Rapid Preparation of Platinum Catalyst in Low-Temperature Molten Salt Using Microwave Method for Formic Acid Catalytic Oxidation Reaction
Abstract
:1. Introduction
2. Results
2.1. Characterization of Pt Nanoparticles
2.2. Preparation Conditions and Mechanism Analysis
2.3. Electrochemical Performance Analysis
3. Experimental Sections
3.1. Preparation of Pt Nanoparticles
3.2. Preparation of 20% Pt/C Catalyst
3.3. Characterization of Pt Nanoparticles
3.4. Electrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Cheng, T.; Goddard, W.A., III. Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 Times Better than Pt. J. Am. Chem. Soc. 2020, 142, 8625–8632. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B.Y. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells. Acc. Chem. Res. 2021, 54, 311–322. [Google Scholar] [CrossRef]
- Labata, M.F.; Li, G.; Ocon, J.; Chuang, P.-Y.A. Insights on platinum-carbon catalyst degradation mechanism for oxygen reduction reaction in acidic and alkaline media. J. Power Sources 2021, 487, 163. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, X.; Su, Y.-Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E.J.; Lou, X.W.; et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856. [Google Scholar] [CrossRef]
- Chen, S.; Li, M.; Gao, M.; Jin, J.; van Spronsen, M.A.; Salmeron, M.B.; Yang, P. High-Performance Pt-Co Nanoframes for Fuel-Cell Electrocatalysis. Nano Lett. 2020, 20, 1974–1979. [Google Scholar] [CrossRef]
- Bu, L.; Feng, Y.; Yao, J.; Guo, S.; Guo, J.; Huang, X. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811–2821. [Google Scholar] [CrossRef]
- Ding, S.; Hülsey, M.J.; Pérez-Ramírez, J.; Yan, N. Transforming Energy with Single-Atom Catalysts. Joule 2019, 3, 2897–2929. [Google Scholar] [CrossRef]
- Li, L.; Chang, X.; Lin, X.; Zhao, Z.J.; Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Wang, H. Mechanism insight into twin-dependent photocatalysis in near-infrared light-responsive Cu2O nanocrystals with rich oxygen vacancies. Nano Mater. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Gong, H.; Sun, S.G.; Chen, Y.J.; Chen, S.P. In Situ Microscope FTIRS Studies of CO Adsorption on an Individually Addressable Array of Nanostructured Pt Microelectrodes-An Approach of Combinatorial Analysis of Anomalous IR Properties. J. Phys. Chem. B 2004, 108, 11575–11584. [Google Scholar] [CrossRef]
- Visintin, A.; Canullo, J.C.; Triaca, W.E.; Arvia, A.J. Changes in real surface area, crystallographic orientation and morphology of platinum electrodes caused by periodic potential treatments: Phenomenological approach. J. Electroanal. Chem. Interfacial Electrochem. 1988, 239, 67–89. [Google Scholar] [CrossRef]
- Egli, W.A.; Visintin, A.; Triaca, W.E.; Arvia, A.J. The development of facetting and roughening at platinum polyfacetted single-crystal electrodes in a chloroplatinic acid solution. Appl. Surf. Sci. 1993, 68, 583–593. [Google Scholar] [CrossRef]
- Chen, W.; Kim, J.; Sun, S.; Chen, S. Electro-oxidation of formic acid catalyzed by FePt nanoparticles. Phys. Chem. Chem. Phys. 2006, 8, 2779–2786. [Google Scholar] [CrossRef] [PubMed]
- Gilmer, G.H.; Huang, H.; Roland, C. Thin flm deposition: Fundamentals and modeling. Comput. Mater. Sci. 1998, 12, 354–380. [Google Scholar] [CrossRef]
- Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975. [Google Scholar] [CrossRef]
- Ahmadi, T.S.; Wang, Z.L.; Green, T.C.; Henglein, A.; El-Sayed, M.A. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science 1996, 272, 1924–1926. [Google Scholar] [CrossRef]
- Rao, C.; Trivedi, D. Chemical and electrochemical depositions of platinum group metals and their applications. Coord. Chem. Rev. 2005, 249, 613–631. [Google Scholar] [CrossRef]
- Herricks, T.; Chen, J.; Xia, Y. Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate. Nano Lett. 2004, 4, 2367–2371. [Google Scholar] [CrossRef]
- Song, H.; Kim, F.; Connor, S.; Somorjai, G.A.; Yang, P. Pt Nanocrystals: Shape Control and Langmuir−Blodgett Monolayer Formation. J. Phys. Chem. B 2004, 109, 188–193. [Google Scholar] [CrossRef]
- Chen, J.; Herricks, T.; Xia, Y. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics. Angew. Chem. Int. Ed. Engl. 2005, 44, 2589–2592. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J. Power Sources 2010, 195, 1103–1106. [Google Scholar] [CrossRef]
- Solla-Gullón, J.; Montiel, V.; Aldaz, A.; Clavilier, J. Electrochemical characterisation of platinum nanoparticles prepared by microemulsion: How to clean them without loss of crystalline surface structure. J. Electroanal. Chem. 2000, 491, 69–77. [Google Scholar] [CrossRef]
- Yang, H.; Dai, L.; Xu, D.; Fang, J.; Zou, S. Electrooxidation of methanol and formic acid on PtCu nanoparticles. Electrochim. Acta 2010, 55, 8000–8004. [Google Scholar] [CrossRef]
- Xin, Y.; Nagata, T.; Kato, K.; Shirai, T. Microwave-Assisted Synthesis of Pt Nanoparticles via Liquid-Phase Polyol Reaction for Catalytic Volatile Organic Compound Elimination. ACS Appl. Nano Mater. 2022, 5, 4305–4315. [Google Scholar] [CrossRef]
- Chen, J.; Herricks, T.; Geissler, M.; Xia, Y. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J. Am. Chem. Soc. 2004, 126, 10854–10855. [Google Scholar] [CrossRef] [PubMed]
- Demirci, U.B.; Miele, P. Reaction mechanisms of the hydrolysis of sodium borohydride: A discussion focusing on cobalt-based catalysts. Comptes Rendus. Chim. 2014, 17, 707–716. [Google Scholar] [CrossRef]
- Meier, J.C.; Galeano, C.; Katsounaros, I.; Topalov, A.A.; Kostka, A.; Schüth, F.; Mayrhofer, K.J.J. Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catal. 2012, 2, 832–843. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Y.H.; Wu, C. Preparation and characterization of Pt/C catalysts stabilized by ethylene glycol. Chin. J. Process Eng. 2009, 9, 1198–1203. [Google Scholar]
- de Martimprey, H.; Vauthier, C.; Malvy, C.; Couvreur, P. Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. Eur. J. Pharm. Biopharm. 2009, 71, 490–504. [Google Scholar] [CrossRef]
- Isomaa, B.; Reuter, J.; Djupsund, B.M. The subacute and chronic toxicity of cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Arch. Toxicol. 1976, 35, 91–96. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, S.; You, H.; Wu, Y.; Ding, B. Synthesis of surfactant-free Pt concave nanoparticles in a freshly-made or recycled molten salt. Green. Chem. 2012, 14, 3197–3203. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, C.; You, H.; Yang, S.; Guo, Y.; Ding, B.; Song, X. A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions. J. Mater. Chem. 2012, 22, 4780–4789. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.A.; Dimitratos, N.; Hammond, C.; Brett, G.L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R.L.; Carley, A.F.; et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.Q.; Jiang, S.P.; Liang, Y.M.; Shen, P.K. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J. Phys. Chem. B 2006, 110, 5343–5350. [Google Scholar] [CrossRef]
- Song, S.; Wang, Y.; Shen, P.K. Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction. J. Power Sources 2007, 170, 46–49. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, J.; Lee, J.Y.; Liu, Z. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Mater. Chem. Phys. 2005, 91, 124–129. [Google Scholar] [CrossRef]
- Chen, W.-X.; Lee, J.Y.; Liu, Z. Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process. Mater. Lett. 2004, 58, 3166–3169. [Google Scholar] [CrossRef]
- Chen, W.X.; Lee, J.Y.; Liu, Z.L. Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem. Commun. 2002, 21, 2588–2589. [Google Scholar] [CrossRef]
- Zhao, Y.C. Preparation of PtCu-Based Alloy Catalysts and Their Methanol Oxidation Performance Research on; Harbin Institute of Technology: Harbin, China, 2022. [Google Scholar]
- Koo, J.H.; Kim, D.; Kim, J.G.; Jeong, H.; Kim, J.; Lee, I.S. A symmetric silica encapsulation toward colloidal janus nanoparticles: A concave nanoreactor for template-synthesis of an electocatalytic hollow Pt nanodendrite. Nanoscale 2016, 8, 14593–14599. [Google Scholar] [CrossRef]
- Oh, A.; Sa, Y.J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S.H.; Lee, K. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 2016, 8, 16379–16386. [Google Scholar] [CrossRef]
- Liu, X.J.; Sun, Y.D.; Yin, X.; Jia, C.; Ma, M.; Chen, Y. Enhanced methanol electrooxidation over defect-rich Pt-M (M= Fe, Co, Ni) ultrathin nanowires. Energy Fuels 2020, 34, 10078–10086. [Google Scholar] [CrossRef]
- Vidaković, T.; Christov, M.; Sundmacher, K. The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim. Acta 2007, 52, 5606–5613. [Google Scholar] [CrossRef]
- Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. Engl. 2007, 46, 4060–4063. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I.S.; He, D.; Tang, H.; Mu, S. Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation. ACS Catal. 2018, 8, 7578–7584. [Google Scholar] [CrossRef]
- ShyamYadav, R.; Gebru, M.G.; Teller, H.; Schechter, A.; Kornweitz, H. The origins of formic acid electrooxidation on selected surfaces of Pt, Pd, and their alloys with Sn. J. Mater. Chem. A 2024, 12, 3311–3322. [Google Scholar] [CrossRef]
- Capon, A.; Parsons, R. The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 45, 205–231. [Google Scholar] [CrossRef]
- Park, S.; Xie, Y.; Weaver, M.J. Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles: Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation. Langmuir 2002, 18, 5792–5798. [Google Scholar] [CrossRef]
- Zhong, W.H.; Wang, R.Y.; Zhang, D.J.; Liu, C.B. Theoretical Study of the Oxidation of Formic Acid on the PtAu(111) Surface in the Continuum Water Solution Phase. J. Phys. Chem. C 2012, 116, 24143–24150. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, D.; Yang, F.; Mei, D.; Zhang, Z.; Chen, Y.X. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Phys. Chem. Chem. Phys. 2013, 15, 4367–4376. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.; Zhong, C.; Hu, W. Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Materials 2022, 15, 1554. [Google Scholar] [CrossRef]
- Nacys, A.; Simkunaitė, D.; Balciunaite, A.; Zabielaite, A.; Upskuviene, D.; Levinas, R.; Jasulaitiene, V.; Kovalevskij, V.; Simkunaite-Stanyniene, B.; Tamasauskaite-Tamasiunaite, L.; et al. Pt-Coated Ni Layer Supported on Ni Foam for Enhanced Electro-Oxidation of Formic Acid. Materials 2023, 16, 6427. [Google Scholar] [CrossRef] [PubMed]
- Elnabawy, A.O.; Murray, E.A.; Mavrikakis, M. Trends in Formic Acid Electro-Oxidation on Transition Metals Alloyed with Platinum and Palladium. J. Phys. Chem. C 2022, 126, 4374–4390. [Google Scholar] [CrossRef]
- Li, C.; Tang, Z.; Shi, L.; Li, Y.; Ji, Y.; Zhang, K.; Yang, Z.; Yan, Y.-M. Constructing a Triangle Ensemble of Pt Clusters for Enhanced Direct-Pathway Electrocatalysis of Formic Acid Oxidation. Chemistry 2023, 5, 1621–1633. [Google Scholar] [CrossRef]
- Fan, H.; Cheng, M.; Wang, L.; Song, Y.; Cui, Y.; Wang, R. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 2018, 48, 1–9. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Yang, H.; Liu, Q.; Zhang, J.; Fang, J.; Zou, S.; Sun, K. Solution-Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum–Copper Nanocubes. Angew. Chem. Int. Ed. 2009, 48, 4217–4221. [Google Scholar] [CrossRef]
- Wang, R.; Liao, S.; Ji, S. High performance Pd-based catalysts for oxidation of formic acid. J. Power Sources 2008, 180, 205–208. [Google Scholar] [CrossRef]
Catalyst | ECSA | Peak Mass Current Densities | Peak Area Current Density | Mass Current Density at 0.45 V | Initial Potential Value |
---|---|---|---|---|---|
Pt/C | 5.48 m2/g | 502.00 mA/mgPt | 20.83 mA/cm2Pt | 300.00 mA/mgPt | 0.202 V |
Pt/C (JM) | 45.90 m2/g | 109.45 mA/mgPt | 0.22 mA/cm2Pt | 82.03 mA/mgPt | 0.305 V |
Material | Method | Peak Mass Current Density | Peak Area Current Density | Electrolyte | Ref. |
---|---|---|---|---|---|
Pt/C | Co-reduction | 150 mA·mg−1Pt | - | 0.5 M H2SO4 + 0.5 M CHOOH | [21] |
Pt/C | - | 49.43 mA·mg−1Pt | - | 0.5 M H2SO4 + 0.5 M CHOOH | [46] |
Pt/C | Ultrasound-assisted | 95.00 mA·mg−1Pt | - | 0.5 M H2SO4 + 1 M CHOOH | [55] |
PtCu/C | Molten salt | - | 2.15 mA·cm−2Pt | 0.1 M HClO4 + 0.5 M CHOOH | [32] |
PtCu spherical | Polyol | - | 0.95 mA·cm−2Pt | 0.1 M HClO4 + 0.5 M CHOOH | [23] |
PtCu cubic | Colloidal | - | 1.12 mA·cm−2Pt | 0.1 M HClO4 + 0.5 M CHOOH | [56] |
Pt spherical | Polyol | - | 0.45 mA·cm−2Pt | 0.1 M HClO4 + 0.5 M CHOOH | [23] |
Pt NPs/C | Microwave | 502.00 mA·mg−1Pt | 20.83 mA·cm−2Pt | 0.1 M HClO4 + 0.5 M CHOOH | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Hu, X.; Ling, H.; Li, J.; Wang, W.; Guo, J.; Liu, R.; Lv, C.; Lu, Z.; Guo, Y. Rapid Preparation of Platinum Catalyst in Low-Temperature Molten Salt Using Microwave Method for Formic Acid Catalytic Oxidation Reaction. Molecules 2024, 29, 5128. https://doi.org/10.3390/molecules29215128
Zhao H, Hu X, Ling H, Li J, Wang W, Guo J, Liu R, Lv C, Lu Z, Guo Y. Rapid Preparation of Platinum Catalyst in Low-Temperature Molten Salt Using Microwave Method for Formic Acid Catalytic Oxidation Reaction. Molecules. 2024; 29(21):5128. https://doi.org/10.3390/molecules29215128
Chicago/Turabian StyleZhao, Haidong, Xiaoyan Hu, Hongbiao Ling, Ji Li, Weixu Wang, Jingtao Guo, Rui Liu, Chao Lv, Zhen Lu, and Yong Guo. 2024. "Rapid Preparation of Platinum Catalyst in Low-Temperature Molten Salt Using Microwave Method for Formic Acid Catalytic Oxidation Reaction" Molecules 29, no. 21: 5128. https://doi.org/10.3390/molecules29215128
APA StyleZhao, H., Hu, X., Ling, H., Li, J., Wang, W., Guo, J., Liu, R., Lv, C., Lu, Z., & Guo, Y. (2024). Rapid Preparation of Platinum Catalyst in Low-Temperature Molten Salt Using Microwave Method for Formic Acid Catalytic Oxidation Reaction. Molecules, 29(21), 5128. https://doi.org/10.3390/molecules29215128