Hydrogenation Versus Hydrosilylation: The Substantial Impact of a Palladium Capsule on the Catalytic Outcome
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Palladium Capsule 1
2.2. Molecular Dynamics Study
2.3. Catalytic Application
3. Materials and Methods
3.1. Synthesis of 5,17-bis[5-(Diphenylphosphanoyl)-4(24),6(10),12(16),18(22)-tetramethylene-dioxy-2,8,14,20-tetrapentylresorcin[4]arenyl-17-oxymethyl]-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arene (4)
3.2. Synthesis of 5,17-bis[5-(Diphenylphosphanyl)-4(24),6(10),12(16),18(22)-tetramethylene-dioxy-2,8,14,20-tetrapentylresorcin[4]arenyl-17-oxymethyl]-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arene (5)
3.3. Synthesis of P,P-Dichlorido{5,17-bis[5-(diphenylphosphanyl)-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arenyl-17-oxymethyl]-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arene}palladium(II) (1)
3.4. Molecular Dynamics Simulations
3.5. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, D.R.; Pastor, A.; Alajarin, M.; Steed, J.W. Molecular containers: Design approaches and applications. In Supramolecular Assembly via Hydrogen Bonds I; Mingos, D.M.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 108, pp. 97–168. [Google Scholar]
- Besset, T.; Gramage-Doria, R.; Reek, J.N.H. Transition-metal encapsulation within supramolecular diphosphine capsules. Curr. Org. Chem. 2013, 17, 1489–1498. [Google Scholar] [CrossRef]
- Deraedt, C.; Astruc, D. Supramolecular nanoreactors for catalysis. Coord. Chem. Rev. 2016, 324, 106–122. [Google Scholar] [CrossRef]
- Mouarrawis, V.; Plessius, R.; van der Vlugt, J.I.; Reek, J.N.H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 2018, 6, 623. [Google Scholar] [CrossRef]
- Jongkind, L.J.; Caumes, X.; Hartendorp, A.P.T.; Reek, J.N.H. Ligand template strategies for catalyst encapsulation. Acc. Chem. Res. 2018, 51, 2115–2128. [Google Scholar] [CrossRef]
- Roland, S.; Suarez, J.M.; Sollogoub, M. Confinement of metal-N-heterocyclic carbene complexes to control reactivity in catalytic reactions. Chem. Eur. J. 2018, 24, 12464–12473. [Google Scholar] [CrossRef]
- Linnebank, P.R.; Poole, D.A.; Kluwer, A.M.; Reek, J.N.H. A substrate descriptor based approach for the prediction and understanding of the regioselectivity in caged catalyzed hydroformylation. Faraday Discuss. 2023, 244, 169–185. [Google Scholar] [CrossRef]
- Szumna, A. Inherently chiral concave molecules-from synthesis to applications. Chem. Soc. Rev. 2010, 39, 4274–4285. [Google Scholar] [CrossRef]
- Yamanaka, M.; Kobayashi, K. Capsular assemblies of calix[4]resorcinarene-based cavitands. Asian J. Org. Chem. 2013, 2, 276–289. [Google Scholar] [CrossRef]
- Harada, K.; Sekiya, R.; Haino, T. A regulable internal cavity inside a resorcinarene-based hemicarcerand. Chem. Eur. J. 2020, 26, 5810–5817. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Q.; Zhou, L.; Sun, H.; Yao, X.; Hu, X.-Y. State-of-the-art and recent progress in resorcinarene-based cavitand. Chin. Chem. Lett. 2023, 34, 108559. [Google Scholar] [CrossRef]
- Wang, A.J.; Clary, K.N.; Bergman, R.G.; Raymond, K.N.; Toste, F.D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013, 5, 100–103. [Google Scholar] [CrossRef]
- Bistri, O.; Reinaud, O. Supramolecular control of transition metal complexes in water by a hydrophobic cavity: A bio-inspired strategy. Org. Biomol. Chem. 2015, 13, 2849–2865. [Google Scholar] [CrossRef]
- Shteinman, A.A. Metallocavitins as advanced enzyme mimics and promising chemical catalysts. Catalysts 2023, 13, 415. [Google Scholar] [CrossRef]
- Galan, A.; Ballester, P. Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 2016, 45, 1720–1737. [Google Scholar] [CrossRef]
- Zhang, D.; Jamieson, K.; Guy, L.; Gao, G.; Dutasta, J.-P.; Martinez, A. Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces. Chem. Sci. 2017, 8, 789–794. [Google Scholar] [CrossRef]
- Jans, A.C.H.; Caumes, X.; Reek, J.N.H. Gold catalysis in (supra)molecular cages to control reactivity and selectivity. ChemCatChem 2019, 11, 287–297. [Google Scholar] [CrossRef]
- Lorenzetto, T.; Bordignon, F.; Munarin, L.; Mancin, F.; Fabris, F.; Scarso, A. Substrate selectivity imparted by self-assembled molecular containers and catalysts. Chem. Eur. J. 2023, 30, e202301811. [Google Scholar] [CrossRef]
- Rudkevich, D.M.; Rebek, J., Jr. Deepening cavitands. Eur. J. Org. Chem. 1999, 1999, 1991–2005. [Google Scholar] [CrossRef]
- Koblenz, T.S.; Dekker, H.L.; de Koster, C.G.; van Leeuwen, P.W.N.M.; Reek, J.N.H. Bis(metallo) capsules based on two ionic diphosphines. Chem. Asian J. 2011, 6, 2431–2443. [Google Scholar] [CrossRef]
- Schröder, T.; Sahu, S.N.; Mattay, J. Molecular capsules derived from resorcin[4]arenes by metal-coordination. In Chemistry of Nanocontainers; Albrecht, M., Hahn, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 319, pp. 99–124. [Google Scholar]
- Jiang, X.-F.; Cui, Y.-X.; Yu, S.-Y. Detteersign and synthesis of a new kind of cavitand: Tetrapyrazolylcalix[4]arenes and their supramolecular assemblies. Synlett 2014, 25, 1181–1185. [Google Scholar]
- Cholewa, P.P.; Dalgarno, S.J. Metal-organic calixarene capsules: The evolution of controlled assembly. CrystEngComm 2014, 16, 3655–3666. [Google Scholar] [CrossRef]
- Mendez-Arroyo, J.; d’Aquino, A.I.; Chinen, A.B.; Manraj, Y.D.; Mirkin, C.A. Reversible and selective encapsulation of dextromethorphan and β-estradiol using an asymmetric molecular capsule assembled via the weak-link approach. J. Am. Chem. Soc. 2017, 139, 1368–1371. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Liu, D.; Jiang, Z.; Liu, Q.; Wu, T.; Liu, H.; Yu, W.; Yan, J.; Wang, P. Highly stable spherical metallo-capsule from a branched hexapodal terpyridine and its self-assembled berry-type nanostructure. J. Am. Chem. Soc. 2018, 140, 2555–2561. [Google Scholar] [CrossRef]
- Sekiya, R.; Harada, K.; Nitta, N.; Haino, T. Resorcinarene-based supramolecular capsules: Supramolecular functions and applications. Synlett 2022, 33, 518–530. [Google Scholar]
- Körner, S.K.; Tucci, F.C.; Rudkevich, D.M.; Heinz, T.; Rebek, J., Jr. A self-assembled cylindrical capsule: New supramolecular phenomena through encapsulation. Chem. Eur. J. 2000, 6, 187–195. [Google Scholar] [CrossRef]
- Gibb, C.L.D.; Gibb, B.C. Well-defined, organic nanoenvironments in water: the hydrophobic effect drives a capsular assembly. J. Am. Chem. Soc. 2004, 126, 11408–11409. [Google Scholar] [CrossRef]
- Kobayashi, K.; Yamanaka, M. Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. Chem. Soc. Rev. 2015, 44, 449–466. [Google Scholar] [CrossRef]
- Catti, L.; Zhang, Q.; Tiefenbacher, K. Advantages of catalysis in self-assembled molecular capsules. Chem. Eur. J. 2016, 22, 9060–9066. [Google Scholar] [CrossRef]
- Zhang, Q.; Catti, L.; Tiefenbacher, K. Catalysis inside the hexameric resorcinarene capsule. Acc. Chem. Res. 2018, 51, 2107–2114. [Google Scholar] [CrossRef]
- Fang, Y.; Powell, J.A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X.; Xiao, Z.; Zhu, C.; Zhang, L.; et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 2019, 48, 4707–4730. [Google Scholar] [CrossRef]
- Pappalardo, A.; Puglisi, R.; Sfrazzetto, G.T. Catalysis inside supramolecular capsules: Recent developments. Catalysts 2019, 9, 630. [Google Scholar] [CrossRef]
- Lorenzetto, T.; Fabris, F.; Scarso, A. A resorcin[4]arene hexameric capsule as a supramolecular catalyst in elimination and isomerization reactions. Beilstein J. Org. Chem. 2022, 18, 337–349. [Google Scholar] [CrossRef]
- Cram, D.J.; Karbach, S.; Kim, Y.H.; Baczynskyj, K.; Kallemeyn, G.W. Shell closure of two cavitands forms carcerand complexes with components of the medium as permanent guests. J. Am. Chem. Soc. 1985, 107, 2575–2576. [Google Scholar] [CrossRef]
- Yang, J.; Chatelet, B.; Hérault, D.; Dutasta, J.-P.; Martinez, A. Covalent cages with inwardly directed reactive centers as confined metal and organocatalysts. Eur. J. Org. Chem. 2018, 2018, 5618–5628. [Google Scholar] [CrossRef]
- Chavagnan, T.; Sémeril, D.; Matt, D.; Toupet, L. Cavitand chemistry—Towards metallocapsular catalysts. Eur. J. Org. Chem. 2017, 2017, 313–323. [Google Scholar] [CrossRef]
- El Moll, H.; Sémeril, D.; Matt, D.; Toupet, L. Regioselective grafting of two -CH2P(X)Ph2 units (X = O, lone pair) onto a resorcin[4]arene-derived cavitand. Eur. J. Org. Chem. 2010, 2010, 1158–1168. [Google Scholar] [CrossRef]
- Monnereau, L.; Sémeril, D.; Matt, D.; Toupet, L. Cavity-shaped ligands: Calix[4]arene-based monophosphanes for fast Suzuki–Miyaura cross-coupling. Chem. Eur. J. 2010, 16, 9237–9247. [Google Scholar] [CrossRef]
- Sumida, Y.; Kato, T.; Yoshida, S.; Hosoya, T. Palladium-catalyzed regio- and stereoselective hydrosilylation of electron-deficient alkynes. Org. Lett. 2012, 14, 1552–1555. [Google Scholar] [CrossRef]
- Shamna, S.; Fairoosa, J.; Afsina, C.M.A.; Anilkumar, G. Palladium-catalysed hydrosilylation of unsaturated compounds. J. Organomet. Chem. 2022, 960, 122236. [Google Scholar] [CrossRef]
- Solomonsz, W.A.; Rance, G.A.; Khlobystov, A.N. Evaluating the effects of carbon nanoreactor diameter and internal structure on the pathways of the catalytic hydrosilylation reaction. Small 2014, 10, 1866–1872. [Google Scholar] [CrossRef]
- Duan, Y.; Ji, G.; Zhang, S.; Chen, X.; Yang, Y. Additive-modulated switchable reaction pathway in the addition of alkynes with organosilanes catalyzed by supported Pd nanoparticles: Hydrosilylation versus semihydrogenation. Catal. Sci. Technol. 2018, 8, 1039–1050. [Google Scholar] [CrossRef]
- Mirza-Aghayan, M.; Boukherroub, R.; Rahimifard, M. Efficient method for the reduction of carbonyl compounds by triethylsilane catalyzed by PdCl2. J. Organomet. Chem. 2008, 693, 3567–3570. [Google Scholar] [CrossRef]
- Tafazolian, H.; Schmidt, J.A.R. Highly efficient regioselective hydrosilylation of allenes using a [(3IP)Pd(allyl)]OTf catalyst; first example of allene hydrosilylation with phenyl- and diphenylsilane. Chem. Commun. 2015, 51, 5943–5946. [Google Scholar] [CrossRef]
- Chen, J.; Wei, W.-T.; Li, Z.; Lu, Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem. Soc. Rev. 2024, 53, 7566–7589. [Google Scholar] [CrossRef]
- Monnereau, L.; El Moll, H.; Sémeril, D.; Matt, D.; Toupet, L. Resorcinarenyl-phosphines in Suzuki-Miyaura cross-coupling reactions of aryl chlorides. Eur. J. Inorg. Chem. 2014, 2014, 1364–1372. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cisneros, G.A.; Cruzeiro, V.W.D.; et al. Amber 2022. University of California: San Francisco, CA, USA, 2022. [Google Scholar]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.D.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Kurt, B. Assign_v2: A novel bonded-force field parameterization software for square planar palladium molecular dynamics simulations. J. Biomol. Struct. Dyn. 2023, 1–13. [Google Scholar] [CrossRef]
- Fox, T.; Kollman, P.A. Application of the RESP methodology in the parametrization of organic solvents. J. Phys. Chem. B 1998, 102, 8070–8079. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Clarendon Press: Oxford, UK, 1987. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Engler, E.; Wipff, G. MD-DRAW Software. Display of dynamic structures from MD simulations. In Crystallography of Supramolecular Compounds; Tsoucaris, G., Ed.; Kluwer: Dordrecht, The Netherlands, 1996; pp. 471–476. [Google Scholar]
Entry | Palladium Complex | Acetylenic (6) | Conversion (%) [b] | Product Distribution [b] | |||
---|---|---|---|---|---|---|---|
1 | 1 | 49 | 18 | 0 | 14 | 58 | |
2 | 1 | 11 | 10 | 0 | 5 | 85 | |
3 | 1 | 26 | 32 | 0 | 6 | 62 | |
4 | 9 | 100 | 69 | 13 | 15 | 3 | |
5 | 10 | 70 | 57 | 4 | 11 | 28 | |
6 [c] | 10 + D2O | 47 | 48 | 3 | 9 | 39 (D:H ratio = 83:17) | |
7 [d] | 10 + molecular sieve | 75 | 59 | 23 | 8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinmetz, M.; Schurhammer, R.; Gourlaouen, C.; Sémeril, D. Hydrogenation Versus Hydrosilylation: The Substantial Impact of a Palladium Capsule on the Catalytic Outcome. Molecules 2024, 29, 4910. https://doi.org/10.3390/molecules29204910
Steinmetz M, Schurhammer R, Gourlaouen C, Sémeril D. Hydrogenation Versus Hydrosilylation: The Substantial Impact of a Palladium Capsule on the Catalytic Outcome. Molecules. 2024; 29(20):4910. https://doi.org/10.3390/molecules29204910
Chicago/Turabian StyleSteinmetz, Maxime, Rachel Schurhammer, Christophe Gourlaouen, and David Sémeril. 2024. "Hydrogenation Versus Hydrosilylation: The Substantial Impact of a Palladium Capsule on the Catalytic Outcome" Molecules 29, no. 20: 4910. https://doi.org/10.3390/molecules29204910
APA StyleSteinmetz, M., Schurhammer, R., Gourlaouen, C., & Sémeril, D. (2024). Hydrogenation Versus Hydrosilylation: The Substantial Impact of a Palladium Capsule on the Catalytic Outcome. Molecules, 29(20), 4910. https://doi.org/10.3390/molecules29204910