa, S.; Ruiz, A.; Boada, M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer’s Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int. J. Mol. Sci. 2022, 23, 9305. [Google Scholar] [CrossRef]
- Golde, T.E. Disease-Modifying Therapies for Alzheimer’s Disease: More Questions than Answers. Neurotherapeutics 2022, 19, 209–227. [Google Scholar] [CrossRef]
- Musiek, E.S.; Morris, J.C. Possible Consequences of the Approval of a Disease-Modifying Therapy for Alzheimer Disease. JAMA Neurol. 2021, 78, 141. [Google Scholar] [CrossRef]
- Belder, C.R.S.; Schott, J.M.; Fox, N.C. Preparing for disease-modifying therapies in Alzheimer’s disease. Lancet Neurol. 2023, 22, 782–783. [Google Scholar] [CrossRef]
- Zetterberg, H.; Bendlin, B.B. Biomarkers for Alzheimer’s disease—Preparing for a new era of disease-modifying therapies. Mol. Psychiatry 2020, 26, 296–308. [Google Scholar] [CrossRef]
- Imbimbo, B.P.; Lozupone, M.; Watling, M.; Panza, F. Discontinued disease-modifying therapies for Alzheimer’s disease: Status and future perspectives. Expert Opin. Investig. Drugs 2020, 29, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: Targets for Disease-Modifying Therapies in Alzheimer’s Disease, Including Amyloid β and Tau Protein. Med. Sci. Monit. 2021, 27, e934077-1. [Google Scholar] [PubMed]
- Villain, N. Therapeutic news in Alzheimer’s disease: Soon a disease-modifying therapy? Rev. Neurol. 2022, 178, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12295. [Google Scholar] [CrossRef] [PubMed]
- Wessels, A.M.; Dennehy, E.B.; Dowsett, S.A.; Dickson, S.P.; Hendrix, S.B. Meaningful Clinical Changes in Alzheimer Disease Measured with the iADRS and Illustrated Using the Donanemab TRAILBLAZER-ALZ Study Findings. Neurol. Clin. Pract. 2023, 13, e200127. [Google Scholar] [CrossRef]
- Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12050. [Google Scholar] [CrossRef]
- Cummings, J.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Cheng, F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2023, 9, e12385, Erratum in Alzheimers Dement. 2023, 9, e12407. [Google Scholar] [CrossRef]
- Bauzon, J.; Lee, G.; Cummings, J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimer’s Res. Ther. 2020, 12, 98. [Google Scholar] [CrossRef]
- Haass, C.; Selkoe, D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PLoS Biol. 2022, 20, e3001694. [Google Scholar] [CrossRef]
- Karran, E.; De Strooper, B. The amyloid hypothesis in Alzheimer disease: New insights from new therapeutics. Nat. Rev. Drug Discov. 2022, 21, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kaur, I.; Fratila, O.; Brata, R.; Bungau, S. Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 7443. [Google Scholar] [CrossRef] [PubMed]
- Mallah, K.; Couch, C.; Borucki, D.M.; Toutonji, A.; Alshareef, M.; Tomlinson, S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go from Here? Front. Immunol. 2020, 11, 2021. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective Effect of Antioxidants in the Brain. Int. J. Mol. Sci. 2020, 21, 7152. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Chen, Y.; Jin, Y.; Han, G.; Song, M.; Song, T.; Shi, Y.; Tao, L.; Huang, Z.; Zhou, J.; et al. Versatile nanomaterials for Alzheimer’s disease: Pathogenesis inspired disease-modifying therapy. J. Control. Release 2022, 345, 38–61. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Ma, Y. Molecular mechanisms of altered adult hippocampal neurogenesis in Alzheimer’s disease. Mech. Ageing Dev. 2021, 195, 111452. [Google Scholar] [CrossRef]
- Doroszkiewicz, J.; Mroczko, B. New Possibilities in the Therapeutic Approach to Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 8902. [Google Scholar] [CrossRef]
- Colavitta, M.F.; Barrantes, F.J. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023, 15, 2052. [Google Scholar] [CrossRef]
- Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol. 2021, 167, 382–394. [Google Scholar] [CrossRef]
- Yin, X.; Qiu, Y.; Zhao, C.; Zhou, Z.; Bao, J.; Qian, W. The Role of Amyloid-Beta and Tau in the Early Pathogenesis of Alzheimer’s Disease. Med. Sci. Monit. 2021, 27, e933084-1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci. 2021, 17, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Cecchetti, G.; Spinelli, E.G.; Vezzulli, P.; Falini, A.; Agosta, F. Amyloid-Related Imaging Abnormalities and β-Amyloid–Targeting Antibodies. JAMA Neurol. 2022, 79, 291. [Google Scholar] [PubMed]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [PubMed]
- Jeremic, D.; Jiménez-Díaz, L.; Navarro-López, J.D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2021, 72, 101496. [Google Scholar] [CrossRef]
- Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2019, 15, 73–88. [Google Scholar]
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Front. Aging Neurosci. 2022, 14, 870517. [Google Scholar]
- Rabinovici, G.D.; La Joie, R. Amyloid-Targeting Monoclonal Antibodies for Alzheimer Disease. JAMA 2023, 330, 507. [Google Scholar] [CrossRef]
- Fedele, E. Anti-Amyloid Therapies for Alzheimer’s Disease and the Amyloid Cascade Hypothesis. Int. J. Mol. Sci. 2023, 24, 14499. [Google Scholar] [CrossRef]
- Qiao, Y.; Gu, J.; Yu, M.; Chi, Y.; Ma, Y. Comparative Efficacy and Safety of Monoclonal Antibodies for Cognitive Decline in Patients with Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. CNS Drugs 2024, 38, 169–192. [Google Scholar] [CrossRef]
- Wu, R.; Sun, F.; Zhang, W.; Ren, J.; Liu, G.-H. Targeting aging and age-related diseases with vaccines. Nat. Aging 2024, 4, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Congdon, E.E.; Ji, C.; Tetlow, A.M.; Jiang, Y.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat. Rev. Neurol. 2023, 19, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, S.; Zeng, L.-H.; Tan, J. Tau-targeting therapy in Alzheimer’s disease: Critical advances and future opportunities. Ageing Neurodegener. Dis. 2022, 2, 11. [Google Scholar] [CrossRef]
- Sandusky-Beltran, L.A.; Sigurdsson, E.M. Tau immunotherapies: Lessons learned, current status and future considerations. Neuropharmacology 2020, 175, 108104. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflamm. 2023, 20, 165. [Google Scholar] [CrossRef]
- Zhu, Z.; Reiser, G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem. Int. 2018, 115, 69–79. [Google Scholar] [CrossRef]
- Campanella, C.; Pace, A.; Bavisotto, C.C.; Marzullo, P.; Gammazza, A.M.; Buscemi, S.; Piccionello, A.P. Heat Shock Proteins in Alzheimer’s Disease: Role and Targeting. Int. J. Mol. Sci. 2018, 19, 2603. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Zhu, L.; Wu, X.; Zhang, S.; Huang, F.; Feng, X.; Shi, L. Heat Shock Protein Inspired Nanochaperones Restore Amyloid-β Homeostasis for Preventative Therapy of Alzheimer’s Disease. Adv. Sci. 2019, 6, 1901844. [Google Scholar] [CrossRef]
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020, 12, 117957352090739. [Google Scholar] [CrossRef]
- Pardo-Moreno, T.; González-Acedo, A.; Rivas-Domínguez, A.; García-Morales, V.; García-Cozar, F.J.; Ramos-Rodríguez, J.J.; Melguizo-Rodríguez, L. Therapeutic Approach to Alzheimer’s Disease: Current Treatments and New Perspectives. Pharmaceutics 2022, 14, 1117. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J. Treatments for Alzheimer’s disease emerge. Science 2021, 373, 624–626. [Google Scholar] [PubMed]
- Vaz, M.; Silvestre, S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol. 2020, 887, 173554. [Google Scholar] [CrossRef]
- Cummings, J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 2021, 16, 1–13. [Google Scholar]
- Eissa, K.I.; Kamel, M.M.; Mohamed, L.W.; Kassab, A.E. Development of new Alzheimer’s disease drug candidates using donepezil as a key model. Arch. Der Pharm. 2022, 356, 2200398. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.; Rezaei, K.; Quazi, A.; Goldmeier, G.; Silverglate, B.; Grossberg, G.T. The donepezil transdermal system for the treatment of patients with mild, moderate, or severe Alzheimer’s disease: A critical review. Expert Rev. Neurother. 2024, 24, 607–614. [Google Scholar]
- Ekundayo, B.E.; Obafemi, T.O.; Adewale, O.B.; Oyinloye, B.E. Donepezil-based combination therapy for Alzheimer’s disease and related neuropathies. Comp. Clin. Pathol. 2023, 32, 699–708. [Google Scholar]
- Manickam, R.; Murugesan, S.; Kottaisamy, S.; Ramasundaram, T.; Kannan, S. Galantamine tethered hydrogel as a novel therapeutic target for streptozotocin-induced Alzheimer’s disease in Wistar rats. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100100. [Google Scholar]
- Babashpour-Asl, M.; Kaboudi, P.; Barez, S. Therapeutic and medicinal effects of snowdrop (Galanthus spp.) in Alzheimer’s disease: A review. J. Educ. Health Promot. 2023, 12, 128. [Google Scholar]
- Kaur, J.; Melkani, I.; Singh, A.P.; Singh, A.P.; Bala, K. Galantamine: A Review Update. J. Drug Deliv. Ther. 2022, 12, 167–173. [Google Scholar]
- Santos, G.S.; Sinoti, S.B.P.; De Almeida, F.T.C.; Silveira, D.; Simeoni, L.A.; Gomes-Copeland, K.K.P. Use of galantamine in the treatment of Alzheimer’s disease and strategies to optimize its biosynthesis using the in vitro culture technique. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 143, 13–29. [Google Scholar] [CrossRef]
- Nguyen, K.; Hoffman, H.; Chakkamparambil, B.; Grossberg, G.T. Evaluation of rivastigmine in Alzheimer’s disease. Neurodegener. Dis. Manag. 2021, 11, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Mehranfar, F. Challenges and Approaches of Drugs Such as Memantine, Donepezil, Rivastigmine, and Aducanumab in the Treatment, Control and Management of Alzheimer’s Disease. Recent Pat. Biotechnol. 2022, 16, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Ray, B.; Maloney, B.; Sambamurti, K.; Karnati, H.K.; Nelson, P.T.; Greig, N.H.; Lahiri, D.K. Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Transl. Psychiatry 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Zurdo, D.; Rosales-Conrado, N.; León-González, M.E.; Brunetti, L.; Piemontese, L.; Pereira-Santos, A.R.; Cardoso, S.M.; Madrid, Y.; Chaves, S.; Santos, M.A. Novel Rivastigmine Derivatives as Promising Multi-Target Compounds for Potential Treatment of Alzheimer’s Disease. Biomedicines 2022, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, A.; Mohammad, T.; Anwar, S.; Alajmi, M.F.; Hussain, A.; Hassan, M.I.; Ahmad, F.; Islam, A. Probing the interaction of Rivastigmine Tartrate, an important Alzheimer’s drug, with serum albumin: Attempting treatment of Alzheimer’s disease. Int. J. Biol. Macromol. 2020, 148, 533–542. [Google Scholar] [CrossRef]
- Rompicherla, S.K.L.; Arumugam, K.; Bojja, S.L.; Kumar, N.; Rao, C.M. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn-Schmiedeberg S Arch. Pharmacol. 2021, 394, 1737–1755. [Google Scholar] [CrossRef]
- Guo, H.; Wang, G.; Zhai, Z.; Huang, J.; Huang, Z.; Zhou, Y.; Xia, X.; Yao, Z.; Huang, Y.; Zhao, Z.; et al. Rivastigmine nasal spray for the treatment of Alzheimer’s Disease: Olfactory deposition and brain delivery. Int. J. Pharm. 2024, 652, 123809. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Salem, M.A.; Mahdy, N.M.E.; Ragab, M.F. Rivastigmine. In Naturally Occurring Chemicals Against Alzheimer’s Disease; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–108. [Google Scholar]
- Tang, B.; Wang, Y.; Ren, J. Basic information about memantine and its treatment of Alzheimer’s disease and other clinical applications. Ibrain 2023, 9, 340–348. [Google Scholar] [CrossRef]
- Koola, M.M. Galantamine-Memantine combination in the treatment of Alzheimer’s disease and beyond. Psychiatry Res. 2020, 293, 113409. [Google Scholar] [CrossRef] [PubMed]
- Marotta, G.; Basagni, F.; Rosini, M.; Minarini, A. Memantine Derivatives as Multitarget Agents in Alzheimer’s Disease. Molecules 2020, 25, 4005. [Google Scholar] [CrossRef] [PubMed]
- Turcu, A.L.; Companys-Alemany, J.; Phillips, M.B.; Patel, D.S.; Griñán-Ferré, C.; Loza, M.I.; Brea, J.M.; Pérez, B.; Soto, D.; Sureda, F.X.; et al. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer’s disease. Eur. J. Med. Chem. 2022, 236, 114354. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, X.; Cao, Y.; Mak, S.H.; Zha, L.; Li, N.; Su, Z.; Han, Y.; Wang, Y.; Hoi, M.P.M.; et al. Therapeutic efficacy of novel memantine nitrate MN-08 in animal models of Alzheimer’s disease. Aging Cell 2021, 20, e13371. [Google Scholar] [CrossRef] [PubMed]
- Yaghmaei, E.; Lu, H.; Ehwerhemuepha, L.; Zheng, J.; Danioko, S.; Rezaie, A.; Sajjadi, S.A.; Rakovski, C. Combined use of Donepezil and Memantine increases the probability of five-year survival of Alzheimer’s disease patients. Commun. Med. 2024, 4, 99. [Google Scholar] [CrossRef]
- Padovani, A.; Falato, S.; Pegoraro, V. Extemporaneous combination of donepezil and memantine to treat dementia in Alzheimer disease: Evidence from Italian real-world data. Curr. Med. Res. Opin. 2023, 39, 567–577. [Google Scholar] [CrossRef]
- Dezfouli, R.A.; Akbariforoud, S.; Esmaeilidezfouli, E. Are there links between Alzheimer’s disease and ADHD? The efficacy of acetylcholinesterase inhibitors and NMDA receptor antagonists in controlling ADHD symptoms: A systematic review. Middle East Curr. Psychiatry 2024, 31, 13. [Google Scholar] [CrossRef]
- Rahman, A.; Hossen, M.A.; Chowdhury, M.F.I.; Bari, S.; Tamanna, N.; Sultana, S.S.; Haque, S.N.; Masud, A.A.; Saif-Ur-Rahman, K.M. Aducanumab for the treatment of Alzheimer’s disease: A systematic review. Psychogeriatrics 2023, 23, 512–522. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Orzeł-Sajdłowska, A. Aducanumab—Hope or Disappointment for Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4367. [Google Scholar] [CrossRef]
- Vaz, M.; Silva, V.; Monteiro, C.; Silvestre, S. Role of Aducanumab in the Treatment of Alzheimer’s Disease: Challenges and Opportunities. Clin. Interv. Aging 2022, 17, 797–810. [Google Scholar] [CrossRef]
- Schneider, L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 2020, 19, 111–112. [Google Scholar] [CrossRef]
- Dunn, B.; Stein, P.; Cavazzoni, P. Approval of Aducanumab for Alzheimer Disease—The FDA’s Perspective. JAMA Intern. Med. 2021, 181, 1276. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves second anti-amyloid antibody for Alzheimer disease. Nat. Rev. Drug Discov. 2023, 22, 89. [Google Scholar] [CrossRef] [PubMed]
- Reardon, S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature 2023, 613, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Chowdhury, N.S. Novel anti-amyloid-beta (Aβ) monoclonal antibody lecanemab for Alzheimer’s disease: A systematic review. Int. J. Immunopathol. Pharmacol. 2023, 37, 03946320231209839. [Google Scholar] [CrossRef] [PubMed]
- Niidome, T.; Ishikawa, Y.; Ogawa, T.; Nakagawa, M.; Nakamura, Y. Mechanism of action and clinical trial results of Lecanemab (Leqembi® 200 mg, 500 mg for Intravenous Infusion), a novel treatment for Alzheimer’s disease. Folia Pharmacol. Jpn. 2024, 159, 173. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Bhadane, P.; Roul, K.; Belemkar, S.; Kumar, D. Immunotherapeutic approaches for Alzheimer’s disease: Exploring active and passive vaccine progress. Brain Res. 2024, 1840, 149018. [Google Scholar] [CrossRef]
- Parrocha, C.M.T.; Nowick, J.S. Current peptide vaccine and immunotherapy approaches against Alzheimer’s disease. Pept. Sci. 2022, 115, e24289. [Google Scholar] [CrossRef]
- Honig, L.S. Alzheimer Disease: A New Beginning in Therapeutics. Alzheimer Dis. Assoc. Disord. 2023, 37, 267–269. [Google Scholar] [CrossRef]
- Xiao, D.; Zhang, C. Current therapeutics for Alzheimer’s disease and clinical trials. Explor. Neurosci. 2024, 3, 255–271. [Google Scholar] [CrossRef]
- Holdridge, K.C.; Yaari, R.; Hoban, D.B.; Andersen, S.; Sims, J.R. Targeting amyloid β in Alzheimer’s disease: Meta-analysis of low-dose solanezumab in Alzheimer’s disease with mild dementia studies. Alzheimer’s Dement. 2023, 19, 4619–4628. [Google Scholar]
- Sperling, R.A.; Donohue, M.C.; Raman, R.; Rafii, M.S.; Johnson, K.; Masters, C.L.; Van Dyck, C.H.; Iwatsubo, T.; Marshall, G.A.; Yaari, R.; et al. Trial of Solanezumab in Preclinical Alzheimer’s Disease. N. Engl. J. Med. 2023, 389, 1096–1107. [Google Scholar]
- Gao, Y.; Guo, J.; Zhang, F.; Li, Y. Safety Analysis of Bapineuzumab in the Treatment of Mild to Moderate Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Comb. Chem. High Throughput Screen. 2024, 27, 40–47. [Google Scholar]
- Jeremic, D.; Navarro-López, J.D.; Jiménez-Díaz, L. Efficacy and safety of anti-amyloid-β monoclonal antibodies in current Alzheimer’s disease phase III clinical trials: A systematic review and interactive web app-based meta-analysis. Ageing Res. Rev. 2023, 90, 102012. [Google Scholar]
- Hao, Y.; Dong, M.; Sun, Y.; Duan, X.; Niu, W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer’s disease. Front. Neurol. 2023, 14, 1147757. [Google Scholar]
- Neațu, M.; Covaliu, A.; Ioniță, I.; Jugurt, A.; Davidescu, E.I.; Popescu, B.O. Monoclonal Antibody Therapy in Alzheimer’s Disease. Pharmaceutics 2023, 16, 60. [Google Scholar] [CrossRef]
- Bateman, R.J.; Smith, J.; Donohue, M.C.; Delmar, P.; Abbas, R.; Salloway, S.; Wojtowicz, J.; Blennow, K.; Bittner, T.; Black, S.E.; et al. Two Phase 3 Trials of Gantenerumab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 389, 1862–1876. [Google Scholar]
- Söderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Möller, C.; Lannfelt, L. Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics 2023, 20, 195–206. [Google Scholar]
- De Almeida, A.M.; Leite, M.; Lopes, L.M.; Lima, P.G.; Barros, M.L.S.; Pinheiro, S.R.; Andrade, Í.; Viana, P.; Morbach, V.; Marinheiro, G.; et al. Gantenerumab for early Alzheimer’s disease: A systematic review and meta-analysis. Expert Rev. Neurother. 2024, 24, 929–936. [Google Scholar]
- Riviere, M.; Langbaum, J.B.; Turner, R.S.; Rinne, J.O.; Sui, Y.; Cazorla, P.; Ricart, J.; Meneses, K.; Caputo, A.; Tariot, P.N.; et al. Effects of the active amyloid beta immunotherapy CAD106 on PET measurements of amyloid plaque deposition in cognitively unimpaired APOE ε4 homozygotes. Alzheimer’s Dement. 2023, 20, 1839–1850. [Google Scholar]
- Thakur, A.; Bogati, S.; Pandey, S. Attempts to Develop Vaccines Against Alzheimer’s Disease: A Systematic Review of Ongoing and Completed Vaccination Trials in Humans. Cureus 2023, 15, e40138. [Google Scholar] [CrossRef]
- Egunlusi, A.O.; Joubert, J. Ever-expanding landscape: Alzheimer’s—New targets and new patents. Pharm. Pat. Anal. 2022, 11, 135–138. [Google Scholar] [CrossRef]
- Miranda, A.; Montiel, E.; Ulrich, H.; Paz, C. Selective Secretase Targeting for Alzheimer’s Disease Therapy. J. Alzheimer’s Dis. 2021, 81, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Piton, M.; Hirtz, C.; Desmetz, C.; Milhau, J.; Lajoix, A.D.; Bennys, K.; Lehmann, S.; Gabelle, A. Alzheimer’s Disease: Advances in Drug Development. J. Alzheimer’s Dis. 2018, 65, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Trasviña-Arenas, C.H.; Medina, L.A.A.; Vique-Sanchez, J.L. γ-Secretase Inhibitors Selected by Molecular Docking, to Develop a New Drug Against Alzheimer’s Disease. Rep. Biochem. Mol. Biol. 2023, 12, 340–349. [Google Scholar] [CrossRef]
- Alan, E.; Kerry, Z.; Sevin, G. Molecular mechanisms of Alzheimer’s disease: From therapeutic targets to promising drugs. Fundam. Clin. Pharmacol. 2023, 37, 397–427. [Google Scholar] [CrossRef]
- Ettcheto, M.; Busquets, O.; Espinosa-Jiménez, T.; Verdaguer, E.; Auladell, C.; Camins, A. A Chronological Review of Potential Disease-Modifying Therapeutic Strategies for Alzheimer’s Disease. Curr. Pharm. Des. 2020, 26, 1286–1299. [Google Scholar] [CrossRef]
- Zimmer, J.A.; Shcherbinin, S.; Devous, M.D.; Bragg, S.M.; Selzler, K.J.; Wessels, A.M.; Shering, C.; Mullen, J.; Landry, J.; Andersen, S.W.; et al. Lanabecestat: Neuroimaging results in early symptomatic Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12123. [Google Scholar] [CrossRef]
- Burki, T. Alzheimer’s disease research: The future of BACE inhibitors. Lancet 2018, 391, 2486. [Google Scholar] [CrossRef]
- Egan, M.F.; Kost, J.; Tariot, P.N.; Aisen, P.S.; Cummings, J.L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N. Engl. J. Med. 2018, 378, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.; Kost, J.; Voss, T.; Mukai, Y.; Aisen, P.; Cummings, J.; Tariot, P.; Vellas, B.; Van Dyck, C.; Boada, M.; et al. Randomized Trial of Verubecestat for Prodromal Alzheimer’s Disease. N. Engl. J. Med. 2019, 380, 1408–1420. [Google Scholar] [CrossRef] [PubMed]
- Timmers, M.; Streffer, J.R.; Russu, A.; Tominaga, Y.; Shimizu, H.; Shiraishi, A.; Tatikola, K.; Smekens, P.; Börjesson-Hanson, A.; Andreasen, N.; et al. Pharmacodynamics of atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer’s disease: Randomized, double-blind, placebo-controlled study. Alzheimer’s Res. Ther. 2018, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Machauer, R.; Lueoend, R.; Hurth, K.; Veenstra, S.J.; Rueeger, H.; Voegtle, M.; Tintelnot-Blomley, M.; Rondeau, J.-M.; Jacobson, L.H.; Laue, G.; et al. Discovery of Umibecestat (CNP520): A Potent, Selective, and Efficacious β-Secretase (BACE1) Inhibitor for the Prevention of Alzheimer’s Disease. J. Med. Chem. 2021, 64, 15262–15279. [Google Scholar] [CrossRef]
- Neumann, U.; Ufer, M.; Jacobson, L.H.; Rouzade-Dominguez, M.; Huledal, G.; Kolly, C.; Lüönd, R.M.; Machauer, R.; Veenstra, S.J.; Hurth, K.; et al. The BACE -1 inhibitor CNP 520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med. 2018, 10, e9316. [Google Scholar] [CrossRef]
- Soeda, Y.; Saito, M.; Maeda, S.; Ishida, K.; Nakamura, A.; Kojima, S.; Takashima, A. Methylene Blue Inhibits Formation of Tau Fibrils but not of Granular Tau Oligomers: A Plausible Key to Understanding Failure of a Clinical Trial for Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 68, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, M.; Caballero-Bermejo, M.; Gutierrez-Merino, C.; Mata, A.M. Methylene Blue Blocks and Reverses the Inhibitory Effect of Tau on PMCA Function. Int. J. Mol. Sci. 2019, 20, 3521. [Google Scholar] [CrossRef]
- How, S.-C.; Cheng, Y.-H.; Lo, C.-H.; Lai, J.-T.; Lin, T.-H.; Bednarikova, Z.; Antosova, A.; Gazova, Z.; Wu, J.W.; Wang, S.S.-s. Exploring the effects of methylene blue on amyloid fibrillogenesis of lysozyme. Int. J. Biol. Macromol. 2018, 119, 1059–1067. [Google Scholar] [CrossRef]
- Lao, K.; Ji, N.; Zhang, X.; Qiao, W.; Tang, Z.; Gou, X. Drug development for Alzheimer’s disease: Review. J. Drug Target. 2018, 27, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Shri, S.R.; Manandhar, S.; Nayak, Y.; Pai, K.S.R. Role of GSK-3β Inhibitors: New Promises and Opportunities for Alzheimer’s Disease. Adv. Pharm. Bull. 2023, 13, 688–700. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, J.; Zhang, S.; Chen, L.; Wen, J.; Wang, F.; Mao, Y.; Li, L.; Zhang, J.; Liao, S.; et al. Design, synthesis and bioevaluation of 1,2,4-thiadiazolidine-3,5-dione derivatives as potential GSK-3β inhibitors for the treatment of Alzheimer’s disease. Bioorganic Chem. 2023, 134, 106446. [Google Scholar] [CrossRef]
- Fagiani, F.; Lanni, C.; Racchi, M.; Govoni, S. Targeting dementias through cancer kinases inhibition. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12044. [Google Scholar] [CrossRef]
- Ramos, R.; Vale, N. Dual Drug Repurposing: The Example of Saracatinib. Int. J. Mol. Sci. 2024, 25, 4565. [Google Scholar] [CrossRef]
- Tridente, G.; Jana, A.; Nath, A.; Ashraf, G.M. Protein kinase inhibitors as therapeutics in neurodegenerative and psychiatric disorders. In Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders; Academic Press: New York, NY, USA, 2023; pp. 403–573. [Google Scholar]
- Wang, H.; Zhang, F.-F.; Xu, Y.; Fu, H.-R.; Wang, X.-D.; Wang, L.; Chen, W.; Xu, X.-Y.; Gao, Y.-F.; Zhang, J.-G.; et al. The Phosphodiesterase-4 Inhibitor Roflumilast, a Potential Treatment for the Comorbidity of Memory Loss and Depression in Alzheimer’s Disease: A Preclinical Study in APP/PS1 Transgenic Mice. Int. J. Neuropsychopharmacol. 2020, 23, 700–711. [Google Scholar] [CrossRef]
- Sugin, L.J.S.; Murugesan, A.; Bindu, M.; Sunil, K.N. Roflumilast: A potential drug for the treatment of cognitive impairment? Neurosci. Lett. 2020, 736, 135281. [Google Scholar]
- Hu, J.; Pan, T.; An, B.; Li, Z.; Li, X.; Huang, L. Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019, 163, 512–526. [Google Scholar] [PubMed]
- Hasan, N.; Zameer, S.; Najmi, A.K.; Parvez, S.; Akhtar, M. Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer’s Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway. Neurotox. Res. 2022, 40, 432–448. [Google Scholar] [PubMed]
- Adesuyan, M.; Jani, Y.H.; Alsugeir, D.; Howard, R.; Ju, C.; Wei, L.; Brauer, R. Phosphodiesterase Type 5 Inhibitors in Men With Erectile Dysfunction and the Risk of Alzheimer Disease. Neurology 2024, 102, e209131. [Google Scholar]
- Cummings, J.; Lee, G.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2021. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12179. [Google Scholar]
- Cummings, J.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Cheng, F. Alzheimer’s disease drug development pipeline: 2024. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2024, 10, e12465. [Google Scholar]
- Huang, L.-K.; Kuan, Y.-C.; Lin, H.-W.; Hu, C.-J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. J. Biomed. Sci. 2023, 30, 83. [Google Scholar]
- Knopman, D.S.; Jones, D.T.; Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimer’s Dement. 2020, 17, 696–701. [Google Scholar]
- Dhillon, S. Aducanumab: First Approval. Drugs 2021, 81, 1437–1443. [Google Scholar] [PubMed]
- Mukhopadhyay, S.; Banerjee, D. A Primer on the Evolution of Aducanumab: The First Antibody Approved for Treatment of Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 83, 1537–1552. [Google Scholar]
- Swanson, C.J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R.Y.K.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A.; et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimer’s Res. Ther. 2021, 13, 80. [Google Scholar]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/search?cond=Alzheimer%27s%20Disease (accessed on 17 August 2024).
- Duara, R.; Barker, W. Heterogeneity in Alzheimer’s Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022, 19, 8–25. [Google Scholar]
- Liu, L.; Sun, S.; Kang, W.; Wu, S.; Lin, L. A review of neuroimaging-based data-driven approach for Alzheimer’s disease heterogeneity analysis. Rev. Neurosci. 2024, 35, 121–129. [Google Scholar]
- Wei, H.; Wu, C.; Yuan, Y.; Lai, L. Uncovering the Achilles heel of genetic heterogeneity: Machine learning-based classification and immunological properties of necroptosis clusters in Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1249682. [Google Scholar]
- Conrado, D.J.; Duvvuri, S.; Geerts, H.; Burton, J.; Biesdorf, C.; Ahamadi, M.; Macha, S.; Hather, G.; Morales, J.F.; Podichetty, J.; et al. Challenges in Alzheimer’s Disease Drug Discovery and Development: The Role of Modeling, Simulation, and Open Data. Clin. Pharmacol. Ther. 2020, 107, 796–805. [Google Scholar] [PubMed]
- Abduljawad, A.A.; Elawad, M.A.; Elkhalifa, M.E.M.; Ahmed, A.; Hamdoon, A.A.E.; Salim, L.H.M.; Ashraf, M.; Ayaz, M.; Hassan, S.S.U.; Bungau, S. Alzheimer’s Disease as a Major Public Health Concern: Role of Dietary Saponins in Mitigating Neurodegenerative Disorders and Their Underlying Mechanisms. Molecules 2022, 27, 6804. [Google Scholar] [CrossRef]
- Ribba, B. Reinforcement learning as an innovative model-based approach: Examples from precision dosing, digital health and computational psychiatry. Front. Pharmacol. 2023, 13, 094281. [Google Scholar]
- Ndebele, P.; Blanchard-Horan, C.; Shahkolahi, A.; Sanne, I. Regulatory Challenges Associated with Conducting Multicountry Clinical Trials in Resource-Limited Settings. JAIDS J. Acquir. Immune Defic. Syndr. 2014, 65 (Suppl. 1), S29–S31. [Google Scholar] [PubMed]
- Alemayehu, C.; Mitchell, G.; Nikles, J. Barriers for conducting clinical trials in developing countries—A systematic review. Int. J. Equity Health 2018, 17, 37. [Google Scholar] [PubMed]
- Sinsky, J.; Pichlerova, K.; Hanes, J. Tau Protein Interaction Partners and Their Roles in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2021, 22, 9207. [Google Scholar] [CrossRef] [PubMed]
- Alquezar, C.; Arya, S.; Kao, A.W. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front. Neurol. 2021, 11, 595532. [Google Scholar]
- Yang, J.; Zhi, W.; Wang, L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024, 29, 2812. [Google Scholar] [CrossRef]
- Sigurdsson, E.M. Tau Immunotherapies for Alzheimer’s Disease and Related Tauopathies: Progress and Potential Pitfalls1. J. Alzheimer’s Dis. 2018, 64 (Suppl. S1), S555–S565. [Google Scholar]
- Yang, J.; Fu, Z.; Zhang, X.; Xiong, M.; Meng, L.; Zhang, Z. TREM2 ectodomain and its soluble form in Alzheimer’s disease. J. Neuroinflamm. 2020, 17, 204. [Google Scholar]
- Huang, W.; Huang, J.; Huang, N.; Luo, Y. The role of TREM2 in Alzheimer’s disease: From the perspective of Tau. Front. Cell Dev. Biol. 2023, 11, 1280257. [Google Scholar]
- Shi, Q.; Gutierrez, R.A.; Bhat, M.A. Microglia, Trem2, and Neurodegeneration. Neuroscientist 2024, 10738584241254118. [Google Scholar] [CrossRef]
- Pocock, J.; Vasilopoulou, F.; Svensson, E.; Cosker, K. Microglia and TREM2. Neuropharmacology 2024, 257, 110020. [Google Scholar]
- Rani, V.; Verma, R.; Kumar, K.; Chawla, R. Role of pro-inflammatory cytokines in Alzheimer’s disease and neuroprotective effects of pegylated self-assembled nanoscaffolds. Curr. Res. Pharmacol. Drug Discov. 2023, 4, 100149. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Bai, F.; Zhang, Z. Inflammatory Cytokines and Alzheimer’s Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci. Bull. 2016, 32, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.Q.; Dore, K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer’s disease. Semin. Cell Dev. Biol. 2023, 139, 84–92. [Google Scholar] [CrossRef]
- Skaper, S.D.; Facci, L.; Zusso, M.; Giusti, P. Synaptic Plasticity, Dementia and Alzheimer Disease. CNS Neurol. Disord.—Drug Targets 2017, 16, 220–233. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Y.; Xu, S.; Wang, P.; Qian, K.; Yang, P.; Sheng, D.; Wang, L.; Cheng, Y.; Meng, R.; et al. Brain-neuron targeted nanoparticles for peptide synergy therapy at dual-target of Alzheimer’s disease. J. Control. Release 2023, 355, 604–621. [Google Scholar] [CrossRef]
- Ferreira, A.C.F.; Szeto, A.C.H.; Clark, P.A.; Crisp, A.; Kozik, P.; Jolin, H.E.; McKenzie, A.N.J. Neuroprotective protein ADNP-dependent histone remodeling complex promotes T helper 2 immune cell differentiation. Immunity 2023, 56, 1468–1484.e7. [Google Scholar] [CrossRef]
- AlMansoori, M.E.; Jemimah, S.; Abuhantash, F.; AlShehhi, A. Predicting early Alzheimer’s with blood biomarkers and clinical features. Sci. Rep. 2024, 14, 6039. [Google Scholar] [CrossRef]
- Kesu, S.M.R.; Sinha, N.; Ramasangu, H. Cellular Automata Framework for Dementia Classification Using Explainable AI. Eng. Proc. 2024, 68, 36. [Google Scholar] [CrossRef]
- Arafah, A.; Khatoon, S.; Rasool, I.; Khan, A.; Rather, M.A.; Abujabal, K.A.; Faqih, Y.A.H.; Rashid, H.; Rashid, S.M.; Ahmad, S.B.; et al. The Future of Precision Medicine in the Cure of Alzheimer’s Disease. Biomedicines 2023, 11, 335. [Google Scholar] [CrossRef]
- Forloni, G. Alzheimer’s disease: From basic science to precision medicine approach. BMJ Neurol. Open 2020, 2, e000079. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Tong, G.; Ballard, C. Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J. Alzheimer’s Dis. 2019, 67, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Horani, W.; Thawabteh, A.; Scrano, L.; Bufo, S.A. Anticancer Prodrugs—Three Decades of Design. World J. Pharm. Pharm. Sci. 2015, 4, 1751–1753. [Google Scholar]
- Dudchenko, N.G.; Mkhitaryan, E.A. Combination Drug Therapy for the Management of Alzheimer’s Disease. Russ. J. Geriatr. Med. 2024, 21, 140–144. [Google Scholar] [CrossRef]
- Strac, D.S.; Konjevod, M.; Sagud, M.; Perkovic, M.N.; Erjavec, G.N.; Vuic, B.; Simic, G.; Vukic, V.; Mimica, N.; Pivac, N. Personalizing the Care and Treatment of Alzheimer’s Disease: An Overview. Pharmacogenom. Pers. Med. 2021, 14, 631–653. [Google Scholar] [CrossRef]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate-Armand, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef]
Stage | Description | Signs/Symptoms |
---|---|---|
Mild (early) | The early stages are usually ignored because it is rare to see the signs and symptoms. Neuropsychiatric issues may be observed in the mild stage of AD, including depression, irritability, anxiety, and apathy [29,30,31]. |
|
Moderate | The signs and symptoms become more pronounced and noticeable. These could last for a long time [24,30,32]. |
|
Severe (late) | It is on the verge of complete dependence and inaction. The signs and symptoms start to show more clearly. Every past proficiency eventually declines [29,33,34]. |
|
Phase | Agent | Mechanism of Action | Target | Trial Code | Date |
---|---|---|---|---|---|
Phase I | ALN-APP | RNAi to reduce Aβ-related downstream events and APP | Amyloid beta | NCT05231785 | 2022–2025 |
ALZ-101 | Amyloid beta-directed vaccine | NCT05328115 | 2021–2023 | ||
AV-1959 | Anti-amyloid vaccine | NCT05642429 | 2023–2026 | ||
Remtemetug | Monoclonal antibody (anti-amyloid) | NCT04451408 | 2020–2024 | ||
SHR-1707 | Monoclonal antibody (anti-amyloid) | NCT06114745 | 2024–2025 | ||
APNmAb005 | Anti-tau antibody | Tau | NCT05344989 | 2022–2024 | |
MK-2214 | Anti-tau monoclonal antibody | NCT05466422 | 2022–2025 | ||
NIO752 | Anti-tau antisense oligonucleotide | NCT05469360 | 2023–2024 | ||
Bacillus Calmette– Guerin | Vaccination to increase resistance to mechanisms related to AD | Inflammation | NCT06078891 | 2023–2024 | |
CpG1018 | Reduced Aβ plaques and tau pathology due to toll-like receptor nine agonist | NCT05606341 | 2023–2024 | ||
IBC-Ab002 | Immunocheckpoint inhibitor against programmed death-ligand 1 (PD-L1) | NCT05551741 | 2023–2024 | ||
Phase II | ABBV-916 | Anti-amyloid antibody | Amyloid beta | NCT05291234 | 2022–2030 |
ACI-24.060 | Immunizations against amyloid-beta protein are stimulated by vaccines | NCT05462106 | 2022–2026 | ||
ALZN002 | Autologous dendritic cells embedded with peptides of mutant amyloid beta | NCT05834296 | 2023–2028 | ||
Lecanemab | Monoclonal antibody against amyloid that targets amyloid plaques and protofibrils | NCT01767311 | 2021–2025 | ||
Trontinemab | Monoclonal antibody called gantenerumab, which targets plaques and oligomers | NCT04639050 | 2021–2027 | ||
Bepranemab | Binding of a monoclonal antibody against tau to its core region | Tau | NCT04867616 | 2021–2024 | |
BIIB080 | Tau mRNA translation into tau protein is inhibited by an antisense oligonucleotide | NCT05399888 | 2022–2027 | ||
E2814 | Monoclonal antibody (anti-tau) | NCT04971733 | 2021–2025 | ||
JNJ-63733657 | Monoclonal antibody targeted at soluble tau (mid-region of tau) | NCT04619420 | 2021–2025 | ||
AL002 | Monoclonal antibody targeting TREM2 receptors | Inflammation | NCT05744401 | 2023–2025 | |
Bacillus Calmette- Guerin | Vaccination to increase resistance to mechanisms related to AD | NCT05004688 | 2022–2023 | ||
Canakinumab | Anti-IL-1-beta monoclonal antibody | NCT04795466 | 2021–2024 | ||
Interleukin-2 | Restore regulatory T-cell function | NCT06096090 | 2023–2025 | ||
Pegipanermin | Neutralizes TNF-alpha | NCT05522387 | 2023–2026 | ||
Pepinemab | Semaphorin 4D-specific monoclonal antibody selectively suppresses the release of inflammatory cytokines | NCT04381468 | 2021–2023 | ||
Proleukin | IL-2 immunomodulator | NCT05468073 | 2022–2025 | ||
Sargramostim | Hematopoietic growth anti-inflammatory factor; granulocyte macrophage colony-stimulating factor | NCT04902703 | 2022–2024 | ||
TB006 | Monoclonal antibody directed against galactose-specific lectin (galectin) 3, anti-inflammatory | NCT05476783 | 2022–2024 | ||
Tdap | To promote inflammatory protection, acellular pertussis vaccination is given with decreased diphtheria toxoid and tetanus toxoid | NCT05183516 | 2023 | ||
Phase III | Aducanumab | Monoclonal antibody targeting oligomers and plaques that is anti-amyloid | Amyloid beta | NCT04241068 NCT05310071 | 2020–2023 2022–2025 |
Donanemab | Anti-amyloid monoclonal antibody specific for pyroglutamate plaque amyloid | NCT04437511 NCT05026866 NCT05508789 NCT05738486 | 2020–2023 2021–2027 2022–2027 2023–2024 | ||
Gantenerumab | Monoclonal antibody (anti-amyloid) | NCT01760005 | 2012–2027 | ||
Lecanemab | Anti-amyloid monoclonal antibody directed at amyloid protofibrils and amyloid plaques | NCT01760005 NCT03887455 NCT04468659 NCT05269394 | 2012–2027 2019–2027 2020–2027 2021–2027 | ||
Remternetug | Monoclonal antibody (anti-amyloid) | NCT05463731 | 2022–2025 | ||
Solanezumab | Monoclonal antibody (anti-amyloid) | NCT01760005 | 2012–2027 | ||
E2814 | Anti-tau monoclonal antibody | Tau | NCT01760005 NCT05269394 | 2012–2027 2021–2027 | |
Semaglutide | GLP-1 agonist; anti-inflammatory | Inflammation | NCT04777396 NCT04777409 NCT05891496 | 2021–2025 2021–2025 2023–2024 |
Phase | Agent | Mechanism of Action | Target | Trial Code | Date |
---|---|---|---|---|---|
Phase I | BMS-984923 | Silent allosteric modulator (SAM) of mGluR5 | Amyloid beta | NCT05804383 NCT05817643 | 2023–2024 2023–2023 |
OLX-07010 | Inhibits tau self-aggregation | Tau | NCT05696483 | 2023–2024 | |
Emtricitabine | Nucleoside reverse transcriptase inhibitor (NRTI | Inflammation | NCT04500847 | 2021–2024 | |
Phase II | APH-1105 | Amyloid precursor protein secretase modulator; alpha-secretase modulator | Amyloid beta | NCT03806478 | 2023–2024 |
MIB-626 | Adenine dinucleotide stimulator sirtuin-nicotinamide to increase alpha-secretase | NCT05040321 | 2021–2024 | ||
PRI-002 | Interferes with A-beta 42 oligomerization to hinder its production and promote its decrease | NCT06182085 | 2023–2026 | ||
Valiltramiprosate | Aggregation inhibitor | NCT04693520 | 2020–2024 | ||
Varoglutamstat | Using glutaminyl cyclase (QC) enzyme inhibitor, the amount of pyroglutamate Aβ produced is decreased | NCT03919162 NCT04498650 | 2021–2023 2020–2024 | ||
LY3372689 | O-GlcN Acase enzyme inhibitor | Tau | NCT05063539 | 2021–2024 | |
Methylene Blue | Tau protein aggregation inhibitor | NCT02380573 | 2015–2023 | ||
Baricitinib | Janus kinase (JAK) inhibitor | Inflammation | NCT05189106 | 2022–2024 | |
Dasatinib + Quercetin | Senescent cells can be eliminated by dasatinib by inducing apoptosis in them; quercetin is a flavonoid | NCT04685590 NCT04785300 NCT05422885 | 2021–2025 2022–2023 2022–2024 | ||
Lenalidomide | Originally authorized for the treatment of multiple myeloma; anti-inflammatory and immunomodulatory | NCT04032626 NCT06177028 | 2020–2023 2024–2026 | ||
L-Serine | Dietary amino acid that occurs naturally; prevents harmful misfolding | NCT03062449 | 2023–2024 | ||
Montelukast buccal film | Leukotriene receptor antagonist (LTRA); has anti-inflammatory properties | NCT03402503 | 2018–2024 | ||
PrimeC | Combined product that addresses RNA regulatory issues, iron buildup, and inflammation | NCT06185543 | 2023–2025 | ||
Senicapoc | Calcium-activated potassium channel inhibitor | NCT04804241 | 2022–2024 | ||
Valacyclovir | HSV-1 and -2 antiviral; lessens viral-related “seeding” of amyloid plaque deposition | NCT03282916 | 2028–2024 | ||
Phase III | Donanemab | Monoclonal antibody against plaque amyloid derived from pyroglutamate | Amyloid beta | NCT04437511 NCT05026866 NCT05508789 NCT05738486 | 2020–2023 2021–2027 2022–2027 2023–2024 |
Valiltramiprosate | Tramiprostate prodrug | NCT04770220 | 2021–2024 | ||
Masitinib | Tyrosine kinase inhibitor which reduces mast cell and microglia/macrophage activity, exhibiting neuroprotective effects | Inflammation | NCT05564169 | 2024–2026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thawabteh, A.M.; Ghanem, A.W.; AbuMadi, S.; Thaher, D.; Jaghama, W.; Karaman, D.; Karaman, R. Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease. Molecules 2024, 29, 5131. https://doi.org/10.3390/molecules29215131
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease. Molecules. 2024; 29(21):5131. https://doi.org/10.3390/molecules29215131
Chicago/Turabian StyleThawabteh, Amin Mahmood, Aseel Wasel Ghanem, Sara AbuMadi, Dania Thaher, Weam Jaghama, Donia Karaman, and Rafik Karaman. 2024. "Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease" Molecules 29, no. 21: 5131. https://doi.org/10.3390/molecules29215131
APA StyleThawabteh, A. M., Ghanem, A. W., AbuMadi, S., Thaher, D., Jaghama, W., Karaman, D., & Karaman, R. (2024). Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease. Molecules, 29(21), 5131. https://doi.org/10.3390/molecules29215131