Atomic-Level Insights into the Adsorption of Methyl-Substituted Quinoxalinones on Fe(110): A Dispersion-Corrected DFT Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimized Geometries of Adsorbed Systems
2.2. Projected Density of States
2.3. Electron Density Difference Analysis
2.4. Electron Localization Function Maps
3. Computational Details
3.1. DFT Computation Details
3.2. Interaction Energies and Electronic Characteristics
4. Conclusions
- Adsorption of quinoxalinones on Fe(110) showed stable interaction energies, with protonated forms exhibiting stronger adsorption than neutral ones.
- Charge transfer between the molecule and metal surface played a key role in adsorption stability, particularly through electron donation from the molecule’s active sites to the metal’s d-orbitals and back-donation to the π*-orbitals.
- EDD analysis highlighted significant electron accumulation (red) around Fe-C and Fe-O bonds, showing strong covalent interactions.
- ELF analysis showed strong covalent bonding (high electron localization) near oxygen atoms and regions of Fe-C bonding, confirming robust chemisorption.
- Physisorption was also found to contribute significantly through nitrogen atoms and aromatic rings, enhancing adsorption stability via weaker interactions.
- PDOS analysis revealed molecular orbital hybridization with metal d-orbitals, with the broadening of molecular peaks upon adsorption, indicating stronger molecule–metal interaction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, X.; Wu, K.; Bai, R.; Zhang, P.; Zhang, Y. Functionalized Quinoxalinones as Privileged Structures with Broad-Ranging Pharmacological Activities. Eur. J. Med. Chem. 2022, 229, 114085. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-Y.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. An Efficient Synthesis of 3-(Indol-3-Yl)Quinoxalin-2-Ones with TfOH-Catalyzed Friedel–Crafts Type Coupling Reaction in Air. Tetrahedron Lett. 2010, 51, 2023–2028. [Google Scholar] [CrossRef]
- Xu, K.-Y.; Wang, X.-T.; Cheng, L.; Cui, Q.-H.; Shi, J.-T.; Zhang, L.-W.; Chen, S.-W. Design, Synthesis, and Biological Evaluation of Quinoxalinone Derivatives as Potent BRD4 Inhibitors. Bioorganic Med. Chem. 2023, 78, 117152. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Singh, P.; Quraishi, M.A. Quinoxaline Derivatives as Efficient Corrosion Inhibitors: Current Status, Challenges and Future Perspectives. J. Mol. Liq. 2020, 320, 114387. [Google Scholar] [CrossRef]
- Ramli, Y.; Moussaif, A.; Karrouchi, K.; Essassi, E.M. Pharmacological Profile of Quinoxalinone. J. Chem. 2014, 2014, 563406. [Google Scholar] [CrossRef]
- Akrom, M.; Rustad, S.; Dipojono, H.K.; Maezono, R. A Comprehensive Approach Utilizing Quantum Machine Learning in the Study of Corrosion Inhibition on Quinoxaline Compounds. Artif. Intell. Chem. 2024, 2, 100073. [Google Scholar] [CrossRef]
- Chahir, L.; Faydy, M.E.; Abad, N.; Benhiba, F.; Warad, I.; Left, D.B.; Zertoubi, M.; Allali, M.; Kaichouh, G.; Dikici, B.; et al. Corrosion Inhibition Effect of Quinoxaline Derivative on Carbon Steel in Hydrochloric Acid: Experimental and Theoretical Investigations. J. Bio-Tribo-Corros. 2024, 10, 36. [Google Scholar] [CrossRef]
- Tazouti, A.; Galai, M.; Touir, R.; Touhami, M.E.; Zarrouk, A.; Ramli, Y.; Saraçoğlu, M.; Kaya, S.; Kandemirli, F.; Kaya, C. Experimental and Theoretical Studies for Mild Steel Corrosion Inhibition in 1.0 M HCl by Three New Quinoxalinone Derivatives. J. Mol. Liq. 2016, 221, 815–832. [Google Scholar] [CrossRef]
- Petronijević, J.; Joksimović, N.; Bugarčić, Z.; Đurđić, E.; Janković, N. Experimental and Computational Analysis (DFT Method) of Some Quinoxalinones and Benzoxazinones: Spectroscopic Investigation (FT-IR, FT-Raman, UV-Vis, NMR). J. Chem. Sci. 2019, 131, 106. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, V.; Quraishi, M.A. Novel Quinoline Derivatives as Green Corrosion Inhibitors for Mild Steel in Acidic Medium: Electrochemical, SEM, AFM, and XPS Studies. J. Mol. Liq. 2016, 216, 164–173. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E. Quinoline and Its Derivatives as Corrosion Inhibitors: A Review. Surfaces Interfaces 2020, 21, 100634. [Google Scholar] [CrossRef]
- Kovačević, N.; Kokalj, A. Chemistry of the Interaction between Azole Type Corrosion Inhibitor Molecules and Metal Surfaces. Mater. Chem. Phys. 2012, 137, 331–339. [Google Scholar] [CrossRef]
- Kokalj, A. Corrosion Inhibitors: Physisorbed or Chemisorbed? Corros. Sci. 2022, 196, 109939. [Google Scholar] [CrossRef]
- Kokalj, A. Ab Initio Modeling of the Bonding of Benzotriazole Corrosion Inhibitor to Reduced and Oxidized Copper Surfaces. Faraday Discuss. 2015, 180, 415–438. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.; Rai, B. Capturing the Synergistic Effects between Corrosion Inhibitor Molecules Using Density Functional Theory and ReaxFF Simulations-A Case for Benzyl Azide and Butyn-1-Ol on Cu Surface. Corros. Sci. 2022, 195, 109960. [Google Scholar] [CrossRef]
- Lgaz, H.; Lee, H.-S. Molecular-Level Investigation of the Adsorption Mechanisms of Thiazolidinediones on Cu2O(111) Surface: A First-Principles DFT Study. Corros. Rev. 2024, 42, 241–251. [Google Scholar] [CrossRef]
- Lgaz, H.; Lee, H. Interfacial Adsorption Mechanism of Hydroxycinnamic Acids on Iron Surfaces: A Computational Perspective toward Eco-Friendly Corrosion Mitigation Strategies. Appl. Surface Sci. 2024, 644, 158763. [Google Scholar] [CrossRef]
- Bockris, J.O.; Yang, B. The Mechanism of Corrosion Inhibition of Iron in Acid Solution by Acetylenic Alcohols. J. Electrochem. Soc. 1991, 138, 2237. [Google Scholar] [CrossRef]
- Bockris, J.O.; Reddy, A.K.; Gamboa-Adelco, M.E. Modern Electrochemistry 1, 2A, and 2B; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Benbouya, K.; Zerga, B.; Sfaira, M.; Taleb, M.; Touhami, M.E.; Hammouti, B.; Benzeid, H.; Essassi, E.M. WL, I-E and EIS Studies on the Corrosion Behaviour of Mild Steel by 7-Substituted 3-Methylquinoxalin-2(1H)-Ones and Thiones in Hydrochloric Acid Medium. Int. J. Electrochem. Sci. 2012, 7, 6313–6330. [Google Scholar] [CrossRef]
- Zarrok, H.; Zarrouk, A.; Salghi, R.; Ramli, Y.; Hammouti, B.; Al-Deyab, S.S.; Essassi, E.M.; Oudda, H. Adsorption and Inhibition Effect of 3-Methyl-1-Propargylquinoxalin-2(1H)-One on Carbon Steel Corrosion in Hydrochloric Acid. Int. J. Electrochem. Sci. 2012, 7, 8958–8973. [Google Scholar] [CrossRef]
- Zarrouk, A.; Zarrok, H.; Ramli, Y.; Bouachrine, M.; Hammouti, B.; Sahibed-dine, A.; Bentiss, F. Inhibitive Properties, Adsorption and Theoretical Study of 3,7-Dimethyl-1-(Prop-2-Yn-1-Yl)Quinoxalin-2(1H)-One as Efficient Corrosion Inhibitor for Carbon Steel in Hydrochloric Acid Solution. J. Mol. Liq. 2016, 222, 239–252. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, 21, 2832–2838. [Google Scholar] [CrossRef]
- Ghambarian, M.; Ghashghaee, M.; Azizi, Z.; Balar, M. Influence of Surface Heterogeneities on Complexation of Ethylene with Active Sites of NiMCM-41 Nanocatalyst: A Density Functional Theory Study. Phys. Chem. Res. 2019, 7, 235–243. [Google Scholar] [CrossRef]
- Flórez, E.; Jimenez-Orozco, C.; Acelas, N. Unravelling the Influence of Surface Functional Groups and Surface Charge on Heavy Metal Adsorption onto Carbonaceous Materials: An in-Depth DFT Study. Mater. Today Commun. 2024, 39, 108647. [Google Scholar] [CrossRef]
- Guo, L.; Qi, C.; Zheng, X.; Zhang, R.; Shen, X.; Kaya, S. Toward Understanding the Adsorption Mechanism of Large Size Organic Corrosion Inhibitors on an Fe(110) Surface Using the DFTB Method. RSC Adv. 2017, 7, 29042–29050. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of Corrosion Inhibition Mechanism and Stability of Vitamin B1 on Mild Steel in 0.5 M HCl Solution. Corros. Sci. 2014, 81, 75–84. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of Adsorption and Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by 5-(4-Dimethylaminobenzylidene)Rhodanine. Corros. Sci. 2014, 79, 169–176. [Google Scholar] [CrossRef]
- Lgaz, H.; Lee, H.; Kaya, S.; Salghi, R.; Ibrahim, S.M.; Chafiq, M.; Bazzi, L.; Ko, Y.G. Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFT Tight Binding Simulations. Molecules 2023, 28, 3545. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.; Rai, B. Unravelling the Mechanisms of Corrosion Inhibition of Iron by Henna Extract: A Density Functional Theory Study. Corros. Sci. 2018, 142, 102–109. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.; Rai, B. Imidazole Derivatives as Corrosion Inhibitors for Copper: A DFT and Reactive Force Field Study. Corros. Sci. 2020, 171, 108724. [Google Scholar] [CrossRef]
- Costa, D.; Ribeiro, T.; Cornette, P.; Marcus, P. DFT Modeling of Corrosion Inhibition by Organic Molecules: Carboxylates as Inhibitors of Aluminum Corrosion. J. Phys. Chem. C 2016, 120, 28607–28616. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Jiang, Z.N.; Li, Y.Y.; Wang, X.; Xiong, W.; Liu, H.F.; Zhang, G.A. In-Depth Insight into the Inhibition Mechanism of the Modified and Combined Amino Acids Corrosion Inhibitors: “Intramolecular Synergism” vs. “Intermolecular Synergism”. Chem. Eng. J. 2022, 437, 135439. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Xu, N.; Jiang, Z.N.; Liu, H.F.; Zhang, G.A. Chitosan Derivatives as Promising Green Corrosion Inhibitors for Carbon Steel in Acidic Environment: Inhibition Performance and Interfacial Adsorption Mechanism. J. Colloid Interface Sci. 2023, 640, 1052–1067. [Google Scholar] [CrossRef]
- Burdett, J.K.; McCormick, T.A. Electron Localization in Molecules and Solids: The Meaning of ELF. J. Phys. Chem. A 1998, 102, 6366–6372. [Google Scholar] [CrossRef]
- Ayers, P.W. Electron Localization Functions and Local Measures of the Covariance. J. Chem. Sci. 2005, 117, 441–454. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Kristallogr.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Alkahtani, E.A.; Merad, A.E.; Boufatah, M.R.; Benosman, A. DFT Investigation of Structural, Electronic and Optical Properties of Pure and Er-Doped ZnO: Modified Becke-Johnson Exchange Potential. Optik 2017, 128, 274–280. [Google Scholar] [CrossRef]
- Singh, D.J. Electronic Structure Calculations with the Tran-Blaha Modified Becke-Johnson Density Functional. Phys. Rev. B 2010, 82, 205102. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional Thermochemistry. I. The Effect of the Exchange-only Gradient Correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef]
- Sengupta, S.; Murmu, M.; Murmu, N.C.; Banerjee, P. Adsorption of Redox-Active Schiff Bases and Corrosion Inhibiting Property for Mild Steel in 1 molL−1 H2SO4: Experimental Analysis Supported by Ab Initio DFT, DFTB and Molecular Dynamics Simulation Approach. J. Mol. Liq. 2021, 326, 115215. [Google Scholar] [CrossRef]
Molecule | Interaction Energy (in eV) | Molecule | Interaction Energy (in eV) | Molecule | Interaction Energy (in eV) |
---|---|---|---|---|---|
QNO | −1.715 | QNOM | −1.680 | QNO2M | −1.669 |
QNO2 | −1.514 | QNOM2 | −1.508 | QNO2M2 | −1.491 |
QNO3 | −1.683 | QNOM3 | −1.541 | QNO2M3 | −1.530 |
QNOH | −1.823 | QNOMH | −1.753 | QNO2MH | −1.743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lgaz, H.; Aldalbahi, A.; Lee, H.-S. Atomic-Level Insights into the Adsorption of Methyl-Substituted Quinoxalinones on Fe(110): A Dispersion-Corrected DFT Analysis. Molecules 2024, 29, 5123. https://doi.org/10.3390/molecules29215123
Lgaz H, Aldalbahi A, Lee H-S. Atomic-Level Insights into the Adsorption of Methyl-Substituted Quinoxalinones on Fe(110): A Dispersion-Corrected DFT Analysis. Molecules. 2024; 29(21):5123. https://doi.org/10.3390/molecules29215123
Chicago/Turabian StyleLgaz, Hassane, Ali Aldalbahi, and Han-Seung Lee. 2024. "Atomic-Level Insights into the Adsorption of Methyl-Substituted Quinoxalinones on Fe(110): A Dispersion-Corrected DFT Analysis" Molecules 29, no. 21: 5123. https://doi.org/10.3390/molecules29215123
APA StyleLgaz, H., Aldalbahi, A., & Lee, H. -S. (2024). Atomic-Level Insights into the Adsorption of Methyl-Substituted Quinoxalinones on Fe(110): A Dispersion-Corrected DFT Analysis. Molecules, 29(21), 5123. https://doi.org/10.3390/molecules29215123