Rational Design of High-Performance Photocontrolled Molecular Switches Based on Chiroptical Dimethylcethrene: A Theoretical Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. I–V Characteristics and On–Off Ratio
2.2. Bias-Dependent Transmission Spectra
2.3. Bias-Dependent Projected Density of States (PDOS) Spectra
2.4. View of Molecular Energy Levels
2.5. Molecular Projected Self-Consistent Hamiltonian (MPSH) Analysis
3. Theoretical Methods and Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, B.; Tao, N.J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef]
- Reed, M.A.; Zhou, C.; Muller, C.J.; Burgin, T.P.; Tour, J.M. Conductance of a molecular junction. Science 1997, 278, 252–254. [Google Scholar] [CrossRef]
- Guo, X.; Small, J.P.; Klare, J.E.; Wang, Y.; Purewal, M.S.; Tam, I.W.; Hong, B.H.; Caldwell, R.; Huang, L.; O’Brien, S.; et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, S.; Zeng, Y.; Zhou, W.; Chen, K. Large spin rectifying and high-efficiency spin-filtering in superior molecular junction. Org. Electron. 2017, 50, 184–190. [Google Scholar] [CrossRef]
- Chen, X.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; del Barco, E.; Nijhuis, C.A. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 2017, 12, 797–803. [Google Scholar] [CrossRef]
- Jaroš, A.; Bonab, E.F.; Straka, M.; Foroutan-Nejad, C. Fullerene-based switching molecular diodes controlled by oriented external electric fields. J. Am. Chem. Soc. 2019, 141, 19644–19654. [Google Scholar] [CrossRef]
- English, R.A.; Davison, S.G. Transmission properties of molecular switches in semiconducting polymers. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 49, 8718–8731. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhong, J.Q.; Lin, J.D.; Hu, W.P.; Wu, K.; Xu, G.Q.; Wee, A.T.S.; Chen, W. Towards single molecule switches. Chem. Soc. Rev. 2015, 44, 2998–3022. [Google Scholar] [CrossRef]
- Hnid, I.; Frath, D.; Lafolet, F.; Sun, X.; Lacroix, J.C. Highly efficient photoswitch in diarylethene-based molecular junctions. J. Am. Chem. Soc. 2020, 142, 7732–7736. [Google Scholar] [CrossRef]
- Jülicher, F.; Ajdari, A.; Prost, J. Modeling molecular motors. Rev. Mod. Phys. 1997, 69, 1269–1282. [Google Scholar] [CrossRef]
- Fang, C.; Oruganti, B.; Durbeej, B. Computational study of the working mechanism and rate acceleration of overcrowded alkene-based light-driven rotary molecular motors. RSC Adv. 2014, 4, 10240–11025. [Google Scholar] [CrossRef]
- Roke, D.; Feringa, B.L.; Wezenberg, S.J. A Visible-Light-Driven Molecular Motor Based on Pyrene. Helv. Chim. Acta. 2019, 102, e1800221. [Google Scholar] [CrossRef]
- Gomez, V.; Ramirez, P.; Cervera, J.; Ali, M.; Nasir, S.; Ensinger, W.; Mafe, S. Concatenated logic functions using nanofluidic diodes with all-electrical inputs and outputs. Electrochem. Commun. 2018, 88, 52–56. [Google Scholar] [CrossRef]
- Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369. [Google Scholar] [CrossRef]
- Michael, A.B.; Menno, W.J.P.; Peter, Z.; Namik, A.; Stefan, G.; Fredrik, H. Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 2020, 151, 111944. [Google Scholar]
- Guo, X. Single-Molecule Electrical Biosensors Based on Single-Walled Carbon Nanotubes. Adv. Mater. 2013, 25, 3397–3408. [Google Scholar] [CrossRef]
- Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, J.; Xie, Z.; Diao, X.; Liu, Z.; Zhai, J. Highly efficient gating of electrically actuated nanochannels for pulsatile drug delivery stemming from a reversible wettability switch. Adv. Mater. 2018, 30, 1703323. [Google Scholar] [CrossRef]
- Levin, S.; Fritzsche, J.; Nilsson, S.; Runemark, A.; Dhokale, B.; Strom, H.; Sunden, H.; Langhammer, C.; Westerlund, F. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat. Commun. 2019, 10, 4426. [Google Scholar] [CrossRef]
- Tian, H.; Yang, S. Recent Progresses on Diarylethene Based Photochromic Switches. Chem. Soc. Rev. 2004, 33, 85–97. [Google Scholar] [CrossRef]
- Yokoyama, Y. Fulgides for Memories and Switches. Chem. Rev. 2000, 100, 1717–1740. [Google Scholar] [CrossRef]
- Comstock, M.J.; Levy, N.; Kirakosian, A.; Cho, J.; Lauterwasser, F.; Harvey, J.H.; Strubbe, D.A.; Frechet, J.M.; Trauner, D.; Louie, S.G. Reversible Photomechanical Switching of Individual Engineered Molecules at a Metallic Surface. Phys. Rev. Lett. 2007, 99, 038301. [Google Scholar] [CrossRef]
- Klajn, R. Spiropyran-Based Dynamic Materials. Chem. Soc. Rev. 2014, 43, 148–184. [Google Scholar] [CrossRef]
- Han, L.; Zuo, X.; Li, H.; Yuan, L.; Fang, C.; Liu, D. Rational Design of Reversible Molecular Photoswitches Based on Diarylethene Molecules. J. Phys. Chem. C 2019, 123, 2736–2745. [Google Scholar] [CrossRef]
- Ravat, P.; Šolomek, T.; Rickhaus, M.; Häussinger, D.; Neuburger, M.; Baumgarten, M.; Juríček, M. Cethrene: A Helically Chiral Biradicaloid Isomer of Heptazethrene. Angew. Chem. Int. Ed. 2016, 55, 1183. [Google Scholar] [CrossRef]
- Ravat, P.; Šolomek, T.; Häussinger, D.; Blacque, O.; Juríček, M. Dimethylcethrene: A Chiroptical Diradicaloid Photoswitch. J. Am. Chem. Soc. 2018, 140, 10839–10847. [Google Scholar] [CrossRef]
- Juríček, M. The Three C’s of Cethrene. CHIMIA 2018, 72, 322–327. [Google Scholar] [CrossRef]
- Weitzenböck, R.; Klingler, A. Synthese der isomeren Kohlenwasserstoffe 1,2-5,6-Dibenzanthracen und 3,4-5,6-Dibenzphenanthren. Monatsh. Chem. 1918, 39, 315–323. [Google Scholar] [CrossRef]
- Weitzenböck, R.; Klingler, A. Synthesis of the isomeric hydrocarbons 1,2,5,6-dibenzanthracene and 3,4,5,6-dibenzophenanthrene. J. Chem. Soc. 1918, 114, 494. [Google Scholar]
- Isla, H.; Crassous, J. Helicene-based chiroptical switches. C. R. Chim. 2016, 19, 39–49. [Google Scholar] [CrossRef]
- Reyes-Gutiérrez, P.E.; Jirásek, M.; Severa, L.; Novotná, P.; Koval, D.; Sázelová, P.; Vávra, J.; Meyer, A.; Císařová, I.; Šaman, D.; et al. Functional helquats: Helical cationic dyes with marked, switchable chiroptical properties in the visible region. Chem. Commun. 2015, 51, 1583–1586. [Google Scholar] [CrossRef]
- Saleh, N.; Moore, B., II; Srebro, M.; Vanthuyne, N.; Toupet, L.; Williams, J.A.G.; Roussel, C.; Deol, K.K.; Muller, G.; Autschbach, J.; et al. Acid/Base-Triggered Switching of Circularly Polarized Luminescence and Electronic Circular Dichroism in Organic and Organometallic Helicenes. Chem. Eur. J. 2015, 21, 1673–1681. [Google Scholar] [CrossRef]
- Dinescu, L.; Wang, Z. Synthesis and photochromic properties of helically locked 1,2-dithienylethenes. Chem. Commun. 1999, 24, 2497–2498. [Google Scholar] [CrossRef]
- Ravat, P.; Hinkelmann, R.; Steinebrunner, D.; Prescimone, A.; Bodoky, I.; Juríček, M. Configurational Stability of [5]Helicenes. Org. Lett. 2017, 19, 3707–3710. [Google Scholar] [CrossRef]
- Günther, K.; Grabicki, N.; Battistella, B.; Grubert, L.; Dumele, O. An All-Organic Photochemical Magnetic Switch with Bistable Spin States. J. Chem. Soc. 2022, 144, 8707–8716. [Google Scholar] [CrossRef]
- Čavlović, D.; Blacque, O.; Krummenacher, I.; Braunschweig, H.; Ravat, P.; Juríček, M. Dimethylnonacethrene—En route to a magnetic switch. Chem. Commun. 2023, 59, 7743–7746. [Google Scholar] [CrossRef]
- Xu, X.; Gao, C.; Emusani, R.; Jia, C.; Xiang, D. Toward Practical Single-Molecule/Atom Switches. Adv. Sci. 2024, 11, 2400877. [Google Scholar] [CrossRef]
- Jia, C.; Guo, X. Molecule–electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 2013, 42, 5642–5660. [Google Scholar] [CrossRef]
- Dulić, D.; van der Molen, S.J.; Kudernac, T.; Jonkman, H.T.; de Jong, J.J.; Bowden, T.N.; van Esch, J.; Feringa, B.L.; van Wees, B.J. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 2003, 91, 207402. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Matsuda, K.; Irie, M. Excited-State Behavior of a Fluorescent and Photochromic Diarylethene on Silver Nanoparticles. J. Phys. Chem. C 2007, 111, 3853–3862. [Google Scholar] [CrossRef]
- Whalley, A.C.; Steigerwald, M.L.; Guo, X.; Nuckolls, C. Reversible Switching in Molecular Electronic Devices. J. Am. Chem. Soc. 2007, 129, 12590–12591. [Google Scholar] [CrossRef]
- Kudernac, T.; van der Molen, S.J.; van Wees, B.J.; Feringa, B.L. Uni- and Bi-Directional Light-Induced Switching of Diarylethenes on Gold Nanoparticles. Chem. Commun. 2006, 34, 3597–3599. [Google Scholar] [CrossRef]
- Tan, M.; Sun, F.; Zhao, X.; Zhao, Z.; Zhang, S.; Xu, X.; Adijiang, A.; Zhang, W.; Wang, H.; Wang, C.; et al. Conductance Evolution of Photoisomeric Single-molecule junctions under ultraviolet irradiation and mechanical stretching. J. Am. Chem. Soc. 2024, 146, 6856–6865. [Google Scholar] [CrossRef]
- Fang, C.; Oruganti, B.; Durbeej, B. How Method-Dependent Are Calculated Differences between Vertical, Adiabatic, and 0-0 Excitation Energies? J. Phys. Chem. A 2014, 118, 4157–4171. [Google Scholar] [CrossRef]
- Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized Many-Channel Conductance Formula with Application to Small Rings. Phys. Rev. B 1985, 31, 6207–6215. [Google Scholar] [CrossRef]
- Atomistix ToolKit, version 2020; QuantumWise A/S: Copenhagen, Denmark, 2020.
- Brandbyge, M.; Mozos, J.L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2022, 65, 165401. [Google Scholar] [CrossRef]
- Virtual NanoLab, version 2020.09; Synopsys QuantumWise: Sunnyvale, CA, USA, 2020.
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient Pseudopotentials for Plane-wave Calculations. II. Operators for Fast Iterative Diagonalization. Phys. Rev. B 1991, 43, 8861–8869. [Google Scholar] [CrossRef]
(a) | Configurations | Ring-Closed | Ring-Open | I-Closed | I-Open | II-Closed | II-Open |
---|---|---|---|---|---|---|---|
LUMO+1 (eV) | 1.20 | 1.62 | 1.10 | 1.64 | 1.14 | 1.61 | |
LUMO (eV) | 1.01 | 0.47 | 0.95 | 0.46 | 0.98 | 0.42 | |
HOMO (eV) | −1.01 | −0.47 | −0.95 | −0.46 | −0.98 | −0.42 | |
HOMO−1 (eV) | −1.27 | −1.78 | −1.35 | −1.36 | −1.16 | −1.63 | |
Gap (eV) | 2.02 | 0.94 | 1.90 | 0.92 | 1.95 | 0.84 | |
(b) | Configurations | I-closed | I-open | ||||
Bias (V) | 0.00 | 0.40 | 0.80 | 0.00 | 0.40 | 0.80 | |
LUMO+1 (eV) | 1.60 | 1.60 | 1.58 | 1.94 | 1.85 | 1.73 | |
LUMO (eV) | 1.40 | 1.37 | 1.30 | 0.75 | 0.67 | 0.56 | |
HOMO (eV) | −0.51 | −0.52 | −0.53 | −0.17 | −0.25 | −0.36 | |
HOMO−1 (eV) | −0.87 | −0.90 | −0.95 | −1.38 | −1.37 | −1.36 | |
Gap (eV) | 1.91 | 1.89 | 1.83 | 0.92 | 0.92 | 0.92 | |
|ΔGap| (eV) | 0.01 | - | - | 0.01 | - | - | |
(c) | Configurations | II-closed | II-open | ||||
Bias (V) | 0.00 | 0.40 | 0.80 | 0.00 | 0.40 | 0.80 | |
LUMO+1 (eV) | 1.65 | 1.65 | 1.65 | 1.76 | 1.70 | 1.67 | |
LUMO (eV) | 1.45 | 1.42 | 1.33 | 0.63 | 0.58 | 0.56 | |
HOMO (eV) | −0.47 | −0.45 | −0.42 | −0.13 | −0.18 | −0.20 | |
HOMO−1 (eV) | −0.63 | −0.66 | −0.74 | −1.51 | −1.53 | −1.52 | |
Gap (eV) | 1.92 | 1.87 | 1.75 | 0.76 | 0.76 | 0.76 | |
|ΔGap| (eV) | 0.03 | - | - | 0.08 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Wang, M.; Zhang, Y.; Cui, B.; Liu, D. Rational Design of High-Performance Photocontrolled Molecular Switches Based on Chiroptical Dimethylcethrene: A Theoretical Study. Molecules 2024, 29, 4912. https://doi.org/10.3390/molecules29204912
Han L, Wang M, Zhang Y, Cui B, Liu D. Rational Design of High-Performance Photocontrolled Molecular Switches Based on Chiroptical Dimethylcethrene: A Theoretical Study. Molecules. 2024; 29(20):4912. https://doi.org/10.3390/molecules29204912
Chicago/Turabian StyleHan, Li, Mei Wang, Yifan Zhang, Bin Cui, and Desheng Liu. 2024. "Rational Design of High-Performance Photocontrolled Molecular Switches Based on Chiroptical Dimethylcethrene: A Theoretical Study" Molecules 29, no. 20: 4912. https://doi.org/10.3390/molecules29204912
APA StyleHan, L., Wang, M., Zhang, Y., Cui, B., & Liu, D. (2024). Rational Design of High-Performance Photocontrolled Molecular Switches Based on Chiroptical Dimethylcethrene: A Theoretical Study. Molecules, 29(20), 4912. https://doi.org/10.3390/molecules29204912