Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. FESEM Observation
2.2. XRD Study
2.2.1. XRD Analysis—Effect of the Silver Concentration
2.2.2. XRD Analysis—Effect of UV Treatment on the Sol Solution
2.2.3. XRD Analysis—Anatase/Rutile Fraction in TiO2:Ag Films
2.3. FTIR Analysis
2.4. Optical Properties of TiO2:Ag Films
2.4.1. Optical Properties of Thermally Treated TiO2:Ag Films (First Group)
2.4.2. Optical Characterization of the Synthesized Sol Solutions
2.4.3. Optical Properties TiO2:Ag Films, Obtained from UV Radiated Sols (Second Group)
2.4.4. Optical Band Gap of TiO2:Ag Films
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials 2023, 13, 1141. [Google Scholar] [CrossRef] [PubMed]
- Pant, B.; Park, M.; Park, S.-J. Recent Advances in TiO2 Films Prepared by Sol-Gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings 2019, 9, 613. [Google Scholar] [CrossRef]
- Cannavale, A.; Lerario, G. 16-TiO2 oxides for chromogenic devices and dielectric mirrors. In Metal Oxides, Titanium Dioxide (TiO2) and Its Applications; Parrino, F., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 483–505. [Google Scholar] [CrossRef]
- Grätzel, M. Sol-Gel Processed TiO2 Films for Photovoltaic Applications. J. Sol. Gel. Sci. Technol. 2001, 22, 7–13. [Google Scholar] [CrossRef]
- Padmanabhan, N.T.; John, H. Titanium dioxide based self-cleaning smart surfaces: A short review. J. Environ. Chem. Eng. 2020, 8, 104211. [Google Scholar] [CrossRef]
- Ruan, X.; Li, S.; Huang, C.; Zheng, W.; Cui, X.; Ravi, S.K. Catalyzing Artificial Photosynthesis with TiO2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. Adv. Mater. 2024, 36, 2305285. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, D.L.T.; Nguyen, V.-H.; Le, T.-H.; Vo, D.-V.N.; Trinh, Q.T.; Bae, S.-R.; Chae, S.Y.; Kim, S.Y.; Le, Q.V. Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels. Nanomaterials 2020, 10, 337. [Google Scholar] [CrossRef]
- Mohamad, M.; Haq, B.U.; Ahmed, R.; Shaari, A.; Ali, N.; Hussain, R. A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Mater. Sci. Semicond. Process. 2015, 31, 405–414. [Google Scholar] [CrossRef]
- Manuputty, M.Y.; Dreyer, J.A.H.; Sheng, Y.; Bringley, E.J.; Botero, M.L.; Akroyd, J.; Kraft, M. Polymorphism of nanocrystalline TiO2 prepared in a stagnation flame: Formation of the TiO2-II phase. Chem. Sci. 2019, 10, 1342–1350. [Google Scholar] [CrossRef]
- Tian, M.; Liu, C.; Ge, J.; Geohegan, D.; Duscher, G.; Eres, G. Recent progress in characterization of the core–shell structure of black titania. J. Mater. Res. 2019, 34, 1138–1153. [Google Scholar] [CrossRef]
- Oi, L.E.; Choo, M.-Y.; Lee, H.V.; Ong, H.C.; Hamid, S.B.A.; Juan, J.C. Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Adv. 2016, 6, 108741–108754. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Xiao, X.; Ren, F. Implantation of titanium dioxide with transition metal ions. In Titanium Dioxide: Applications, Synthesis and Toxicity; Jha, P.K., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2013; Chapter 3; pp. 59–83. [Google Scholar]
- Fischer, K.; Gawel, A.; Rosen, D.; Krause, M.; Latif, A.A.; Griebel, J.; Prager, A.; Schulze, A. Low-Temperature Synthesis of Anatase/Rutile/Brookite TiO2 Nanoparticles on a Polymer Membrane for Photocatalysis. Catalysts 2017, 7, 209. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, J.; Liu, X.; Wang, P.; Yu, X.; Zhao, F.; Sun, Y.; Feng, W.; Wang, Q. Controllable Phase Transformation and Enhanced Photocatalytic Performance of Nano-TiO2 by Using Oxalic Acid. Nanomaterials 2022, 12, 3019. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Fagan, R.; Hinder, S.; McCormack, D.E.; Pillai, S.C. New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. RSC Adv. 2016, 6, 95232–95238. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Mosquera, A.A.; Albella, J.M.; Navarro, V.; Bhattacharyya, D.; Endrino, J.L. Effect of silver on the phase transition and wettability of titanium oxide films. Sci. Rep. 2016, 6, 32171. [Google Scholar] [CrossRef]
- Yu, J.; Xiong, J.; Cheng, B.; Liu, S. Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B Environ. 2005, 60, 211–221. [Google Scholar] [CrossRef]
- Mondal, S.; Basak, D. Plasmon assisted high ultraviolet to visible broad band photosensitivity in lateral Ag NPs-TiO2 nanocomposite film. Surf. Interfaces 2022, 31, 102090. [Google Scholar] [CrossRef]
- Katta, V.S.; Chappidi, V.R.; Raavi, S.S.K. Plasmonic Au NPs embedded Ytterbium-doped TiO2 nanocomposites photoanodes for efficient indoor photovoltaic devices. Appl. Surf. Sci. 2023, 611, 155728. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.; Luan, W.; Li, D.; Yao, K. The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol-gel method. Appl. Surf. Sci. 2012, 258, 8241–8246. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Z.; Herout, R.; Liu, C.; Yu, K.; Lange, D.; Godin, R.; Kizhakkedathu, J.N.; Troczynski, T.; Wang, R. Axial suspension plasma sprayed Ag-TiO2 coating for enhanced photocatalytic and antimicrobial properties. Surf. Interfaces 2024, 45, 103856. [Google Scholar] [CrossRef]
- Ramadhani, D.A.K.; Sholeha, N.; Khusna, N.N.; Diantoro, M.; Afandi, A.; Osman, Z.; Pujiarti, H. Ag-doped TiO2 as photoanode for high performance dye sensitized solar cells. Mater. Sci. Energy Technol. 2024, 7, 274–281. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Characterization of nanostructured TiO2: Ag films: Structural and optical properties. J. Phys. Conf. Ser. 2016, 764, 012019. [Google Scholar] [CrossRef]
- Harizanov, O.; Harizanova, A. Development and investigation of sol–gel solutions for the formation of TiO2 coatings. Sol. Energy Mater. Sol. Cells 2000, 63, 185–195. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Roto, R.; Novarita, D.; Suwondo, K.P.; Kuswandi, B. Preparation of TiO2/AgNPs by photodeposition method using Ag(I) present in radiophotography wastewater and their antibacterial activity in visible light illumination. J. Environ. Chem. Eng. 2019, 7, 103178. [Google Scholar] [CrossRef]
- Rabhi, S.; Belkacemi, H.; Bououdina, M.; Kerrami, A.; Brahem, L.A.; Sakher, E. Effect of Ag doping of TiO2 nanoparticles on anatase-rutile phase transformation and excellent photodegradation of amlodipine besylate. Mater. Lett. 2019, 236, 640–643. [Google Scholar] [CrossRef]
- Borges, J.; Rodrigues, M.S.; Lopes, G.; Costa, D.; Couto, F.M.; Kubart, T.; Martins, B.; Duarte, N.; Dias, J.P.; Cavaleiro, A.; et al. Thin films composed of Ag nanoclusters dispersed in TiO2: Influence of composition and thermal annealing on the microstructure and physical responses. Appl. Surf. Sci. 2015, 358, 595–604. [Google Scholar] [CrossRef]
- He, J.; Du, Y.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24, 2996. [Google Scholar] [CrossRef]
- García-Serrano, J.; Gómez-Hernández, E.; Ocampo-Fernández, M.; Pal, U. Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles. Curr. Appl. Phys. 2009, 9, 1097–1105. [Google Scholar] [CrossRef]
- Chao, H.E.; Yun, Y.U.; Xingfang, H.U.; Larbot, A. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J. Eur. Ceram. Soc. 2003, 23, 1457–1464. [Google Scholar] [CrossRef]
- Maira, A.J.; Coronado, J.M.; Augugliaro, V.; Young, K.L.; Conesa, J.C.; Soria, Y. Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. J. Catal. 2001, 202, 413–420. [Google Scholar] [CrossRef]
- Vuk, A.Š.; Ješe, R.; Orel, B.; Dražč, G. The effect of surface hydroxyl groups on the adsorption properties of nanocrystalline TiO2 films. Int. J. Photoen. 2005, 7, 827930. [Google Scholar] [CrossRef]
- Kusior, A.; Banas, J.; Trenczek-Zajal, A.; Zubryska, P.; Micek-Ilnicka, A.; Radecka, M. Structural properties of TiO2 nanomaterials. J. Mol. Str. 2018, 1157, 327–336. [Google Scholar] [CrossRef]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Mattsson, A.; Leideborg, M.; Larsson, K.; Westin, G.; Österlund, L. Adsorption and Solar Light Decomposition of Acetone on Anatase TiO2 and Niobium Doped TiO2 Thin Films. J. Phys. Chem. B 2006, 110, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Negi, P.; Kaur, M.; Sharma, R.; Konwar, R.J.; Mahajan, A. Morpho-structural and opto-electrical properties of chemically tuned nanostructured TiO2. Ceram. Int. 2018, 44, 18484–18490. [Google Scholar] [CrossRef]
- Praveen, P.; Viruthagiri, G.; Mugundan, S.; Shanmugan, S. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles–Synthesized via sol–gel route. Spectroch. Acta Part A 2014, 117, 622–629. [Google Scholar] [CrossRef]
- Bouachiba, Y.; Hanini, F.; Bouabellou, A.; Kermiche, F.; Taabouche, A.; Bouafia, M.; Boukheddaden, K. TiO2 thin films studied by FTIR, AFM and spectroscopic ellipsometry. Int. J. Nanopart. 2013, 6, 169. [Google Scholar] [CrossRef]
- Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Puchkovska, G.; Naumov, V.; Khalyavka, T.; Kshnyakin, V.; Chernyak, V.; Baran, J. Optical and photocatalytic properties of titanium-manganese mixed oxides. Mater. Sci. Eng. B 2010, 175, 48–55. [Google Scholar] [CrossRef]
- Kondaiah, P.; Madhavi, V.; Sekhar, M.C.; Rao, G.M.; Uthanna, S. Structural, Electrical and Dielectric Properties of Sputtered TiO2 Films for Al/TiO2/Si Capacitors. Sci. Adv. Mater. 2013, 5, 1947. [Google Scholar] [CrossRef]
- Roy, A.; Mukhopadhyay, S.; Devi, P.S.; Sundaram, S. Polyaniline-Layered Rutile TiO2 Nanorods as Alternative Photoanode in Dye-Sensitized Solar Cells. ACS Omega 2019, 4, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, A.K.; Al-Kaabi, W.J.; Ali, A.A.; Albukhaty, S.; Al-Karagoly, H.; Sulaiman, G.M.; Asiri, M.; Khane, Y. Green Synthesis and Characterization of Silver Nanoparticles Using Flaxseed Extract and Evaluation of Their Antibacterial and Antioxidant Activities. Appl. Sci. 2023, 13, 2182. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Bowmaker, G.A.; Metson, J.B. The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys. 2001, 3, 3838–3845. [Google Scholar] [CrossRef]
- Ahmed, F.; Kanoun, M.B.; Awada, C.; Jonin, C.; Brevet, P.-F. An Experimental and Theoretical Study on the Effect of Silver Nanoparticles Concentration on the Structural, Morphological, Optical, and Electronic Properties of TiO2 Nanocrystals. Crystals 2021, 11, 1488. [Google Scholar] [CrossRef]
- Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.H.; Matori, K.A. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method. Materials 2017, 10, 402. [Google Scholar] [CrossRef]
- Desai, R.; Mankad, V.; Gupta, S.K.; Jha, P.K. Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment. Nanosci. Nanotechnol. Lett. 2012, 4, 30–34. [Google Scholar] [CrossRef]
- Guitoume, D.; Achour, S.; Sobti, N.; Boudissa, M.; Souami, N.; Messaoudi, Y. Structural, optical and photoelectrochemical properties of TiO2 films decorated with plasmonic silver nanoparticles. Optik 2018, 154, 182–191. [Google Scholar] [CrossRef]
- Ge, L.; Hu, M.; Fang, H. Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO4–TiO2 thin films under visible-light irradiation. J. Mol. Catal. A 2006, 258, 68–76. [Google Scholar] [CrossRef]
- Zhang, L.Y.; You, J.; Li, Q.W.; Pong, Z.H.; Zhong, Y.Z.; Han, Y.L.; You, Y.H. Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001). Coatings 2020, 10, 27. [Google Scholar] [CrossRef]
- Naseri, N.; Sangpour, P.; Mousari, S.H. Applying alloyed metal nanoparticles to enhance solar assisted water splitting. RSC Adv. 2014, 4, 46697–46703. [Google Scholar] [CrossRef]
- White, T.P.; Catchpole, K.R. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. 2012, 101, 073905. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Sun, X.; Li, Z.; Jiang, H.; Chen, Y. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers. Sci. Rep. 2015, 5, 12555. [Google Scholar] [CrossRef] [PubMed]
- Kozioł, R.; Łapiński, M.; Syty, P.; Koszelow, W.; Sadowski, D.; Sienkiewicz, J.E.; Kościelska, B. Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions. Beilstein J. Nanotechnol. 2020, 11, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Sahu, K.; Singh, R.; Som, T.; Kotnala, R.K.; Mohapatra, S. Thermal annealing induced strong photoluminescence enhancement in Ag-TiO2 plasmonic nanocomposite thin films. J. Alloys Comp. 2016, 786, 750–757. [Google Scholar] [CrossRef]
- Katsiaounis, S.; Panidi, J.; Koutselas, I.; Topoglidis, E. Fully Reversible Electrically Induced Photochromic-Like Behaviour of Ag:TiO2 Thin Films. Coatings 2020, 10, 130. [Google Scholar] [CrossRef]
- Kumar, M.; Parashar, K.K.; Tandi, S.K.; Kumar, T.; Agarwal, D.C.; Pathak, A. Fabrication of Ag:TiO2 Nanocomposite Thin Films by Sol-Gel Followed by Electron Beam Physical Vapour Deposition Technique. J. Spectrosc. 2013, 2013, 491716. [Google Scholar] [CrossRef]
- Akgun, B.A.; Durucan, C.; Mellott, N.P. Effect of silver incorporation on crystallization and microstructural properties of sol–gel derived titania thin films on glass. J. Sol-Gel Sci. Technol. 2011, 58, 277–289. [Google Scholar] [CrossRef]
- Mohapatra, B.; Kumar, D.; Sharma, N.; Mohapatra, S. Morphological, plasmonic and enhanced antibacterial properties of Ag nanoparticles prepared using Zingiber officinale extract. J. Phys. Chem. Solids 2019, 126, 257–266. [Google Scholar] [CrossRef]
- Chang, H.Y.; Chen, D.H. Fabrication and photoelectrochemical study of Ag@TiO2 nanoparticle thin film electrode. Int. J. Hydrogen Energy 2011, 36, 9487–9495. [Google Scholar] [CrossRef]
- Hwang, H.J.; Joo, S.J.; Patil, S.A.; Kim, H.S. Efficiency enhancement in dye-sensitized solar cells using the shape/size-dependent plasmonic nanocomposite photoanodes incorporating silver nanoplate. Nanoscale 2017, 9, 7960–7969. [Google Scholar] [CrossRef]
- Gogoi, D.; Namdeo, A.; Golder, A.K.; Peela, N.R. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. Int. J. Hydrogen Energy 2020, 45, 2729–2744. [Google Scholar] [CrossRef]
- Möls, K.; Aarik, L.; Mändar, H.; Kasikov, A.; Niilisk, A.; Rammula, R.; Aarik, J. Influence of phase composition on optical properties of TiO2: Dependence of refractive index and band gap on formation of TiO2-II phase in thin films. Opt. Mater. 2019, 96, 109335. [Google Scholar] [CrossRef]
- Cruz, M.R.A.; Sanchez-Martinez, D.; Torres-Martínez, L.M. Optical properties of TiO2 thin films deposited by DC sputtering and their photocatalytic performance in photoinduced process. Int. J. Hydrogen Energy 2019, 44, 20017–20028. [Google Scholar] [CrossRef]
- Dey, D.; Halder, N.; Misra, K.P.; Chattopadhyay, S.; Jain, S.K.; Bera, P.; Kumar, N.; Mukhopadhyay, A.K. Systematic study on the effect of Ag doping in shaping the magnetic properties of sol-gel derived TiO2 nanoparticles. Cer. Int. 2020, 46, 27832–27848. [Google Scholar] [CrossRef]
- Liza, T.Z.; Tusher, M.H.; Anwar, F.; Monika, M.F.; Amin, K.F.; Asrafuzzaman, F.N.U. Effect of Ag-doping on morphology, structure, band gap and photocatalytic activity of bio-mediated TiO2 nanoparticles. Results Mater. 2024, 22, 100559. [Google Scholar] [CrossRef]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Reddy, M.V.R.; Sayanna, R. Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt. Mater. 2024, 108, 110401. [Google Scholar] [CrossRef]
- Chiappim, W.; Testoni, G.E.; Moraes, R.S.; Pessoa, R.S.; Sagás, J.C.; Origo, F.D.; Vieira, L.; Maciel, H.S. Structural, morphological, and optical properties of TiO2 thin films grown by atomic layer deposition on fluorine doped tin oxide conductive glass. Vacuum 2016, 123, 91–102. [Google Scholar] [CrossRef]
- López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7. [Google Scholar] [CrossRef]
- Garay-Rodríguez, L.F.; Alfaro Cruz, M.R.; González-Ibarra, J.; Torres-Martínez, L.M.; Kim, J.H. Evaluation of Photocatalytic Hydrogen Evolution in Zr-Doped TiO2 Thin Films. Surfaces 2024, 7, 560–570. [Google Scholar] [CrossRef]
- Paul, T.C.; Podder, J.; Paik, L. Effect of Fe doping on the microstructure, optical and dispersion energy characteristics of TiO2 thin films prepared via spray pyrolysis technique. Results Opt. 2022, 8, 100235. [Google Scholar] [CrossRef]
Annealing Temperature (°C) | Sample | Crystallite Size (nm) * | |||
---|---|---|---|---|---|
Anatase ** | Rutile *** | Ag0 **** | AgO ***** | ||
300 | TiO2 | 6.5 (6) | - | - | - |
TiO2:Ag (Sol A) | Broad, weak | 3.7 (8) | Broad, weak | 20.6 (5) | |
TiO2:Ag (Sol B) | Predominantly amorphous | ||||
TiO2:Ag (Sol C) | Predominantly amorphous | ||||
400 | TiO2 | 8.7 (6) | No lines | - | - |
TiO2:Ag (Sol A) | 10.1 | 20.5 (6) | 21.8 (7) | 24.9 (8) | |
TiO2:Ag (Sol B) | 9.2 | 19.3 (2) | broad | 23.9 (7) | |
TiO2:Ag (Sol C) | 9.9 | No lines | 34.7 (6) | No lines | |
500 | TiO2 | ||||
TiO2:Ag (Sol A) | 12 (1) | Broad, weak | 11.4 | Broad, weak | |
TiO2:Ag (Sol B) | 15.6 (7) | Broad, weak | 9.5 | 24.1 (2) | |
TiO2:Ag (Sol C) | 15.7 (8) | No lines | 17.9 | Broad, weak | |
600 | TiO2 | 20.0 (1) | - | - | - |
TiO2:Ag (Sol A) | 10.8 (7) | 26.7 (6) | 26.6 (7) | 8.2 (2) | |
TiO2:Ag (UV Sol A) | 13.4 (3) | 27.0 (2) | 22.7 (6) | 10.9 (8) | |
TiO2:Ag (Sol B) | 14.0 (2) | 31.5 (6) | 12.6 (6) | No lines | |
TiO2:Ag (Sol C) | 16.3 (5) | No lines | 23.2 (3) | No lines |
Sample | a (Å) | c (Å) | WA (%) | WR (%) |
---|---|---|---|---|
TiO2 | 3.776 (3) | 9.471 (6) | 100 | 0 |
TiO2:Ag, Sol A 1 wt% AgNO3 | 3.784 (3) | 9.518 (6) | 59.0 | 41.0 |
TiO2:Ag, Sol A, UV treated sol | 3.820 (3) | 9.443 (6) | 73.7 | 26.3 |
TiO2:Ag, Sol B 0.5 wt% AgNO3 | 3.807 (3) | 9.508 (6) | 60.2 | 39.8 |
TiO2:Ag, Sol C 0.1 wt% AgNO3 | 3.782 (3) | 9.509 (6) | 80.9 | 19.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, T.; Harizanova, A.; Koutzarova, T.; Closset, R. Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films. Molecules 2024, 29, 5156. https://doi.org/10.3390/molecules29215156
Ivanova T, Harizanova A, Koutzarova T, Closset R. Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films. Molecules. 2024; 29(21):5156. https://doi.org/10.3390/molecules29215156
Chicago/Turabian StyleIvanova, Tatyana, Antoaneta Harizanova, Tatyana Koutzarova, and Raphael Closset. 2024. "Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films" Molecules 29, no. 21: 5156. https://doi.org/10.3390/molecules29215156
APA StyleIvanova, T., Harizanova, A., Koutzarova, T., & Closset, R. (2024). Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films. Molecules, 29(21), 5156. https://doi.org/10.3390/molecules29215156