Preparation and Photocatalytic Performance of In2O3/Bi2WO6 Type II Heterojunction Composite Materials
Abstract
:1. Introduction
2. Results
2.1. Phase Composition
2.2. Morphology
2.3. Chemical State and Surface Area
2.4. Optical Property
2.5. Photodegradation Results
2.6. Photodegradation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Characterization
3.4. Photocatalysis Experiment
3.5. Active Species Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, W.; Tang, X.; Dou, L.; Zhang, H. Preparation of La-doped Bi2WO6 with rich oxygen vacancies and enhanced photocatalytic performance for removal of Rhodamine B. Chem. Commun. 2022, 146, 110239. [Google Scholar] [CrossRef]
- Lu, S.; Ma, Y.; Zhao, L. Production of ZnO-CoOx-CeO2 nanocomposites and their dye removal performance from wastewater by adsorption-photocatalysis. J. Mol. Liq. 2022, 364, 119924. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Li, N.; Li, J.; He, J.; Xu, S.; Zhu, Y.; Yao, L.; Lai, Y.; Zhu, R. Ag3PO4-anchored La2Ti2O7 nanorod as a Z-Scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. Environ. Pollut. 2023, 323, 121322. [Google Scholar] [CrossRef]
- Tian, M.; Wang, J.; Sun, R.; Lu, D.; Li, N.; Liu, T.; Yao, M.; Zhang, G.; Li, L. Facile synthesis of rod-like TiO2-based composite loaded with g-C3N4 for efficient removal of high-chroma organic pollutants based on adsorption-photocatalysis mechanism. Inorg. Chem. Commun. 2022, 141, 109517. [Google Scholar] [CrossRef]
- Zhu, X.; Qin, F.; Xia, Y.; Zhong, Y.; Zhang, X.; Feng, W.; Jiao, Y. Synthesis of Ag@AgCl modified anatase/rutile/brookite mixed phase TiO2 and their photocatalytic property. Nanotechnol. Rev. 2022, 11, 2916–2927. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ishtiaq, H.; Ali, F.; Tahir, M.B.; Naeem, S.; Ul-Hamid, A.; Ikram, M.; Iqbal, T.; Kamal, M.R.; Alrobei, H.; et al. Synergistic effects of Bi and N doped on ZnO nanorods for efficient photocatalysis. Mater. Chem. Phys. 2022, 289, 126423. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Yu, J.; Wu, Z.; Zhou, Q. Preparation of flower-like Co3O4 QDs/Bi2WO6 p-n heterojunction photocatalyst and its degradation mechanism of efficient visible-light-driven photocatalytic tetracycline antibiotics. Appl. Surf. Sci. 2022, 585, 152547. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, H.; Xiong, J.; Peng, D.; Liu, S. F-doped Bi2WO6 with rich oxygen vacancies for boosting photo-oxidation/reduction activity. Colloids Surf. A Physicochem. Eng. Asp. 2023, 675, 132035. [Google Scholar] [CrossRef]
- Liu, D.; Wu, L.; Su, Z.; Liu, J.; Feng, L.; Huang, J. Sulfurized Ru constructed enhanced carrier separation heterojunction RuS2/Bi2WO6 for high-efficiency photocatalytic hydrogen evolution. Catal. Commun. 2023, 183, 106760. [Google Scholar] [CrossRef]
- Kuang, X.; Fu, M.; Kang, H.; Lu, P.; Bai, J.; Yang, Y.; Gao, S. A BiOIO3/BiOBr n-n heterojunction was constructed to enhance the photocatalytic degradation of TC. Opt. Mater. 2023, 138, 113690. [Google Scholar] [CrossRef]
- Maraj, M.; Anwar, H.; Saba, A.; Nabi, G.; Shaheen, N.; Ansar, N.; Ali, W.; Fatima, A.; Raza, A.; Sun, W. Synergistic effect of nanostructured CdO/Ag3PO4 composite for excellent electrochemical and photocatalytic applications. Arab. J. Chem. 2023, 16, 104906. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Wang, M.; Han, J. Mesoporous In2O3 nanorods/In2S3 nanosheets hierarchical heterojunctions toward highly efficient visible light photocatalysis. J. Alloy. Compd. 2022, 921, 165973. [Google Scholar] [CrossRef]
- Sun, X.; Xu, T.; Xian, T.; Yi, Z.; Liu, G.; Dai, J.; Yang, H. Insight on the enhanced piezo-photocatalytic mechanism of In2O3/BiFeO3 heterojunctions for degradation of tetracycline hydrochloride. Appl. Surf. Sci. 2023, 640, 158408. [Google Scholar] [CrossRef]
- Khaokhajorn, C.; Amornpitoksuk, P.; Randorn, C.; Rattana, T.; Suwanboon, S. One-pot synthesis of In2O3/ZnO nanocomposite photocatalysts and their enhanced photocatalytic activity against cationic and anionic dye pollutants. Inorg. Chem. Commun. 2023, 157, 111392. [Google Scholar] [CrossRef]
- Qin, F.; Luo, Y.; Yu, Q.; Cheng, J.; Qin, Q.; Zhu, X.; Feng, W. Enhanced charge transfer and photocatalytic activity of BiOBr/Bi2WO6 p-n heterojunctions. J. Mol. Struct. 2024, 1304, 137719. [Google Scholar] [CrossRef]
- Zhu, X.; Qin, F.; Zhang, X.; Zhong, Y.; Wang, J.; Jiao, Y.; Luo, Y.; Feng, W. Synthesis of Tin-Doped Three-Dimensional Flower-like Bismuth Tungstate with Enhanced Photocatalytic Activity. Int. J. Mol. Sci. 2022, 23, 8422. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Xiong, Z.; Gao, T.; Gong, B.; Liu, P.; Liu, J.; Zhang, J. Elemental mercury removal by I−-doped Bi2WO6 with remarkable visible-light-driven photocatalytic oxidation. Appl. Catal. B Environ. 2021, 282, 119534. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, M.; Ai, L.; Guo, N.; Leng, C.; Tan, C.; Lu, M.; Wang, L.; Huang, L.; Jia, D. In situ growth of flower sphere Bi2WO6/Bi-MOF heterojunction with enhanced photocatalytic degradation of pollutants: DFT calculation and mechanism. J. Environ. Chem. Eng. 2023, 11, 109873. [Google Scholar] [CrossRef]
- Hong, Y.; Yang, L.; Tian, Y.; Lin, X.; Liu, E.; Sun, W.; Liu, Y.; Zhu, C.; Li, X.; Shi, J. Rational design 2D/3D MoS2/In2O3 composites for great boosting photocatalytic H2 production coupled with dye degradation. J. Taiwan Inst. Chem. Eng. 2023, 146, 104862. [Google Scholar] [CrossRef]
- Bu, W.; Liu, N.; Zhang, Y.; Han, W.; Chuai, X.; Zhou, Z.; Hu, C.; Lu, G. Atomically dispersed Pt on MOF-derived In2O3 for chemiresistive formaldehyde gas sensing. Sens. Actuators B Chem. 2024, 404, 135260. [Google Scholar] [CrossRef]
- Zhu, X.; Zhong, Y.; Zhang, X.; Yang, D.; Zhang, L.; Wang, J.; Feng, W.; Zhang, W. Facile fabrication of BiOI/Bi2WO6 Z-scheme heterojunction composites with a three-dimensional structure for efficient degradation of pollutants. Arab. J. Chem. 2023, 16, 105286. [Google Scholar] [CrossRef]
- Nath, A.; Sarkar, M.B. An in-depth analysis on the switching response and impedance curves of n-si/In2O3 NW/Ag NPs/In based devices by a double-step glancing angle deposition technique. Phys. B Condens. Matter 2023, 660, 414886. [Google Scholar] [CrossRef]
- Zhao, C.; Cai, L.; Wang, K.; Li, B.; Yuan, S.; Zeng, Z.; Zhao, L.; Wu, Y.; He, Y. Novel Bi2WO6/ZnSnO3 heterojunction for the ultrasonic-vibration-driven piezocatalytic degradation of RhB. Environ. Pollut. 2023, 319, 120982. [Google Scholar] [CrossRef]
- Vhangutte, P.P.; Kamble, A.J.; Shinde, D.S.; Bhange, P.D.; Madhale, R.A.; Patil, V.L.; Tayade, S.N.; Tawade, A.K.; Sharma, K.K.; Bhange, D.S. Enhanced photocatalytic dye degradation for water remediation over titanium doped Bi2WO6. Inorg. Chem. Commun. 2023, 156, 111145. [Google Scholar] [CrossRef]
- Sun, X.; Hu, T.; Sun, Y.; Gao, X.; Cao, Z.; Liu, Y.; Wang, L.; Li, L. Flower-like spherical ZnCdS/Bi2WO6/ZnAl-LDH with dual type II heterostructure as a photocatalyst for efficient photocatalytic degradation and hydrogen production. J. Phys. Chem. Solids 2023, 183, 111650. [Google Scholar] [CrossRef]
- Liu, J.; Meng, C.; Zhang, X.; Wang, S.; Duan, K.; Li, X.; Hu, Y.; Cheng, H. Direct Z-scheme In2O3/AgI heterojunction with oxygen vacancies for efficient molecular oxygen activation and enhanced photocatalytic degradation of tetracycline. Chem. Eng. J. 2023, 466, 143319. [Google Scholar] [CrossRef]
- Tian, T.; Huang, Z.; Du, Y.; Zhao, L. Efficient degradation of tetracycline in a photo-fenton system constructed by combining MOF-derived Fe2O3/C/In2O3 heterojunction with vitamin C. J. Alloy. Compd. 2023, 968, 172048. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, T.; Wang, H.; Yan, M.; Qi, Y. BiOBr nanoflakes with engineered thickness for boosted photodegradation of RhB under visible light irradiation. J. Alloy. Compd. 2023, 947, 169613. [Google Scholar] [CrossRef]
- Lu, H.; Wu, X.; Zhu, P.; Liu, M.; Li, X.; Xin, X. A novel Bi12O17Cl2/GO/Co3O4 Z-type heterojunction photocatalyst with ZIF-67 derivative modified for highly efficient degradation of antibiotics under visible light. J. Colloid Interface Sci. 2025, 677, 1052–1068. [Google Scholar] [CrossRef]
- Belousov, A.S.; Parkhacheva, A.A.; Shotina, V.A.; Titaev, D.N.; Suleimanov, E.V.; Shafiq, I. Engineering a staggered type-II Bi2WO6/WO3 heterojunction with improved photocatalytic activity in wastewater treatment. Chemosphere 2024, 359, 142316. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, L.; Srinivasakannan, C.; Qu, W.; Lu, J.; Liu, Q. Low-temperature microwave-assisted synthesis of Bi2WO6/Bi2S3 heterojunction for photocatalytic reduction of Cr(VI) in industrial wastewater. J. Alloy. Compd. 2024, 997, 174842. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, B.; Wang, H.; Chen, Y.; Fan, M.; Dong, L.; Li, B.; Chen, G. Exposed {1 1 0} facets of BiOBr anchored to marigold-like MnCo2O4 with abundant interfacial electron transfer bridges and efficient activation of peroxymonosulfate. J. Colloid Interface Sci. 2024, 653, 867–878. [Google Scholar] [CrossRef]
- Pinchujit, S.; Phuruangrat, A.; Wannapop, S.; Sakhon, T.; Kuntalue, B.; Thongtem, T.; Thongtem, S. Synthesis and characterization of heterostructure Pt/Bi2WO6 nanocomposites with enhanced photodegradation efficiency induced by visible radiation. Solid State Sci. 2022, 134, 107064. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Song, J.; Zhang, L.; Shao, C.; Li, H.; Zhang, H. Facile synthesis of hierarchical S-scheme In2S3/Bi2WO6 heterostructures with enhanced photocatalytic activity. J. Environ. Chem. Eng. 2023, 11, 109832. [Google Scholar] [CrossRef]
- Huang, X.; Chen, H.; Sun, M.; Zhao, J.; Teng, H.; Gao, Y.; Li, J.; Lee, S.W.; Tang, J.G. N-graphyne surrounded Bi2S3/BiOBr composites: In-situ ultrasound-assisted synthesis and superior photocatalytic activity. Fuel 2024, 375, 132613. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, X.; Qin, F.; Wang, Y.; Sun, Y.; Feng, W. Synthesis and photocatalytic performance of three-dimensional flower-like bismuth tungstate: Influence of hydrothermal temperature. Mater. Lett. 2022, 314, 131892. [Google Scholar] [CrossRef]
- Chen, P.; Chen, L.; Ge, S.; Zhang, W.; Wu, M.; Xing, P.; Rotamond, T.B.; Lin, H.; Wu, Y.; He, Y. Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles. Int. J. Hydrog. Energy 2020, 45, 14354–14367. [Google Scholar] [CrossRef]
- Zografaki, M.; Stefa, S.; Vamvasakis, I.; Armatas, G.S.; Chaidali, A.G.; Lykakis, I.N.; Binas, V. Triangle CeO2/g-C3N4 heterojunctions: Enhanced light-driven photocatalytic degradation of methylparaben. J. Photochem. Photobiol. A Chem. 2024, 458, 115976. [Google Scholar] [CrossRef]
- Qi, X.; Xiong, X.; Cai, H.; Zhang, X.; Ma, Q.; Tan, H.; Guo, X.; Lv, H. Carbon dots-loaded cellulose nanofibrils hydrogel incorporating Bi2O3/BiOCOOH for effective adsorption and photocatalytic degradation of lignin. Carbohydr. Polym. 2024, 346, 122601. [Google Scholar] [CrossRef]
- Yao, S.; Meng, F.; Wei, H.; Yu, W.; Zhang, H. Internal electric field-mediated efficient photocatalytic degradation of levofloxacin by CdIn2S4/Bi2MoO6 S-scheme heterojunctions: Performance, degradation pathway and mechanism studies. J. Alloy. Compd. 2024, 1005, 176021. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, Q.; Xia, Y.; Wang, J.; Chen, H.; Xu, Q.; Liu, J.; Feng, W.; Chen, S. Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32, 21511–21524. [Google Scholar] [CrossRef]
- Zhi, L.; Zhang, S.; Xu, Y.; Tu, J.; Li, M.; Hu, D.; Liu, J. Controlled growth of AgI nanoparticles on hollow WO3 hierarchical structures to act as Z-scheme photocatalyst for visible-light photocatalysis. J. Colloid Interface Sci. 2020, 579, 754–765. [Google Scholar] [CrossRef]
- Dou, L.; Li, J.; Long, N.; Lai, C.; Zhong, J.; Li, J.; Huang, S. Fabrication of 3D flower-like OVs-Bi2SiO5 hierarchical microstructures for visible light-driven removal of tetracycline. Surf. Interfaces 2022, 29, 101787. [Google Scholar] [CrossRef]
- He, Z.; Lin, K.; Hing Wong, N.; Sunarso, J.; Xia, Y.; Fu, X.; Su, J.; Huang, Z.; Wang, Y.; Tang, B. Elucidation of mechanisms, pathways, and toxicity of fabricated Z-scheme KNbO3/ZnIn2S4 hollow core–shell composites for enhanced ciprofloxacin photodegradation. Chem. Eng. J. 2023, 475, 146262. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef]
- Dai, K.; Tang, Y.; Xu, Y.; Yang, R.; Zheng, S.; Yang, N.; Su, S.; Zhang, C.; Hu, C.; Xu, T.; et al. Hydrothermal synthesis of Bi2WO6/Bi2O4 heterojunction with WO3 and NaBiO3·2H2O powders as precursors to improve visible light photocatalytic degradation performance. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132696. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Somaudon, V.; Photiwat, T.; Youngme, S.; Hemavibool, K.; Nanan, S. Enhanced photocatalytic performance of ZnO/Bi2WO6 heterojunctions toward photodegradation of fluoroquinolone-based antibiotics in wastewater. J. Phys. Chem. Solids 2021, 153, 109995. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Z.; Han, W.; Zhao, Y.; Li, P. Preparation of ZnO/Bi2WO6 heterostructures with improved photocatalytic performance. Mater. Sci. Semicond. Process. 2020, 106, 104761. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Gao, P.; Nie, J.; Yang, F.; Guo, B.; Zhang, J. Preparation of BiOCl/Cu2O composite particles and its photocatalytic degradation of moxifloxacin. Opt. Mater. 2022, 128, 112432. [Google Scholar] [CrossRef]
- Wang, C.; Dang, Y.; Pang, X.; Zhang, L.; Bian, Y.; Duan, W.; Yang, C.; Zhen, Y.; Fu, F. A novel S-scheme heterojunction based on 0D/3D CeO2/Bi2O2CO3 for the photocatalytic degradation of organic pollutants. New J. Chem. 2022, 46, 15987–15998. [Google Scholar] [CrossRef]
- Shi, X.; Liu, B.; Meng, G.; Wu, P.; Lian, J.; Kong, W.; Liu, R. Enhanced visible-light photocatalytic degradation of oxytetracycline hydrochloride by Z-scheme CuO/Bi2WO6 heterojunction. J. Alloy. Compd. 2024, 1002, 175219. [Google Scholar] [CrossRef]
- Basaleh, A.S.; Khedr, T.M.; Mohamed, R.M. Novel CoFe2O4/Bi2WO6 S-scheme heterostructure photocatalyst for effective and rapid visible-light-driven reduction of toxic nitrobenzene into industrially valuable aniline. Mater. Sci. Eng. B 2024, 307, 117515. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, W.; Gao, H.; Wang, S.; Yi, Z.; Wang, X.; Yang, H. Piezocatalytic degradation of methylene blue, tetrabromobisphenol A and tetracycline hydrochloride using Bi4Ti3O12 with different morphologies. Mater. Res. Bull. 2021, 141, 111350. [Google Scholar] [CrossRef]
- Shah, N.H.; Abbas, M.; Tariq, N.; Sulaman, M.; Imran, M.; Qasim, M.; Sandali, Y.; Cui, Y.; Wang, Y. Redeeming the photocatalytic potential of CuWO4 incorporating Ag6Si2O7 via S-scheme PN heterostructure. J. Alloy. Compd. 2024, 983, 173895. [Google Scholar] [CrossRef]
- Shen, X.; Zou, J.; Zhang, J.; Zheng, H. In-situ preparation of double Z-scheme Ag6Si2O7/C3N4/NH2-MIL-125(Ti) composite for visible-light photocatalytic degradation of organic pollutants in water. Mater. Today Commun. 2023, 37, 106958. [Google Scholar] [CrossRef]
- Kumar Mandal, R.; Kumar Pradhan, S. Enhanced photocatalytic performance of cauliflower-like CeO2-TiO2 nanocomposite for the RhB dye degradation under visible light. Mater. Today 2022, 66, 3307–3314. [Google Scholar] [CrossRef]
- Singh, J.; Akhtar, S.; Tran, T.T.; Kim, J. MoS2 nanoflowers functionalized with C3N4 nanosheets for enhanced photodecomposition. J. Alloy. Compd. 2023, 954, 170206. [Google Scholar] [CrossRef]
- Liaqat, R.; Jamshaid, M.; Abo-Dief, H.M.; Ali, S.E.; El-Bahy, Z.M.; Fiaz, M.; Wattoo, M.A.; Rehman, A.U. Mo@Ni-MOF nanocomposite: A promising photocatalyst for photodegradation of Methylene blue. J. Mol. Struct. 2024, 1315, 139011. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Abdelmohsen, S.A.M.; Alahmari, S.D.; Khan, S.A.; Henaish, A.M.A.; Dahshan, A.; Abdullah, M.; Aman, S. Synthesis of magnetic NiFe2O4/rGO heterostructure as potential photocatalyst for a breakdown of malachite green (MG) dye under the visible source of light. Diam. Relat. Mater. 2024, 145, 111128. [Google Scholar] [CrossRef]
Samples | B1 | τ1 (ns) | B2 | τ2 (ns) | τave (ns) |
---|---|---|---|---|---|
BWO | 1546.0089 | 0.46 | 263.2821 | 2.95 | 0.82 |
2:6 In2O3/BWO | 1680.5211 | 0.48 | 309.1260 | 2.87 | 0.85 |
Catalyst | Method | Catalyst (mg/L) | Pollutant (mg/L) | Light Source | Degradation Degree | Ref. |
---|---|---|---|---|---|---|
C3N4-MoS2 | Hydrothermal | 80 | 6.4/RhB | Sunlight (1000 W/m2) | 40.3% (30 min) | [57] |
CeO2-TiO2 | Ball milling | 20 | 4/RhB | Filament lamp (200 W) | 63.0% (240 min) | [56] |
In2O3/ZnO | Co-precipitation | 1000 | 10/RhB | Blacklight blue lamps (18 W) | 55.5% (300 min) | [14] |
Mo@Ni-MOF | Solvothermal approach | 500 | 10/MB | Solar irradiation | 57.4% (60 min) | [58] |
NiFe2O4/rGO | Hydrothermal | 20 | 10/MG | Tungsten lamp (200 W) | 38.9% (60 min) | [59] |
2:6 In2O3/Bi2WO6 | Solvothermal approach | 150 | 10/RhB | Xenon lamp (250 W) | 59.4% (60 min) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Qin, F.; Zhong, Y.; Xiao, T.; Yu, Q.; Zhu, X.; Feng, W.; Qi, Z. Preparation and Photocatalytic Performance of In2O3/Bi2WO6 Type II Heterojunction Composite Materials. Molecules 2024, 29, 4911. https://doi.org/10.3390/molecules29204911
Zhang X, Qin F, Zhong Y, Xiao T, Yu Q, Zhu X, Feng W, Qi Z. Preparation and Photocatalytic Performance of In2O3/Bi2WO6 Type II Heterojunction Composite Materials. Molecules. 2024; 29(20):4911. https://doi.org/10.3390/molecules29204911
Chicago/Turabian StyleZhang, Xiuping, Fengqiu Qin, Yuanyuan Zhong, Tian Xiao, Qiang Yu, Xiaodong Zhu, Wei Feng, and Zhiyong Qi. 2024. "Preparation and Photocatalytic Performance of In2O3/Bi2WO6 Type II Heterojunction Composite Materials" Molecules 29, no. 20: 4911. https://doi.org/10.3390/molecules29204911
APA StyleZhang, X., Qin, F., Zhong, Y., Xiao, T., Yu, Q., Zhu, X., Feng, W., & Qi, Z. (2024). Preparation and Photocatalytic Performance of In2O3/Bi2WO6 Type II Heterojunction Composite Materials. Molecules, 29(20), 4911. https://doi.org/10.3390/molecules29204911