Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review
Abstract
:1. Introduction
2. Hydrophobic Modification of Cellulose Acetate
2.1. Hydrophobicity Mechanism
2.2. Microstructural Hydrophobic Modification
2.2.1. In Situ Construction of Hydrophobic Surfaces
2.2.2. Post-Treatment for Constructing Hydrophobic Surfaces
2.3. Chemical Functional Hydrophobicity Modification
2.3.1. Organic Silicon/Fluorine Modifiers
2.3.2. Other Hydrophobic Modifiers
3. Application of Hydrophobic Cellulose Acetate in Environmental Purification
3.1. Purification of Oil–Water System
3.1.1. Phase Separation Porous Membrane
3.1.2. Nanofiber Membrane
3.1.3. Aerogels
3.2. Separation and Purification of Saltwater Systems
3.3. Water-Repellent Protection
3.4. Other Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Z.Z.; Xiang, Y.J.; Guo, Y.; Huang, B.Z.; Jiang, Y.D. Analysis and suggestions of environmental management policies of new pollutants at home and abroad. Res. Environ. Sci. 2022, 35, 443–451. [Google Scholar]
- Jin, C.K.; Feng, C.Q.; Chen, Y.H.; Zhang, T.; He, H.W.; Na, H.N.; Zhu, J. Fabricating scattering-fluorescent luminescent solar concentrator synchronously to achieve broad-spectrum solar energy utilization and light pollution inhibition. Energy Environ. Sci. 2024, 17, 5931–5940. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, M.A. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.Y.; Dong, H.J.; Tian, X.; Xu, Y.H.; Chen, Y.H.; Geng, Y.; Zhong, S.Z. A review of the research on China’s water footprint responding to water crisis. Ecol. Econ. 2018, 34, 162–166+173. [Google Scholar]
- Morsy, A.; Ebrahim, S.; Kenawy, E.; Tarek, A.; Sherif, K. Grafted cellulose acetate reverse osmosis membrane using 2-acrylamido-2-methylpropanesulfonic acid for water desalination. Water Supply 2016, 16, 1046–1056. [Google Scholar] [CrossRef]
- Chen, E. The escalating global freshwater crisis. Ecol. Econ. 2022, 38, 5–8. [Google Scholar]
- Li, A.R.; Zhang, Z.Y.; Feng, C.Q.; Zhang, T.; Liu, F.; Na, H.N.; Zhu, J. Fabrication of nano-sized g-C3N4 loaded cellulose microfiber bundle to induce highly efficient water treatment via photodegradation. Langmuir 2023, 39, 16657–16667. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Li, A.R.; Na, H.N.; Liu, J.; Zhu, J. One-pot preparation of micro-fibrillated cellulose fiber (MCF) through the synergistic action of g-C3N4 and diluted acid. Green. Chem. 2022, 24, 9595–9601. [Google Scholar] [CrossRef]
- Chung, T.; Zhang, S.; Wang, K.Y.; Su, J.C.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Xing, D.Y.; Peng, N.; Chung, T. Investigation of unique interactions between cellulose acetate and ionic liquid [EMIM]SCN, and their influences on hollow fiber ultrafiltration membranes. J. Membr. Sci. 2011, 380, 87–97. [Google Scholar] [CrossRef]
- Hu, X.Y.; Fei, P.F.; Song, J.; Cheng, B.W.; Liao, L.; Meng, J.Q.; Chen, Y.B.; Li, L.L. Advances in functional osmosis membranes based on cellulose acetate and their derivatives. Mater. Rev. 2016, 30, 23–28+43. [Google Scholar]
- Zhu, Y.X.; Zhang, T.; Liu, H.; Jin, C.K.; Feng, C.Q.; Huang, J.C.; Na, H.N. Superhydrophobic microporous membrane based on modified microfibrillated cellulose framework for efficient oil-water separation. Int. J. Biol. Macromol. 2024, 279, 135163. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Cao, J.T.; Huang, H.J.; Xing, Z.Q. International progress in integrated water resources management. Adv. Water Sci. 2018, 29, 127–137. [Google Scholar]
- Liu, W.; Na, H.N.; Hu, C.H.; Zhou, F.; Zhang, Z.Y.; Guo, Z.; Li, M.; Zhu, J. Extraction and yeast fermentation of sugar product from cellulose hydrolysis in low acid aqueous system with catalytic accelerator. Biomass Convers. Biorefin. 2023, 13, 4343–4351. [Google Scholar] [CrossRef]
- Zhang, T.; Feng, C.Q.; Li, A.R.; Zhu, Y.X.; Jin, C.K.; Na, H.N.; Liu, F.; Zhu, J. Fabrication of microfibrillated cellulose from biomass by use of carbon nitride with high nitrogen/carbon ratio. Int. J. Biol. Macromol. 2024, 277, 133729. [Google Scholar] [CrossRef]
- Tao, Y.H.; Feng, C.Q.; Huang, J.C.; Na, H.N.; Zhu, J. Efficient hydrolysis of cellulose into sugars in aqueous systems using fibrous core-shell structure FS@C/HPW. Chem. Eng. J. 2024, 489, 151465. [Google Scholar] [CrossRef]
- Qi, J.; Chen, Y.; Zhang, W.T.; Huang, H.D.; Lin, H.; Zhong, G.J.; Li, Z.M. Imparting cellulose acetate films with hydrophobicity, high transparency, and self-cleaning function by constructing a slippery liquid-infused porous surface. Ind. Eng. Chem. Res. 2022, 61, 7962–7970. [Google Scholar] [CrossRef]
- Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, Q.Q.; Kaya, R.; Bastug, M.; Khataee, A.; Koyunce, I. Cellulose acetate in fabrication of polymeric membranes: A review. Chemosphere 2022, 295, 133914. [Google Scholar] [CrossRef]
- Dai, Y.W.; Geng, M.F.; Tao, Y.H.; Zhang, Z.Y.; Feng, C.Q.; Huang, J.C.; Liu, F.; Na, H.N.; Liu, J. Hydrolysis of cellulose to glucose in aqueous phase with phosphate group modified hydroxy-rich carbon-based catalyst. Carbon 2023, 206, 72–83. [Google Scholar] [CrossRef]
- Geng, M.F.; Tao, Y.H.; Zhang, Z.Y.; Dai, Y.W.; Huang, J.C.; Liu, F.; Na, H.N. Formation mechanism of hydroxyl-rich carbon layer on carbon nanotube surface for promoting the hydrolysis of cellulose to sugar. ACS Appl. Nano Mater. 2023, 6, 588–597. [Google Scholar] [CrossRef]
- Tao, Y.H.; Dai, Y.W.; Zhang, Z.Y.; Geng, M.F.; Liu, F.; Na, H.N.; Liu, J. Formation of hydroxyl-rich carbon layer coated silica microspheres and its application to enhance hydrolysis of cellulose to sugar. Carbon 2023, 202, 276–285. [Google Scholar] [CrossRef]
- Tedeschi, G.; Guzman-Puyol, S.; Paul, U.C.; Barthel, M.J.; Goldoni, L.; Caputo, G.; Ceseracciu, L.; Athanassiou, A.; Heredia-Guerrero, J.A. Thermoplastic cellulose acetate oleate films with high barrier properties and ductile behaviour. Chem. Eng. J. 2018, 348, 840–849. [Google Scholar] [CrossRef]
- Gao, J.K.; Wang, J.Q.; Cai, M.M.; Xu, Q.Y.; Zhang, J.W.; Cao, X.; Zhang, J.S.; Chen, Y. Advanced superhydrophobic and multifunctional nanocellulose aerogels for oil/water separation: A review. Carbohydr. Polym. 2023, 300, 120242. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ma, C.; Chen, Y.; Wang, Y.N.; Xu, J.L.; Li, Z.G.; Deng, L.L.; Zou, L.M.; Wu, J.; Wang, H.P. Cellulose nonwoven with fast liquid-discharging and anti-return properties: A microplastic-free surface layer for disposable absorbent hygiene products. Chem. Eng. J. 2024, 490, 151291. [Google Scholar] [CrossRef]
- Liu, M.; Ma, C.; Zhou, D.W.; Chen, S.Y.; Zou, L.M.; Wang, H.P.; Wu, J. Hydrophobic, breathable cellulose nonwoven fabrics for disposable hygiene applications. Carbohydr. Polym. 2022, 288, 119367. [Google Scholar] [CrossRef]
- Deng, J.N.; Zhang, J.; Li, J.F.; He, J.L.; Sun, G.X.; Wang, T.; An, W.L.; Fu, Z.C.; Zhao, H.B.; Chen, M.J. Polyelectrolyte complex coated cotton fabrics with hydrophobicity, antibacterial activity, and flame retardancy. Macromol. Rapid Commun. 2024, e2400573. [Google Scholar] [CrossRef]
- Liu, J.F.; Xi, C.; Wang, H.K. Fabrication of water/oil-resistant paper by nanocellulose stabilized Pickering emulsion and chitosan. Int. J. Biol. Macromol. 2024, 275, 133609. [Google Scholar] [CrossRef]
- Diejomaoh, O.; Lavoratti, A.; Laverock, J.; Koev, T.; Khimyak, Y.; Kondo, T.; Eichhorn, S. Surface modification of cellulose nanomaterials with amine functionalized fluorinated ionic liquids for hydrophobicity and high thermal stability. Carbohydr. Polym. 2024, 344, 122519. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Qin, X.M.; Ye, S.H.; Shi, Y.T.; Feng, Y.Z.; Han, W.J.; Liu, C.T.; Shen, C.G. Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation. Carbohydr. Polym. 2020, 241, 116361. [Google Scholar] [CrossRef]
- Liu, J.S.; Liu, R.L.; Zhao, J.Y.; Rao, R.Y. Fabrication of triacetate cellulose nanofiber membranes and their application for oil-water separation. Chin. J. Appl. Chem. 2017, 34, 512–518. [Google Scholar]
- Wang, D.; Yue, Y.Y.; Wang, Q.Y.; Cheng, W.L.; Han, G.P. Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: Morphology, wettability, and mechanical properties. Appl. Surf. Sci. 2020, 510, 145462. [Google Scholar] [CrossRef]
- Yoon, Y.I.; Moon, H.S.; Lyoo, W.S.; Lyoo, W.S.; Lee, T.S.; Park, W.H. Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment. Carbohydr. Polym. 2009, 75, 246–250. [Google Scholar] [CrossRef]
- Adepu, S.; Gaydhane, M.K.; Kakunuri, M.; Sharma, C.S.; Khandelwal, M.; Eichhorn, S.J. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers. Appl. Surf. Sci. 2017, 426, 755–762. [Google Scholar] [CrossRef]
- Kakunuri, M.; Wanasekara, N.D.; Sharma, C.S.; Khandelwal, M.; Eichhorn, S.J. Three-dimensional electrospun micropatterned cellulose acetate nanofiber surfaces with tunable wettability. J. Appl. Chem. Sci. 2017, 134, 44709. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.R. Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency. Cellulose 2020, 27, 2521–2528. [Google Scholar] [CrossRef]
- Anitha, S.; Brabu, B.; John Thiruvadigal, D.; Gopalakrishnan, D.; Natarajan, T.S. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr. Polym. 2013, 97, 856–863. [Google Scholar] [CrossRef]
- Nachev, N.; Spasova, M.; Manolova, N.; Rashkov, I.; Naydenov, M. Improving the water-repellent and antifungal properties of electrospun cellulose acetate materials by decoration with ZnO nanoparticles. Fibres Text. East. Eur. 2021, 29, 40–45. [Google Scholar] [CrossRef]
- Wang, S.H.; Gao, Z.W.; Qi, X.Y.; Li, C.X.; Xie, Y.X.; Yang, X.; Lin, Z.L.; Liu, Z.X. Eco-friendly graphene-doped cellulose acetate superhydrophobic polymer for efficient oil-water separation. J. Water Process Eng. 2022, 49, 103098. [Google Scholar] [CrossRef]
- Zhou, H.M.; Tong, H.; Lu, J.; Cheng, Y.; Qian, F.; Tao, Y.H.; Wang, H.S. Preparation of bio-based cellulose acetate/chitosan composite film with oxygen and water resistant properties. Carbohydr. Polym. 2021, 270, 118381. [Google Scholar] [CrossRef]
- Tasleem, S.; Sabah, A.; Cheema, U.A.; Sabir, A. Transparent hydrophobic hybrid silica films by green and chemical surfactants. ACS Omega 2019, 4, 13543–13552. [Google Scholar] [CrossRef]
- Xu, C.; Feng, R.; Song, F.; Wu, J.M.; Luo, Y.Q.; Wang, L.X.; Wang, Z.Y. Continuous and controlled directional water transportation on a hydrophobic/superhydrophobic patterned surface. Chem. Eng. J. 2018, 352, 722–729. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wang, J.M.; Zhao, Y.; Xu, L.; Gao, X.F.; Zheng, Y.M.; Jiang, L. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water. Soft Matter 2008, 4, 2232–2237. [Google Scholar] [CrossRef]
- Stiubianu, G.; Cazacu, M.; Nicolescu, A.; Hamciuc, V.; Vlad, S. Silicone-modified cellulose. Crosslinking of the cellulose acetate with 1,1,3,3-tetramethyldisiloxane by Pt-catalyzed dehydrogenative coupling. J. Polym. Res. 2010, 17, 837–845. [Google Scholar] [CrossRef]
- Stiubianu, G.; Nicolescu, A.; Nistor, A.; Cazacu, M.; Varganici, C.; Simionescu, B.C. Chemical modification of cellulose acetate by allylation and crosslinking with siloxane derivatives. Polym. Int. 2012, 61, 1115–1126. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Ji, X.H.; Ji, W.H.; Pourhashem, S.; Duan, J.Z.; Wang, W.; Hou, B.R. Novel superhydrophobic core-shell fibers/epoxy coatings with self-healing anti-corrosion properties in both acidic and alkaline environments. React. Funct. Polym. 2023, 187, 105574. [Google Scholar] [CrossRef]
- Ding, C.L.; Lin, D.C.; Wang, D.W.; Hou, D.Y.; Wang, J. Preparation of superhydrophobic CA/SiNPs-FAS electrospun nanofibrous membranes for direct contact membrane distillation. CIESC J. 2018, 69, 1774–1782. [Google Scholar]
- Zhang, S.Z.; Yang, Z.Y.; Huang, X.; Wang, J.; Xiao, Y.Y.; He, J.P.; Feng, J.; Xiong, S.X.; Li, Z.Q. Hydrophobic cellulose acetate aerogels for thermal insulation. Gels 2022, 8, 671. [Google Scholar] [CrossRef]
- Xiong, X.P.; Wang, Y.G.; Zhong, C.T. Preparation of an asymmetric membrane via vapor induced phase separation for membrane distillation. Prog. Org. Coat. 2023, 181, 107590. [Google Scholar] [CrossRef]
- Barbar, R.; Durand, A.; Ehrhardt, J.J.; Fanni, J.; Parmentier, M. Physicochemical characterization of a modified cellulose acetate membrane for the design of oil-in-water emulsion disruption devices. J. Membr. Sci. 2008, 310, 446–454. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Ranganath, A.S.; Sridhar, R.; Raut, H.K.; Jayaraman, S.; Sahay, R.; Ramakrishna, S.; Baji, A. Cellulose acetate-poly(N-isopropylacrylamide)-based functional surfaces with temperature-triggered switchable wettability. Macromol. Rapid Commun. 2015, 36, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, M.; Zhou, Y.; Yao, A.; Han, Y.T.; Shi, Y.D.; Cheng, F.; Zhou, M.; Zhu, P.X.; Tin, L. Transition sandwich Janus membrane of cellulose acetate and polyurethane nanofibers for oil-water separation. Cellulose 2022, 29, 1841–1853. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, Y.; Wang, B.; Tian, H.F.; Weng, Y.X.; Men, S. Compatibilization and toughening of biodegradable polylactic acid/cellulose acetate films by polyamide amine dendrimers. J. Polym. Environ. 2022, 30, 1758–1771. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, W.X.; Wang, X.F.; Liu, L.F.; Yu, J.Y.; Ding, B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles. ACS Nano 2020, 14, 1045–1054. [Google Scholar] [CrossRef]
- Zhang, J.; Bao, Y.; Guo, M.Y.; Peng, Z.H. Preparation and properties of nano SiO2 modified cellulose acetate aqueous polymer emulsion for leather finishing. Cellulose 2021, 28, 7213–7225. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Y.; Zhao, D.; Chen, Z. Synthesis and characterization of carboxylate waterborne cellulose emulsion based on cellulose acetate. Cellulose 2017, 24, 2049–2057. [Google Scholar] [CrossRef]
- Abdel-Naby, A.S.; Al-Ghamdi, A.A. Chemical modification of cellulose acetate by N-(phenyl amino) maleimides: Characterization and properties. Int. J. Biol. Macromol. 2014, 68, 21–27. [Google Scholar] [CrossRef]
- Röhrl, M.; Ködel, J.F.; Timmins, R.L.; Callsen, C.; Aksit, M.; Fink, M.F.; Seibt, S.; Weidinger, A.; Battagliarin, G.; Ruckdäschel, H.; et al. New functional polymer materials via click chemistry-based modification of cellulose acetate. ACS Omega 2023, 8, 9889–9895. [Google Scholar] [CrossRef]
- Xu, C.X.; Cao, M.H.; Peng, J.; Li, Y.Q.; Zhai, M.L. Modification of cellulose triacetate membranes with glycidyl methacrylate via γ-ray initiated controlled grafting. Chin. J. Appl. Chem. 2020, 37, 293–300. [Google Scholar]
- Wang, S.H.; Gao, Z.W.; Qi, X.Y.; Li, C.X.; Xie, Y.X.; Yang, X.; Song, W.J.; Liu, Z.X. Eco-friendly superhydrophobic MOF-doped with cellulose acetate foam for efficient oil-water separation. J. Environ. Chem. Eng. 2022, 10, 108521. [Google Scholar] [CrossRef]
- Shang, Y.W.; Si, Y.; Raza, A.; Yang, L.P.; Mao, X.; Ding, B.; Yu, J.Y. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale 2012, 4, 7847–7854. [Google Scholar] [CrossRef] [PubMed]
- Arslan, O.; Aytac, Z.; Uyar, T. Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl. Mater. Interfaces 2016, 8, 19747–19754. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.J.; Guo, Z.F.; Zhao, J.T.; Yu, Q.; Wang, F.; Han, J.Q.; Hui, P.; Yao, J.F.; Zhang, Q.L.; Samal, S.K.; et al. Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Sep. Purif. Technol. 2017, 177, 71–85. [Google Scholar] [CrossRef]
- Xiong, C.D.; Quan, Z.Z.; Zhang, H.N.; Wang, L.M.; Qin, X.H.; Wang, R.W.; Yu, J.Y. Hierarchically tunable structure of polystyrene-based microfiber membranes for separation and selective adsorption of oil-water. Appl. Surf. Sci. 2020, 532, 147400. [Google Scholar] [CrossRef]
- Yu, X.T.; Zhang, X.; Xing, Y.J.; Zhang, H.J.; Jiang, W.W.; Zhou, K.; Li, Y.Q. Development of Janus cellulose acetate fiber (CA) membranes for highly efficient oil-water separation. Materials 2021, 14, 5916. [Google Scholar] [CrossRef]
- Sheng, J.L.; Xu, Y.; Yu, J.Y.; Ding, B. Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application. ACS Appl. Mater. Interfaces 2017, 9, 15139–15147. [Google Scholar] [CrossRef]
- Huang, M.; Si, Y.; Tang, X.M.; Zhu, Z.G.; Ding, B.; Liu, L.F.; Zheng, G.; Luo, W.J.; Yu, J.Y. Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A 2013, 1, 14071. [Google Scholar] [CrossRef]
- Tang, X.M.; Si, Y.; Ge, J.L.; Ding, B.; Liu, L.F.; Zheng, G.; Luo, W.J.; Yu, J.Y. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation. Nanoscale 2013, 5, 11657–11664. [Google Scholar] [CrossRef]
- Ding, S.R. Preparation and Adsorption Properties of Three-Dimensional Nanofiber Hydrophobic Sponge; BUCT: Beijing, China, 2018. [Google Scholar]
- Zhang, Y.; Chen, X.Y.; Li, Y.; Liu, J.; Liu, K.; Xu, Y.Q.; Zhang, X.M.; Zeng, Y.C. Cellulose acetate-based composite fibrous mat with mechanically stable pore structure showing excellent hydrophobicity for effective oil spill treatment. Compos. Commun. 2024, 51, 102093. [Google Scholar] [CrossRef]
- Weng, K.; Li, F.; Tanaka, T.; Zhou, Y.M. Superhydrophobicity and biodegradability of silane-modified poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate]/deacetylated cellulose acetate composite nanofiber membrane. Polym. Degrad. Stab. 2024, 227, 110862. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Teresiute, A.; Uebe, J.; Tadzijevas, A. Sustainable cross-linkers for the synthesis of cellulose-based aerogels: Research and application. J. Mar. Sci. Eng. 2022, 10, 491. [Google Scholar] [CrossRef]
- Ruello, J.L.; Kim, H. Fabrication of lightweight and robust cryogel with opposite wettability for effective oil-water separation via sustainable and toxic-free approach. J. Environ. Chem. Eng. 2021, 9, 105477. [Google Scholar] [CrossRef]
- Wu, L.; Gao, L.; Li, J.; Wu, T.Y.; Chen, D.L.; Zhou, M.X.; Sui, G. Ultralight, super-compression, and hydrophobic nanofibrous aerogels from cellulose acetate/polyethylene oxide nanofibers for efficient and recyclable oil absorption. New J. Chem. 2023, 47, 7930–7938. [Google Scholar] [CrossRef]
- Tripathi, A.; Parsons, G.N.; Rojas, O.J.; Khan, S.A. Featherlight, mechanically robust cellulose ester aerogels for environmental remediation. ACS Omega 2017, 2, 4297–4305. [Google Scholar] [CrossRef]
- Ferjani, E.; Roudesli, S.; Deratani, A. Desalination of brackish water from Tunisian Sahel using composite polymethylhydrosiloxane-cellulose acetate membranes. Desalination 2004, 162, 103–109. [Google Scholar] [CrossRef]
- Nevárez, L.M.; Casarrubias, L.B.; Canto, O.S.; Celzard, A.; Fierro, V.; Gómez, R.I.; Sánchez, G.G. Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification. Carbohydr. Polym. 2011, 86, 732–741. [Google Scholar] [CrossRef]
- Xu, G.M. Thin Film Filtration Composite Membrane Based on Nanofibrous Scaffolds and Cellulose Triacetate (CTA) Coatings; DHU: Shanghai, China, 2012. [Google Scholar]
- Iqhrammullah, M.; Marlina, M.; Khalil, H.P.S.A.; Kurniawan, K.H.; Suyanto, H.; Hedwig, R.; Karnadi, I.; Olaiya, N.G.; Abdullah, C.K.; Abdulmadjid, S.N. Characterization and performance evaluation of cellulose acetate-polyurethane film for lead II ion removal. Polymers 2020, 12, 1317. [Google Scholar] [CrossRef]
- Tan, N.; Ucab, P.; Dadol, G.; Jabile, L.; Talili, I.; Cabaraban, M. A review of desalination technologies and its impact in the Philippines. Desalination 2022, 534, 115805. [Google Scholar] [CrossRef]
- Cai, Y.H.; Wu, J.F.; Shi, S.; Li, J.Z.; Kim, K. Advances in desalination technology and its environmental and economic assessment. J. Clean. Prod. 2023, 397, 136498. [Google Scholar] [CrossRef]
- Teoh, G.; Jawad, Z.; Chan, D.; Low, S. Surface regeneration of templated PVDF membrane for efficient microalgae-rich high saline aquaculture wastewater treatment in membrane distillation. Desalination 2023, 565, 116858. [Google Scholar] [CrossRef]
- Yadav, P.; Ismail, N.; Essalhi, M.; Tysklind, M.; Athanassiadis, D.; Tavajohi, N. Assessment of the environmental impact of polymeric membrane production. J. Membr. Sci. 2021, 622, 118987. [Google Scholar] [CrossRef]
- Parani, S.; Oluwafemi, O. Membrane distillation: Recent configurations, membrane surface engineering, and applications. Membranes 2021, 11, 934. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Noby, H.; Zkria, A.; Mousa, H.; Yoshitake, T.; ElKady, M. Engineered eco-friendly composite membranes with superhydrophobic/hydrophilic dual-layer for DCMD system. Chemosphere 2024, 352, 141468. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, D.; Shah, P.; Ellinas, K.; Kappl, M.; Sapalidis, A.; Butt, H.; Gogolides, E. Antifouling plasma-treated membranes with stable superhydrophobic properties for membrane distillation. ACS Appl. Polym. Mater. 2023, 5, 9785–9795. [Google Scholar] [CrossRef]
- Eljaddi, T.; Favre, E.; Roizard, D. Design and preparation a new composite hydrophilic/hydrophobic membrane for desalination by pervaporation. Membranes 2023, 13, 599. [Google Scholar] [CrossRef]
- Lv, J.Y.; Song, Y.L.; Jiang, L.; Wang, J.J. Bio-inspired strategies for anti-icing. ACS Nano 2014, 8, 3152–3169. [Google Scholar] [CrossRef]
- Wang, G.W.; Guo, Z.G. Liquid infused surfaces with anti-icing properties. Nanoscale 2019, 11, 22615–22635. [Google Scholar] [CrossRef]
- Yao, X.; Chen, B.H.; Morelle, X.; Suo, Z.G. Anti-icing propylene-glycol materials. Extrem. Mech. Lett. 2021, 44, 101225. [Google Scholar] [CrossRef]
- Chen, H.J.; Zhang, M.; Tran-Phu, T.; Bo, R.H.; Shi, L.; Bernardo, I.; Bing, J.M.; Pan, J.; Singh, S.; Lipton-Duffin, J.; et al. Integrating low-cost earth-abundant co-catalysts with encapsulated perovskite solar cells for efficient and stable overall solar water splitting. Adv. Funct. Mater. 2021, 31, 2008245. [Google Scholar] [CrossRef]
- Hong, J.N.; Xu, C.Y.; Deng, B.W.; Gao, Y.; Zhu, X.; Zhang, X.H.; Zhang, Y.W. Photothermal chemistry based on solar energy: From synergistic effects to practical applications. Adv. Sci. 2022, 9, 2103926. [Google Scholar] [CrossRef]
- Tan, S.D.; Han, X.; Cheng, S.M.; Guo, P.; Wang, X.; Che, P.D.; Jin, R.Y.; Jiang, L.; Heng, L.P. Photothermal solid slippery surfaces with rapid self-healing, improved anti/de-icing and excellent stability. Macromol. Rapid Commun. 2023, 44, 2200816. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yang, M.P.; Guo, X.; Xue, G.; Wang, H.; Ma, C.; Bai, Z.X.; Zhou, X.J.; Wang, Z.K.; Liu, B.; et al. Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 2023, 137, 101144. [Google Scholar] [CrossRef]
- Yin, X.B.; Yang, R.G.; Tan, G.; Fan, S.H. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 2020, 370, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Liang, Y.; Li, W.; Xu, N.; Zhu, B.; Wu, Z.; Wang, X.Y.; Fan, S.H.; Wang, M.H.; Zhu, J. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 2022, 8, eabj9756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xue, C.; Guo, X.; Wang, H.; Huang, M.; Ma, C.; Lv, S.; Gao, R.; Deng, F.; Wu, Y. Fabrication of a self-cleaning cellulose acetate/SiO2 film for sustainable radiative cooling. Mater. Lett. 2024, 363, 136283. [Google Scholar] [CrossRef]
- Liu, M.; Bu, X.B.; Liu, R.Q.; Feng, M.X.; Zhang, Z.W.; He, M.; Huang, J.; Zhou, Y.M. Construction of robust silica-hybridized cellulose aerogels integrating passive radiative cooling and thermal insulation for year-round building energy saving. Chem. Eng. J. 2024, 481, 148780. [Google Scholar] [CrossRef]
- MacLeod, M.; Arp, H.; Tekman, M.; Jahnk, A. The global threat from plastic pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef]
- Nair, S.; Yan, N. Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 2015, 22, 3137–3150. [Google Scholar] [CrossRef]
- Hult, E.; Ropponen, J.; Poppius-Levlin, K.; Ohra-Aho, T.; Tamminen, T. Enhancing the barrier properties of paper board by a novel lignin coating. Ind. Crops Prod. 2013, 50, 694–700. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Q.S.; Wang, H.; Tao, Y.H.; Lu, J.; Pan, G.F.; Du, J.; Wang, H.S. Structurally robust, hydrophobicity and multifunctional black cellulose/lignin-based mulch film for green agriculture. Ind. Crops Prod. 2024, 219, 118911. [Google Scholar] [CrossRef]
- Dong, G.P.; Yuan, Z.Q.; Guo, X.J. Functional properties of nano-SiO2/pinewood-derived cellulose acetate composite film for packaging application. Ind. Crops Prod. 2023, 204, 117253. [Google Scholar] [CrossRef]
- Shorey, R.; Mekonnen, T. Oleic acid decorated kraft lignin as a hydrophobic and functional filler of cellulose acetate films. Int. J. Biol. Macromol. 2024, 268, 131672. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Zaitoon, A.; Sharma, S.; Manickavasagan, A.; Lim, L. Enhanced hydrophobic paper-sheet derived from Miscanthus × giganteus cellulose fibers coated with esterified lignin and cellulose acetate blend. Int. J. Biol. Macromol. 2024, 223, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Rosi-Marshall, E.J.; Snow, D.; Bartelt-Hunt, S.L.; Paspalof, A.; Tank, J.L. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. J. Hazard. Mater. 2015, 282, 18–25. [Google Scholar] [CrossRef]
- Tian, G.D.; Duan, C.; Lu, W.L.; Liu, X.S.; Zhao, B.K.; Meng, Z.X.; Wang, Q.; Nie, S.X. Cellulose acetate-based electrospun nanofiber aerogel with excellent resilience and hydrophobicity for efficient removal of drug residues and oil contaminations from wastewater. Carbohydr. Polym. 2024, 329, 121794. [Google Scholar] [CrossRef]
- Penabad-Peña, L.; Herrera-Morales, J.; Betancourt, M.; Nicolau, E. Cellulose acetate/P4VP-b-PEO membranes for the adsorption of electron-deficient pharmaceutical compounds. ACS Omega 2019, 4, 22456–22463. [Google Scholar] [CrossRef]
- Kosaka, P.M.; Kawano, Y.; Salvadori, M.C.; Petri, D.F.S. Characterization of ultrathin films of cellulose esters. Cellulose 2005, 12, 351–359. [Google Scholar] [CrossRef]
- Abad, S.N.K.; Mozammel, M.; Moghaddam, J.; Moghaddam, J.; Mostafaei, A.; Chmielus, M. Highly porous, flexible and robust cellulose acetate/Au/ZnO as a hybrid photocatalyst. Appl. Surf. Sci. 2020, 526, 146237. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, J.; Kim, J. Photocatalytic activity and filtration performance of hybrid TiO2-cellulose acetate nanofibers for air filter applications. Polymers 2021, 13, 1331. [Google Scholar] [CrossRef]
- Gomez-Hermoso-de-Mendoza, J.; Gutierrez, J.; Tercjak, A. Highly hydrophobic cellulose acetate mats modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer and TiO2 nanoparticles by electrospinning. Cellulose 2023, 30, 9501–9515. [Google Scholar] [CrossRef]
- Kaschuk, J.; Borghei, M.; Solin, K.; Tripathi, A.; Khakalo, A.; Leite, F.; Branco, A.; Sousa, M.; Frollini, E.; Rojas, O. Cross-Linked and Surface-Modified Cellulose Acetate as a Cover Layer for Paper-Based Electrochromic Devices. ACS Appl. Polym. Mater. 2021, 3, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.Y.; Chen, Y.L.; Sha, J.; Xu, Y.L.; Chen, S.; Xu, F. All-cellulose nanofiber-based sustainable triboelectric nanogenerators for enhanced energy harvesting. Polymers 2024, 16, 1784. [Google Scholar] [CrossRef] [PubMed]
- Mogharbel, R.; Alkhamis, K.; Sallam, S.; Munshi, A.; Alshareef, M.; Alhasani, M.; Shaaban, F.; El-Metwal, N. Preparation of color-tunable electrospun cellulose acetate-polycaprolactone nanofibrous film for information encryption. J. Appl. Polym. Sci. 2023, 140, e54631. [Google Scholar] [CrossRef]
- Tian, B.Y.; Hu, M.M.; Yang, Y.W.; Wu, J. A Janus membrane doped with carbon nanotubes for wet–thermal management. Nanoscale Adv. 2023, 5, 4579–4588. [Google Scholar] [CrossRef] [PubMed]
Modification Type | Polymer | Specific Process | Key Substance | WCA | Reference |
---|---|---|---|---|---|
Improved molding process | CA | TINIPS | - | 147° | [29] |
CTA | TIPS | - | 137.5° | [30] | |
CA-PAN | Electrospinning | - | 131° | [31] | |
CTA | Electrospinning | - | 141.6° | [32] | |
CA | Template | - | 130–140° | [33,34] | |
Introduction of exogenous substances | CA | Electrospinning | SiO2 | 108° | [35] |
CA | Electrospinning | ZnO | 124° | [36] | |
CA-CA/ZnO | Pair spray | ZnO | 152° | [37] | |
CA | TINIPS | Graphene | 151° | [38] | |
Post-treatment | CA | Electrostatic interactions | SiO2 | 145 ± 0.08° | [39] |
CA | Coating | SiO2 | 154° | [40] | |
CTA | Respiration chart | - | 120 ± 1.3° | [41] | |
Organic silicon/fluorine modifiers | CA | Cross-linking | Siloxane | >100° | [44] |
CA | Coating | PDMS/SiO2 | 157.3 ± 3° | [46] | |
CA/SiO2 | Coating | FAS | 156° | [47] | |
CAAs | Chemical vapor-phase | PFDA | 136° | [48] | |
Blending introduction | CA | VIPS | SBS | 145° | [49] |
CA | Blending | PNIPAM | >130° | [51] | |
PU-CA/PU-CA | Layer-by-layer electrospinning | PU | 123.8 ± 3° | [52] | |
PLA/CA | Blending | PAMAM | 79.9° | [53] | |
Grafting/cross-linking introduction | CA | Grafting | BIC | 132.2° | [54] |
CA | Grafting | SiO2 | 104.3° | [55] | |
CA | Cross-linking | Acrylic | 109.9° | [56] | |
CTA | Thio-Michael click reactions | Fatty alkyl thiols | 100° | [58] | |
CTA | RAFT | PGMA | 105.4° | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Li, F.; Di, Y.; Zhang, X.; Lu, J.; Wang, L.; Yan, Z.; Wang, W.; Liu, M.; Fei, P. Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review. Molecules 2024, 29, 5127. https://doi.org/10.3390/molecules29215127
An Y, Li F, Di Y, Zhang X, Lu J, Wang L, Yan Z, Wang W, Liu M, Fei P. Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review. Molecules. 2024; 29(21):5127. https://doi.org/10.3390/molecules29215127
Chicago/Turabian StyleAn, Yaxin, Fu Li, Youbo Di, Xiangbing Zhang, Jianjun Lu, Le Wang, Zhifeng Yan, Wei Wang, Mei Liu, and Pengfei Fei. 2024. "Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review" Molecules 29, no. 21: 5127. https://doi.org/10.3390/molecules29215127
APA StyleAn, Y., Li, F., Di, Y., Zhang, X., Lu, J., Wang, L., Yan, Z., Wang, W., Liu, M., & Fei, P. (2024). Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review. Molecules, 29(21), 5127. https://doi.org/10.3390/molecules29215127