Cold-Active Lipase from the Ice Cave Psychrobacter SC65A.3 Strain, a Promising Biocatalyst for Silybin Acylation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Primary Structure Analysis of PSL2 from Psychrobacter SC65A.3
2.2. Cloning, Expression, and Purification of PSL2
2.3. Functional Characterization of the Recombinant PSL2
2.3.1. Effects of pH and Solvents
2.3.2. Substrate Specificity
2.3.3. Thermal Stability
2.3.4. Kinetic Parameters
2.4. Silybin Acylation Using PSL2
3. Materials and Methods
3.1. Reagents
3.2. Cloning and Heterologous Expression of the Lip2 Gene from Psychrobacter SC65A.3 Genome
3.3. Purification of Recombinant PSL2
3.4. Lipase Assays
3.5. Sequence Analyses
3.6. Biocatalytic Acylation of Silybin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brockman, H.L. Lipases. In Encyclopedia of Biological Chemistry; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 729–732. [Google Scholar] [CrossRef]
- Mhetras, N.; Mapare, V.; Gokhale, D. Cold Active Lipases: Biocatalytic Tools for Greener Technology. Appl. Biochem. Biotechnol. 2021, 193, 2245–2266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, S.; Zeng, R. Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp 7195. J. Microbiol. Biotechnol. 2007, 17, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Casas-Godoy, L.; Gasteazoro, F.; Duquesne, S.; Bordes, F.; Marty, A.; Sandoval, G. Lipases: An Overview. Methods. Mol. Biol. 2018, 1835, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-Y.; Qian, Y.-K.; Li, Z.-F.; Wu, Z.-H.; Liu, H.; Li, Y.-Z. A Novel Cold-Adapted Lipase from Sorangium cellulosum Strain So0157-2: Gene Cloning, Expression, and Enzymatic Characterization. Int. J. Mol. Sci. 2011, 12, 6765–6780. [Google Scholar] [CrossRef]
- Pleiss, J.; Fischer, M.; Peiker, M.; Thiele, C.; Schmid, R.D. Lipase engineering database: Understanding and exploiting sequence–structure–function relationships. J. Mol. Catal. B Enzym. 2000, 10, 491–508. [Google Scholar] [CrossRef]
- Arpigny, J.L.; Jaeger, K.E. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 1999, 343, 177–183. [Google Scholar] [CrossRef]
- Parra, L.P.; Espina, G.; Devia, J.; Salazar, O.; Andrews, B.; Asenjo, J.A. Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: Expression of a cold-active lipase with high specific activity. Enzym. Microb. Technol. 2015, 68, 56–61. [Google Scholar] [CrossRef]
- Jaeger, K.E.; Dijkstra, B.W.; Reetz, M.T. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 1999, 53, 315–351. [Google Scholar] [CrossRef]
- Pinto Barbosa, G.; Mendes Maria Lins, F.; Antunes Maria de Souza, A. Technological Profile of Lipases in the Pharmaceutical Industry. Mini-Rev. Org. Chem. 2020, 17, 701–716. [Google Scholar] [CrossRef]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzym. Microb. Technol. 2006, 39, 235–251. [Google Scholar] [CrossRef]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 2016, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial enzymes: Industrial progress in 21st century. 3 Biotech. 2016, 6, 174. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Reyes, A.L.; Valero Barranco, F.; Sandoval, G. Recent Advances in Lipases and Their Applications in the Food and Nutraceutical Industry. Catalysts 2022, 12, 960. [Google Scholar] [CrossRef]
- Chandel, H.; Wang, B.; Verma, M.L. Chapter 28—Microbial lipases and their applications in the food industry. In Value-Addition in Food Products and Processing Through Enzyme Technology; Kuddus, M., Aguilar, C.N., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 381–394. [Google Scholar]
- Pandey, A.; Benjamin, S.; Soccol, C.R.; Nigam, P.; Krieger, N.; Soccol, V.T. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 1999, 29, 119–131. [Google Scholar] [CrossRef]
- Sood, A.; Kaur, M.; Gupta, R. Lipases and their Applications in Biomedical Field. Curr. Biotechnol. 2023, 12, 25–36. [Google Scholar] [CrossRef]
- Pohanka, M. Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review. Molecules 2019, 24, 616. [Google Scholar] [CrossRef]
- Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436. [Google Scholar] [CrossRef]
- Carrea, G.; Riva, S. Properties and Synthetic Applications of Enzymes in Organic Solvents. Angew. Chem. Int. Ed. Engl. 2000, 39, 2226–2254. [Google Scholar] [CrossRef]
- Ehlert, J.; Kronemann, J.; Zumbrägel, N.; Preller, M. Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters. Molecules 2019, 24, 4272. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell. Fact. 2020, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Khan, S.A.; Hamayun, M.; Lee, I.J. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, D.; Rajalakshmi, G. Microbial lipases: An overview of screening, production and purification. Biocatal. Agric. Biotechnol. 2019, 22, 101368. [Google Scholar] [CrossRef]
- Dartois, V.; Baulard, A.; Schanck, K.; Colson, C. Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim. Biophys. Acta 1992, 1131, 253–260. [Google Scholar] [CrossRef]
- Gilbert, E.J. Pseudomonas lipases: Biochemical properties and molecular cloning. Enzym. Microb. Technol. 1993, 15, 634–645. [Google Scholar] [CrossRef]
- Tufvesson, P.; Törnvall, U.; Carvalho, J.; Karlsson, A.J.; Hatti-Kaul, R. Towards a cost-effective immobilized lipase for the synthesis of specialty chemicals. J. Mol. Catal. B Enzym. 2011, 68, 200–205. [Google Scholar] [CrossRef]
- Vivek, K.; Sandhia, G.S.; Subramaniyan, S. Extremophilic lipases for industrial applications: A general review. Biotechnol. Adv. 2022, 60, 108002. [Google Scholar] [CrossRef]
- Royter, M.; Schmidt, M.; Elend, C.; Höbenreich, H.; Schäfer, T.; Bornscheuer, U.T.; Antranikian, G. Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 2009, 13, 769–783. [Google Scholar] [CrossRef]
- Cho, A.R.; Yoo, S.K.; Kim, E.J. Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 2000, 186, 235–238. [Google Scholar] [CrossRef]
- Gowland, P.; Kernick, M.; Sundaram, T.K. Thermophilic bacterial isolates producing lipase. FEMS Microbiol. Lett. 1987, 48, 339–343. [Google Scholar] [CrossRef]
- Sigurgísladóttir, S.; Konráòsdóttir, M.; Jónsson, Á.; Kristjánsson, J.K.; Matthiasson, E. Lipase activity of thermophilic bacteria from icelandic hot springs. Biotechnol. Lett. 1993, 15, 361–366. [Google Scholar] [CrossRef]
- Kim, H.-K.; Sung, M.-H.; Kim, H.-M.; Oh, T.-K. Occurrence of Thermostable Lipase in Thermophilic Bacillus Sp. Strain 398. Biosci. Biotechnol. Biochem. 1994, 58, 961–962. [Google Scholar] [CrossRef]
- Joseph, B.; Ramteke, P.W.; Thomas, G. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv. 2008, 26, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, M. Cold active lipases—An update. Front. Life Sci. 2016, 9, 226–238. [Google Scholar] [CrossRef]
- Arpigny, J.L.; Feller, G.; Gerday, C. Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim. Biophys. Acta Gene Struct. Expression 1993, 1171, 331–333. [Google Scholar] [CrossRef]
- Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and Hot Extremozymes: Industrial Relevance and Current Trends. Front. Bioeng. Biotechnol. 2015, 3, 148. [Google Scholar] [CrossRef]
- Gheorghita, G.R.; Paun, V.I.; Neagu, S.; Maria, G.-M.; Enache, M.; Purcarea, C.; Parvulescu, V.I.; Tudorache, M. Cold-Active Lipase-Based Biocatalysts for Silymarin Valorization through Biocatalytic Acylation of Silybin. Catalysts 2021, 11, 1390. [Google Scholar] [CrossRef]
- Borrelli, G.M.; Trono, D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int. J. Mol. Sci. 2015, 16, 20774–20840. [Google Scholar] [CrossRef]
- Hamid, B.; Bashir, Z.; Yatoo, A.M.; Mohiddin, F.; Majeed, N.; Bansal, M.; Poczai, P.; Almalki, W.H.; Sayyed, R.Z.; Shati, A.A.; et al. Cold-Active Enzymes and Their Potential Industrial Applications—A Review. Molecules 2022, 27, 5885. [Google Scholar] [CrossRef]
- D’Amico, S.; Collins, T.; Marx, J.C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: Challenges for life. EMBO Rep. 2006, 7, 385–389. [Google Scholar] [CrossRef]
- Brenchley, J.E. Psychrophilic microorganisms and their cold-active enzymes. J. Ind. Microbiol. 1996, 17, 432–437. [Google Scholar] [CrossRef]
- Purcarea, C. Microbial life in ice caves. In Ice Caves; Persoiu, A., Lauritzen, S.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 173–187. [Google Scholar]
- Paun, V.I.; Lavin, P.; Chifiriuc, M.C.; Purcarea, C. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core. Sci. Rep. 2021, 11, 514. [Google Scholar] [CrossRef] [PubMed]
- Paun, V.I. Diversity, Ecological Role and Applicative Potential of Microorganisms from Glacial Habitats. Doctoral Dissertation, School of Advanced Studies of the Romanian Academy (SCOSAAR), Bucharest, Romania, 11 January 2023. [Google Scholar]
- Delmas, D. Silymarin and Derivatives: From Biosynthesis to Health Benefits. Molecules 2020, 25, 2415. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef]
- Wellington, K.; Jarvis, B. Silymarin: A Review of its Clinical Properties in the Management of Hepatic Disorders. BioDrugs 2001, 15, 465–489. [Google Scholar] [CrossRef]
- Koushki, M.; Farrokhi Yekta, R.; Amiri-Dashatan, N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J. Funct. Foods 2023, 104, 105502. [Google Scholar] [CrossRef]
- Karimi, G.; Vahabzadeh, M.; Lari, P.; Rashedinia, M.; Moshiri, M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran. J. Basic. Med. Sci. 2011, 14, 308–317. [Google Scholar]
- Bedrníček, J.; Lorenc, F.; Jarošová, M.; Bártová, V.; Smetana, P.; Kadlec, J.; Jirotková, D.; Kyselka, J.; Petrášková, E.; Bjelková, M.; et al. Milk Thistle Oilseed Cake Flour Fractions: A Source of Silymarin and Macronutrients for Gluten-Free Bread. Antioxidants 2022, 11, 2022. [Google Scholar] [CrossRef]
- Available online: https://www.uleielixir.ro (accessed on 20 September 2024).
- Che, S.; Song, L.; Song, W.; Yang, M.; Liu, G.; Lin, X. Complete Genome Sequence of Antarctic Bacterium Psychrobacter sp. Strain G. Genome Announc. 2013, 1. [Google Scholar] [CrossRef]
- Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front. Microbiol. 2016, 7, 1408. [Google Scholar] [CrossRef]
- Nowak, J.S.; Otzen, D.E. Helping proteins come in from the cold: 5 burning questions about cold-active enzymes. BBA Adv. 2024, 5, 100104. [Google Scholar] [CrossRef] [PubMed]
- Gianese, G.; Argos, P.; Pascarella, S. Structural adaptation of enzymes to low temperatures. Protein Eng. Des. Sel. 2001, 14, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Violot, S.; Aghajari, N.; Czjzek, M.; Feller, G.; Sonan, G.K.; Gouet, P.; Gerday, C.; Haser, R.; Receveur-Bréchot, V. Structure of a Full Length Psychrophilic Cellulase from Pseudoalteromonas haloplanktis revealed by X-ray Diffraction and Small Angle X-ray Scattering. J. Mol. Biol. 2005, 348, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Feller, G. Psychrophilic enzymes: Strategies for cold-adaptation. Essays Biochem. 2023, 67, 701–713. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Matsuzaki, M.; Niimiya, K.; Seino, J.; Sugahara, Y.; Kawakita, M. Role of proline residues in conferring thermostability on aqualysin I. J. Biochem. 2007, 141, 213–220. [Google Scholar] [CrossRef]
- Bosshard, H.R.; Marti, D.N.; Jelesarov, I. Protein stabilization by salt bridges: Concepts, experimental approaches and clarification of some misunderstandings. J. Mol. Recognit. 2004, 17, 1–16. [Google Scholar] [CrossRef]
- Lin, X.; Cui, S.; Xu, G.; Wang, S.; Du, N.; Shen, J. Cloning and heterologous expression of two cold-active lipases from the Antarctic bacterium Psychrobacter sp. G. Polar Res. 2010, 29, 421–429. [Google Scholar] [CrossRef]
- Novototskaya-Vlasova, K.; Petrovskaya, L.; Yakimov, S.; Gilichinsky, D. Cloning, purification, and characterization of a cold-adapted esterase produced by Psychrobacter cryohalolentis K5T from Siberian cryopeg. FEMS Microbiol. Ecol. 2012, 82, 367–375. [Google Scholar] [CrossRef]
- Novototskaya-Vlasova, K.A.; Petrovskaya, L.E.; Rivkina, E.M.; Dolgikh, D.A.; Kirpichnikov, M.P. Characterization of a cold-active lipase from Psychrobacter cryohalolentis K5(T) and its deletion mutants. Biochemistry 2013, 78, 385–394. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, F.; Wang, J.; Pu, Z.; Jiang, B.; Bao, Y. Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124. Extremophiles 2018, 22, 287–300. [Google Scholar] [CrossRef]
- Parra, L.P.; Reyes, F.; Acevedo, J.P.; Salazar, O.; Andrews, B.A.; Asenjo, J.A. Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzym. Microb. Technol. 2008, 42, 371–377. [Google Scholar] [CrossRef]
- Zheng, X.; Chu, X.; Zhang, W.; Wu, N.; Fan, Y. A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: Gene cloning and characterisation. Appl. Microbiol. Biotechnol. 2011, 90, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Salwoom, L.; Raja Abd. Rahman, R.N.Z.; Salleh, A.B.; Mohd. Shariff, F.; Convey, P.; Mohamad Ali, M.S. New Recombinant Cold-Adapted and Organic Solvent Tolerant Lipase from Psychrophilic Pseudomonas sp. LSK25, Isolated from Signy Island Antarctica. Int. J. Mol. Sci. 2019, 20, 1264. [Google Scholar] [CrossRef]
- Zalma, S.A.; El-Sharoud, W.M. Diverse thermophilic Bacillus species with multiple biotechnological activities are associated within the Egyptian soil and compost samples. Sci. Prog. 2021, 104, 368504211055277. [Google Scholar] [CrossRef]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol. 2019, 103, 7399–7423. [Google Scholar] [CrossRef]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [CrossRef]
- Joseph, B.; Ramteke, P.; Thomas, G.; Shrivastava, N. Standard Review Cold-active microbial Lipases: A versatile tool for industrial applications. Biotechnol. Mol. Biol. 2007, 2, 39–48. [Google Scholar] [CrossRef]
- De Santi, C.; Tutino, M.L.; Mandrich, L.; Giuliani, M.; Parrilli, E.; Del Vecchio, P.; de Pascale, D. The hormone-sensitive lipase from Psychrobacter sp. TA144: New insight in the structural/functional characterization. Biochimie 2010, 92, 949–957. [Google Scholar] [CrossRef]
- Kirk, O.; Christensen, M.W. Lipases from Candida antarctica: Unique Biocatalysts from a Unique Origin. Org. Process Res. Dev. 2002, 6, 446–451. [Google Scholar] [CrossRef]
- Fernandez-Lafuente, R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212. [Google Scholar] [CrossRef]
- Pencreac’h, G.; Baratti, J.C. Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support. Appl. Microbiol. Biotechnol. 1997, 47, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Klapiszewski, L.; Jedrzak, A.; Nowicki, M.; Moszynski, D.; Jesionowski, T. Lipase B from Candida antarctica Immobilized on a Silica-Lignin Matrix as a Stable and Reusable Biocatalytic System. Catalysts 2017, 7, 14. [Google Scholar] [CrossRef]
- Gažák, R.; Marhol, P.; Purchartová, K.; Monti, D.; Biedermann, D.; Riva, S.; Cvak, L.; Křen, V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010, 45, 1657–1663. [Google Scholar] [CrossRef]
- Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol. 2004, 186, 595–600. [Google Scholar] [CrossRef]
- Necula-Petrareanu, G.; Lavin, P.; Paun, V.I.; Gheorghita, G.R.; Vasilescu, A.; Purcarea, C. Highly Stable, Cold-Active Aldehyde Dehydrogenase from the Marine Antarctic Flavobacterium sp. PL002. Fermentation 2022, 8, 7. [Google Scholar] [CrossRef]
- Moreno Mde, L.; García, M.T.; Ventosa, A.; Mellado, E. Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiol. Ecol. 2009, 68, 59–71. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic. Acids. Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic. Acids. Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef]
Extremophiles | Lipase Homologs [Accession Numbers] | Identity (%) | Similarity (%) | Amino Acid Content (%) Ratio | ||||
---|---|---|---|---|---|---|---|---|
Gly + Ala | Pro | His | Met | Arg/ (Arg + Lys) | ||||
Psychrophiles | Psychrobacter SC65A.3 PSL2 [WP_263241157.1] | 100 | 100 | 14.3 | 5 | 4.3 | 2.3 | 0.39 |
Psychrobacter sp. G [WP 020444543] | 98.9 | 99 | 12.7 | 5 | 4.3 | 2.3 | 0.41 | |
Moritella sp. PE36 [WP 198138589] | 27.5 | 44 | 13.4 | 4.4 | 4.4 | 1.8 | 0.48 | |
Mesophiles | Bacillus subtilis [WP 161476533] | 32.5 | 49 | 18.2 | 6.3 | 2.5 | 1.3 | 0.47 |
Pseudomonas aeruginosa [EIU5571796] | 35.3 | 48 | 21.3 | 6 | 1.9 | 0.9 | 0.53 | |
Hyper/ thermophiles | Bacillus thermocatenalatus [WP 253270889] | NS | NS | 18.8 | 4.8 | 3.1 | 2.2 | 0.67 |
Sulfolobus islandicus [015580697] | 29.9 | 49 | 12.3 | 4.7 | 2.9 | 1.8 | 0.39 |
Substrate | Km (mM) | Vmax (U mg−1) | kcat (min−1) | kcat/Km (mM−1 min−1) |
---|---|---|---|---|
p-NPB | 2.38 | 37.88 | 3.564 | 1.497 |
p-NPP | 4.30 | 15.75 | 1.482 | 0.345 |
p-NPS | 3.70 | 32.82 | 3.089 | 0.835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paun, V.I.; Ion, S.G.; Gheorghita, G.R.; Podolean, I.; Tudorache, M.; Purcarea, C. Cold-Active Lipase from the Ice Cave Psychrobacter SC65A.3 Strain, a Promising Biocatalyst for Silybin Acylation. Molecules 2024, 29, 5125. https://doi.org/10.3390/molecules29215125
Paun VI, Ion SG, Gheorghita GR, Podolean I, Tudorache M, Purcarea C. Cold-Active Lipase from the Ice Cave Psychrobacter SC65A.3 Strain, a Promising Biocatalyst for Silybin Acylation. Molecules. 2024; 29(21):5125. https://doi.org/10.3390/molecules29215125
Chicago/Turabian StylePaun, Victoria I., Sabina G. Ion, Giulia R. Gheorghita, Iunia Podolean, Madalina Tudorache, and Cristina Purcarea. 2024. "Cold-Active Lipase from the Ice Cave Psychrobacter SC65A.3 Strain, a Promising Biocatalyst for Silybin Acylation" Molecules 29, no. 21: 5125. https://doi.org/10.3390/molecules29215125
APA StylePaun, V. I., Ion, S. G., Gheorghita, G. R., Podolean, I., Tudorache, M., & Purcarea, C. (2024). Cold-Active Lipase from the Ice Cave Psychrobacter SC65A.3 Strain, a Promising Biocatalyst for Silybin Acylation. Molecules, 29(21), 5125. https://doi.org/10.3390/molecules29215125