Design, Synthesis and Biological Activity Evaluation of β-Carboline Derivatives Containing Nitrogen Heterocycles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Biological Evaluation
2.2.1. In Vitro Antitumor Activity of Target Compounds
2.2.2. Colony-Forming Assay and Wound-Healing Assay
2.2.3. Cell Apoptosis Analysis and Intracellular ROS Assay
2.2.4. Cell Cycle Assay and Western Blot
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Wang, M.; Guo, Z.; He, Y.; Jia, H.; He, J.; Miao, S.; Ding, Y.; Wang, S. Inspired by bis-β-carboline alkaloids: Construction and antitumor evaluation of a novel bis-β-carboline scaffold as potent antitumor agents. Bioorg. Chem. 2023, 133, 106401. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, H.; Zhu, J.; Qian, J.; Tao, W.; Xie, X.; Ji, D.; Chen, S.; Gao, G.; Li, P.; et al. Rational design of β-carboline as an efficient type I/II photosensitizer to enable hypoxia-tolerant chemo-photodynamic therapy. Bioorg. Chem. 2023, 141, 106875. [Google Scholar] [CrossRef]
- Ling, Y.; Xu, C.; Luo, L.; Cao, J.; Feng, J.; Xue, Y.; Zhu, Q.; Ju, C.; Li, F.; Zhang, Y.; et al. Novel β-Carboline/Hydroxamic Acid Hybrids Targeting Both Histone Deacetylase and DNA Display High Anticancer Activity via Regulation of the p53 Signaling Pathway. J. Med. Chem. 2015, 58, 9214–9227. [Google Scholar] [CrossRef] [PubMed]
- Sathish, M.; Chetan Dushantrao, S.; Nekkanti, S.; Tokala, R.; Thatikonda, S.; Tangella, Y.; Srinivas, G.; Cherukommu, S.; Hari Krishna, N.; Shankaraiah, N.; et al. Synthesis of DNA interactive C3-trans-cinnamide linked β-carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorgan. Med. Chem. 2018, 26, 4916–4929. [Google Scholar] [CrossRef]
- Sathish, M.; Kavitha, B.; Nayak, V.L.; Tangella, Y.; Ajitha, A.; Nekkanti, S.; Alarifi, A.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem. 2018, 144, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, P.R.; Wilson, J.; Emmerson, D.; Garcia, M.D.; Smith, M.R.; Gray, S.J.; Britton, R.G.; Mahale, S.; Chaudhuri, B. Design, synthesis and biological evaluation of new tryptamine and tetrahydro-β-carboline-based selective inhibitors of CDK4. Bioorgan. Med. Chem. 2008, 16, 7728–7739. [Google Scholar] [CrossRef]
- Ahmad, I.; Fakhri, S.; Khan, H.; Jeandet, P.; Aschner, M.; Yu, Z. Targeting cell cycle by β-carboline alkaloids in vitro: Novel therapeutic prospects for the treatment of cancer. Chem-Biol. Interact. 2020, 330, 109229. [Google Scholar] [CrossRef]
- Komulainen, H.; Tuomisto, J.; Airaksinen, M.M.; Kari, I.; Peura, P.; Pollari, L. Tetrahydro-β-carbolines and Corresponding Tryptamines: In Vitro Inhibition of Serotonin, Dopamine and Noradrenaline Uptake in Rat Brain Synaptosomes. Acta Pharmacol. Toxicol. 2009, 46, 299–307. [Google Scholar] [CrossRef]
- Han, X.; Zhang, J.; Guo, L.; Cao, R.; Li, Y.; Li, N.; Ma, Q.; Wu, J.; Wang, Y.; Si, S. A Series of Beta-Carboline Derivatives Inhibit the Kinase Activity of PLKs. PLoS ONE 2012, 7, e46546. [Google Scholar] [CrossRef]
- Benny, F.; Kumar, S.; Jayan, J.; Abdelgawad, M.A.; Ghoneim, M.M.; Kumar, A.; Manoharan, A.; Susan, R.; Sudevan, S.T.; Mathew, B. Review of β-carboline and its derivatives as selective MAO-A inhibitors. Arch. Pharm. 2023, 356, 2300091. [Google Scholar] [CrossRef]
- Herraiz, T. β-Carboline Alkaloids in Soy Sauce and Inhibition of Monoamine Oxidase (MAO). Molecules 2023, 28, 2723. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Manasa, K.; Thatikonda, S.; Sigalapalli, D.K.; Sagar, A.; Kiranmai, G.; Kalle, A.M.; Alvala, M.; Godugu, C.; Nagesh, N.; Nagendra Babu, B. Design and synthesis of β-carboline linked aryl sulfonyl piperazine derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg. Chem. 2020, 101, 103983. [Google Scholar] [CrossRef] [PubMed]
- Nafisi, S.; Bonsaii, M.; Maali, P.; Khalilzadeh, M.A.; Manouchehri, F. β-Carboline alkaloids bind DNA. J. Photochem. Photobiol. B Biol. 2010, 100, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Giulietti, J.M.; Tate, P.M.; Cai, A.; Cho, B.; Mulcahy, S.P. DNA-binding studies of the natural β-carboline eudistomin U. Bioorg. Med. Chem. Lett. 2016, 26, 4705–4708. [Google Scholar] [CrossRef]
- Venkataramana Reddy, P.O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P.N.; Shah, K.; Kumar, D. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg. Med. Chem. Lett. 2018, 28, 1278–1282. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, N.; Tang, Q.; Chen, S.; Zhan, Z.; Zhang, Y.; Wang, G.; Li, Y.; Ye, W.C. β-Carboline Alkaloids from the Seeds of Peganum harmala and Their Anti-HSV-2 Virus Activities. Org. Lett. 2020, 22, 7310–7314. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Song, H.; Liu, Y.; Wang, L.; Wang, Q. Skeletal modifications of β-carboline alkaloids and their antiviral activity profile. Mol. Divers. 2016, 20, 829–835. [Google Scholar] [CrossRef]
- Beato, A.; Gori, A.; Boucherle, B.; Peuchmaur, M.; Haudecoeur, R. β-Carboline as a Privileged Scaffold for Multitarget Strategies in Alzheimer’s Disease Therapy. J. Med. Chem. 2021, 64, 1392–1422. [Google Scholar] [CrossRef]
- Xiao, D.; Lu, L.; Liang, B.; Xiong, Z.; Xu, X.; Chen, W. Identification of 1,3,4-oxadiazolyl-containing β-carboline derivatives as novel α-glucosidase inhibitors with antidiabetic activity. Eur. J. Med. Chem. 2023, 261, 115795. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Y.; Chen, P.; Chang, Y.; Kashyap, H.K.; Shen, Y.; Yu, H.; Hwang, T. Design and synthesis of β-carboline and combretastatin derivatives as anti-neutrophilic inflammatory agents. Bioorg. Chem. 2021, 111, 104846. [Google Scholar] [CrossRef]
- Baek, S.C.; Nam, K.H.; Yi, S.A.; Jo, M.S.; Lee, K.H.; Lee, Y.H.; Lee, J.; Kim, K.H. Anti-adipogenic Effect of β-Carboline Alkaloids from Garlic (Allium sativum). Foods 2019, 8, 673. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, A.; Sihag, B.; Brar, D.S.; Kaur, A.; Salunke, D.B. Structure activity relationship in β-carboline derived anti-malarial agents. Eur. J. Med. Chem. 2021, 221, 113536. [Google Scholar] [CrossRef]
- Gorki, V.; Walter, N.S.; Singh, R.; Chauhan, M.; Dhingra, N.; Salunke, D.B.; Kaur, S. β-Carboline Derivatives Tackling Malaria: Biological Evaluation and Docking Analysis. Acs. Omega 2020, 5, 17993–18006. [Google Scholar] [CrossRef]
- Asati, V.; Mahapatra, D.K.; Bharti, S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur. J. Med. Chem. 2014, 87, 814–833. [Google Scholar] [CrossRef] [PubMed]
- Sireesha, R.; Tej, M.B.; Poojith, N.; Sreenivasulu, R.; Musuluri, M.; Subbarao, M. Synthesis of Substituted Aryl Incorporated Oxazolo[4,5-b]Pyridine-Triazole Derivatives: Anticancer Evaluation and Molecular Docking Studies. Polycycl. Aromat. Compd. 2023, 43, 915–932. [Google Scholar] [CrossRef]
- Lingam, J.; Sahoo, B.K.; Mallavarapu, B.D.; Sreenivasulu, R. Design, synthesis, anticancer evaluation and molecular docking studies of 1,2,4-oxadiazole incorporated indazole-isoxazole derivatives. Synth. Commun. 2024, 54, 66–76. [Google Scholar] [CrossRef]
- Hatti, I.; Sujana, O.; Nookaraju, M.; Suresh, J.; Aparna Seetharam, K.; Raju, R.R. Rational design, synthesis, and anticancer evaluation of pyridine and substituted aryl linked 1,3,4-oxadiazole derivatives. Results Chem. 2024, 11, 101755. [Google Scholar] [CrossRef]
- Benassi, A.; Doria, F.; Pirota, V. Groundbreaking Anticancer Activity of Highly Diversified Oxadiazole Scaffolds. Int. J. Mol. Sci. 2020, 21, 8692. [Google Scholar] [CrossRef]
- Tian, K.; Li, X.; Zhang, L.; Gan, Y.; Meng, J.; Wu, S.; Wan, J.; Xu, Y.; Cai, C.; Ouyang, G.; et al. Synthesis of novel indole derivatives containing double 1,3,4-oxadiazole moiety as efficient bactericides against phytopathogenic bacterium Xanthomonas oryzae. Chem. Pap. 2019, 73, 17–25. [Google Scholar] [CrossRef]
- Rodrigues-Vendramini, F.A.V.; Faria, D.R.; Arita, G.S.; Capoci, I.R.G.; Sakita, K.M.; Caparroz-Assef, S.M.; Becker, T.C.A.; de Souza Bonfim-Mendonça, P.; Felipe, M.S.; Svidzinski, T.I.E.; et al. Antifungal activity of two oxadiazole compounds for the paracoccidioidomycosis treatment. PLoS Negl. Trop. Dis. 2019, 13, e7441. [Google Scholar] [CrossRef]
- Nayak, S.; Gaonkar, S.L.; Musad, E.A.; Dawsar, A.M.A. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. J. Saudi Chem. Soc. 2021, 25, 101284. [Google Scholar] [CrossRef]
- Paruch, K.; Popiołek, A.; Wujec, M. Antimicrobial and antiprotozoal activity of 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines: A review. Med. Chem. Res. 2020, 29, 1–16. [Google Scholar] [CrossRef]
- Meanwell, N.A.; Loiseleur, O. Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 2. J. Agric. Food Chem. 2022, 70, 10972–11004. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Soni, J.P.; Devi, P.; Chemitikanti, S.; Sharma, A.; Swamy, C.V.D.; Phanindranath, R.; Sathish, M.; Nagesh, N.; Godugu, C.; Shankaraiah, N. Design, synthesis and in vitro cytotoxic evaluation of β-carboline tethered quinoline-4-carboxamide conjugates as DNA-interactive Topo II inhibitors. J. Mol. Struct. 2023, 1291, 136001. [Google Scholar] [CrossRef]
- Hu, W.; Huang, X.; Wu, J.; Yang, L.; Zheng, Y.; Shen, Y.; Li, Z.; Li, X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J. Med. Chem. 2018, 61, 8947–8980. [Google Scholar] [CrossRef]
- Ao, J.; Zeng, F.; Wang, L.; Qiu, L.; Cao, R.; Li, X. Design, synthesis and pharmacological evaluation of β-carboline derivatives as potential antitumor agent via targeting autophagy. Eur. J. Med. Chem. 2023, 246, 114955. [Google Scholar] [CrossRef]
- Szabó, T.; Volk, B.; Milen, M. Recent Advances in the Synthesis of β-Carboline Alkaloids. Molecules 2021, 26, 663. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Y.; Jiang, Z.; Shu, B.; Sethuraman, V.; Zhong, G. Design, synthesis, fungicidal property and QSAR studies of novel β-carbolines containing urea, benzoylthiourea and benzoylurea for the control of rice sheath blight. Pest Manag. Sci. 2018, 74, 1736–1746. [Google Scholar] [CrossRef]
- Yao, K.; Zhao, M.; Zhang, X.; Wang, Y.; Li, L.; Zheng, M.; Peng, S. A class of oral N-[(1S,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carbonyl]- N′-(amino-acid-acyl)hydrazine: Discovery, synthesis, in vitro anti-platelet aggregation/in vivo anti-thrombotic evaluation and 3D QSAR analysis. Eur. J. Med. Chem. 2011, 46, 3237–3249. [Google Scholar] [CrossRef]
- Patel, N.B.; Purohit, A.C.; Rajani, D.P.; Moo-Puc, R.; Rivera, G. New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles: Their synthesis and biological evaluation. Eur. J. Med. Chem. 2013, 62, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, M.; Long, X.; Wang, Q.; Wang, Z.; Ouyang, G. Design, Synthesis and Antitumor Activity of 1H-indazole-3-amine Derivatives. Int. J. Mol. Sci. 2023, 24, 8686. [Google Scholar] [CrossRef]
- Wang, W.; Qin, J.; Voruganti, S.; Srivenugopal, K.S.; Nag, S.; Patil, S.; Sharma, H.; Wang, M.; Wang, H.; Buolamwini, J.K.; et al. The pyridoindole MDM2 inhibitor SP-141 exerts potent therapeutic effects in breast cancer models. Nat. Commun. 2014, 5, 5086. [Google Scholar] [CrossRef] [PubMed]
- Zaidieh, T.; Smith, J.R.; Ball, K.E.; An, Q. ROS as a novel indicator to predict anticancer drug efficacy. BMC Cancer 2019, 19, 1224. [Google Scholar] [CrossRef]
- Luo, B.; Song, X. A comprehensive overview of beta-carbolines and its derivatives as anticancer agents. Eur. J. Med. Chem. 2021, 224, 113688. [Google Scholar] [CrossRef]
- Ikeda, R.; Kimura, T.; Tsutsumi, T.; Tamura, S.; Sakai, N.; Konakahara, T. Structure-activity relationship in the antitumor activity of 6-, 8- or 6,8-substituted 3-benzylamino-beta-carboline derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3506–3515. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, G.; Li, C.; Long, H.; Chen, D.; Li, Z.; Ouyang, G.; Zhang, W.; Zhang, Y.; Wang, Z. Discovery of Tryptanthrin and Its Derivatives and Its Activities against NSCLC In Vitro via Both Apoptosis and Autophagy Pathways. Int. J. Mol. Sci. 2023, 24, 1450. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, Z.; Fan, S.L., C.; Li, Y.; Liu, W.; Long, X.; Zhang, W.; Zhang, Y.; Li, Z.; et al. Synthesis and biological assessment of indole derivatives containing penta-heterocycles scaffold as novel anticancer agents towards A549 and K562 cells. J. Enzyme Inhib. Med. Chem. 2023, 38, 2163393. [Google Scholar] [CrossRef]
Compds. | Inhibitory Activity a/% at 10 μM | ||||
---|---|---|---|---|---|
PC-3 | A549 | K562 | T47D | Hek-293T | |
7a | 29.58 ± 0.25 | 0.72 ± 1.63 | 0.85 ± 1.01 | 32.30 ± 3.36 | 18.56 ± 0.71 |
7b | 29.09 ± 0.27 | 13.61 ± 7.88 | 8.98 ± 3.13 | 42.62 ± 1.65 | 33.29 ± 0.80 |
7c | 22.69 ± 2.19 | 16.75 ± 2.39 | 18.08 ± 2.63 | 40.21 ± 0.90 | 47.29 ± 4.59 |
7d | 26.47 ± 5.76 | 11.24 ± 0.69 | 17.82 ± 3.97 | 25.41 ± 4.82 | 36.90 ± 1.74 |
7e | 24.97 ± 4.06 | 17.98 ± 2.06 | 12.65 ± 4.72 | 47.69 ± 3.36 | 26.36 ± 1.35 |
7f | 11.54 ± 2.78 | 13.54 ± 6.97 | 21.49 ± 3.02 | 42.35 ± 4.23 | 56.84 ± 2.21 |
7g | 14.81 ± 2.23 | / c | 0.05 ± 2.99 | 42.52 ± 3.19 | 34.11 ± 6.80 |
7h | 10.65 ± 2.68 | 2.16 ± 3.56 | 8.23 ± 4.12 | 46.42 ± 2.12 | 47.51 ± 0.78 |
7i | 35.65 ± 1.89 | 5.20 ± 7.21 | 23.60 ± 3.59 | 54.25 ± 3.88 | 84.14 ± 0.79 |
7j | 14.72 ± 4.49 | 34.04 ± 0.87 | 13.61 ± 1.21 | 39.88 ± 3.50 | 13.44 ± 0.68 |
7k | 35.84 ± 4.09 | 10.11 ± 6.19 | 12.24 ± 0.18 | 47.52 ± 1.39 | 30.77 ± 2.59 |
7l | 39.56 ± 5.06 | 12.23 ± 6.14 | 9.28 ± 2.51 | 19.32 ± 5.03 | 11.20 ± 7.91 |
7m | 20.01 ± 3.22 | 14.72 ± 3.64 | 32.99 ± 1.83 | 25.16 ± 4.10 | 29.48 ± 3.33 |
7n | 36.00 ± 3.68 | 8.72 ± 2.57 | 35.08 ± 3.12 | 47.75 ± 0.82 | 61.79 ± 1.57 |
7o | 5.36 ± 3.63 | / | 1.26 ± 3.66 | 25.01 ± 1.43 | 35.33 ± 3.81 |
7p | 51.25 ± 3.11 | 17.00 ± 2.10 | 8.68 ± 6.83 | 50.69 ± 5.79 | 61.48 ± 3.24 |
7q | 29.50 ± 1.38 | 8.67 ± 0.64 | 17.01 ± 1.86 | 46.42 ± 2.86 | 32.30 ± 2.21 |
7r | 43.98 ± 2.62 | 3.03 ± 5.83 | 17.22 ± 2.35 | 38.40 ± 5.85 | 0.74 ± 3.77 |
Harmine b | 14.46 ± 1.42 | 30.99 ± 2.81 | 36.02 ± 2.77 | 51.28 ± 4.58 | 29.10 ± 3.19 |
5-Fluorouracil | — d | 40.58 ± 2.04 | — | — | — |
Gefitinib | — | 37.06 ± 0.50 | — | — | — |
Compds. | Inhibitory Activity a/% at 10 μM | ||||
---|---|---|---|---|---|
PC-3 | A549 | K562 | T47D | Hek-293T | |
8a | 7.73 ± 1.33 | 7.02 ± 4.02 | 21.02 ± 1.65 | 7.49 ± 3.25 | 29.40 ± 2.16 |
8b | 8.91 ± 5.34 | 5.03 ± 5.42 | 10.85 ± 2.32 | 10.64 ± 1.16 | 38.35 ± 3.85 |
8d | 17.86 ± 2.80 | 10.08 ± 4.44 | 8.62 ± 5.59 | / c | 36.92 ± 2.63 |
8e | 26.85 ± 4.39 | 26.77 ± 2.60 | 54.35 ± 2.32 | / | 23.36 ± 3.77 |
8f | 34.50 ± 0.68 | 13.23 ± 0.56 | 7.87 ± 5.82 | 6.91 ± 5.13 | 20.21 ± 4.34 |
8g | 45.44 ± 0.82 | 35.75 ± 1.17 | 6.38 ± 0.52 | 40.65 ± 4.48 | 28.96 ± 4.56 |
8h | 12.21 ± 1.13 | 17.88 ± 2.91 | 2.46 ± 1.78 | / | 29.56 ± 3.04 |
8i | 21.31 ± 4.80 | 18.41 ± 1.80 | 25.50 ± 2.72 | 0.56 ± 3.38 | 25.55 ± 3.44 |
8j | 15.74 ± 3.93 | 0.13 ± 4.62 | 24.96 ± 3.95 | / | 20.37 ± 1.51 |
8k | 44.72 ± 1.82 | 33.22 ± 0.45 | 33.46 ± 8.79 | 6.94 ± 3.38 | 29.62 ± 2.33 |
8m | 46.58 ± 0.35 | 2.70 ± 1.78 | 30.19 ± 2.16 | / | 20.97 ± 2.61 |
8n | 31.96 ± 1.17 | 7.62 ± 3.84 | 38.23 ± 3.73 | 25.64 ± 3.79 | 35.54 ± 1.75 |
8p | 19.12 ± 2.79 | 8.84 ± 0.36 | 44.59 ± 4.10 | 54.16 ± 4.87 | 28.93 ± 3.22 |
8q | 46.07 ± 0.74 | 32.86 ± 4.30 | 25.65 ± 14.89 | 14.53 ± 7.43 | 54.76 ± 0.99 |
8s | 41.45 ± 0.19 | 10.72 ± 5.29 | 7.59 ± 2.67 | / | 60.65 ± 5.81 |
Harmine b | 14.46 ± 1.42 | 31.23 ± 2.67 | 36.02 ± 2.77 | 48.76 ± 2.37 | 29.10 ± 3.19 |
5-Fluorouracil | — d | 40.58 ± 2.04 | — | — | — |
Gefitinib | — | 37.06 ± 0.50 | — | — | — |
Compds. | IC50 a/(Mean ± S.D., μM) | |||
---|---|---|---|---|
PC-3 | A549 | K562 | T47D | |
8g | 9.56 ± 1.43 | >40 | >40 | >40 |
8q | 9.86 ± 1.03 | 26.18 ± 1.51 | 11.71 ± 0.21 | 9.96 ± 0.63 |
Harmine b | 24.43 ± 4.45 | 25.92 ± 4.78 | 15.68 ± 2.27 | 38.45 ± 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Wang, W.; Li, F.; Xu, C.; Zhou, Y.; Li, Z.; Liu, B.; Shao, L.; Chen, D.; Bai, S.; et al. Design, Synthesis and Biological Activity Evaluation of β-Carboline Derivatives Containing Nitrogen Heterocycles. Molecules 2024, 29, 5155. https://doi.org/10.3390/molecules29215155
Wu G, Wang W, Li F, Xu C, Zhou Y, Li Z, Liu B, Shao L, Chen D, Bai S, et al. Design, Synthesis and Biological Activity Evaluation of β-Carboline Derivatives Containing Nitrogen Heterocycles. Molecules. 2024; 29(21):5155. https://doi.org/10.3390/molecules29215155
Chicago/Turabian StyleWu, Guiyun, Wenhang Wang, Fulian Li, Chenlu Xu, Yue Zhou, Zhurui Li, Bingqian Liu, Lihui Shao, Danping Chen, Song Bai, and et al. 2024. "Design, Synthesis and Biological Activity Evaluation of β-Carboline Derivatives Containing Nitrogen Heterocycles" Molecules 29, no. 21: 5155. https://doi.org/10.3390/molecules29215155
APA StyleWu, G., Wang, W., Li, F., Xu, C., Zhou, Y., Li, Z., Liu, B., Shao, L., Chen, D., Bai, S., & Wang, Z. (2024). Design, Synthesis and Biological Activity Evaluation of β-Carboline Derivatives Containing Nitrogen Heterocycles. Molecules, 29(21), 5155. https://doi.org/10.3390/molecules29215155