BODIPY Compounds Substituted on Boron
Abstract
:1. Introduction
2. Direct Synthesis of 4-Substituted BODIPYs from Dipyrromethene Derivatives
3. Reactivity of BODIPY Compounds on Boron Under Thermal Conditions
3.1. Lewis Acid Promoted Formation of the B–O and B–N Bonds
3.2. Substitutions at the Boron by Use of Trimethylsilyl Reagents
3.3. Organometallic Alkylation and Arylation
4. Photochemical Reactivity of BODIPY Compounds on Boron
5. Spectral and Photophysical Properties of 4-Substituted BODIPY Compounds
6. Summary and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Haugland, R.P. The Handbook. A Guide to Fluorescent Probes and Labeling Technologies, Molecular Probes, 10th ed.; Invitrogen Corp.: Eugene, OR, USA, 2005. [Google Scholar]
- Treibs, A.; Kreuzer, F.-H. Difluorboryl-Komplexe von Di- und Tripyrrylmethenen. Justus Liebigs Ann. Chem. 1968, 718, 208–223. [Google Scholar] [CrossRef]
- Yadav, I.S.; Misra, R. Design, synthesis and functionalization of BODIPY dyes: Applications in dye-sensitized solar cells (DSSCs) and photodynamic therapy (PDT). J. Mater. Chem. C 2023, 11, 8688–8723. [Google Scholar] [CrossRef]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar] [CrossRef]
- Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015, 44, 4953–4972. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zeng, Z.; Jiang, J.-H.; Chang, Y.-T.; Yuan, L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew. Chem. Int. Ed. 2016, 55, 13658–13699. [Google Scholar] [CrossRef]
- Wang, S.; Gai, L.; Chen, Y.; Ji, X.; Lu, H.; Guo, Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem. Soc. Rev. 2024, 53, 3976. [Google Scholar] [CrossRef] [PubMed]
- Awuah, S.G.; You, Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv. 2012, 2, 11169–11183. [Google Scholar] [CrossRef]
- Kamkaew, A.; Lim, S.H.; Lee, H.B.; Kiew, L.W.; Chung, L.Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77–88. [Google Scholar] [CrossRef]
- Turksoy, A.; Yildiz, D.; Akkaya, E.U. Photosensitization and controlled photosensitization with BODIPY dyes. Coord. Chem. Rev. 2019, 379, 47–64. [Google Scholar] [CrossRef]
- Prieto-Montero, R.; Prieto-Castañeda, A.; Sola-Llano, R.; Agarrabeitia, A.R.; García-Fresnadillo, D.; López-Arbeloa, I.; Villanueva, A.; Ortiz, M.J.; de la Moya, S.; Martínez-Martínez, V. Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochem. Photobiol. 2020, 96, 458–477. [Google Scholar] [CrossRef]
- Malacarne, M.C.; Gariboldi, M.B. BODIPYs in PDT: A Journey through the Most Interesting Molecules Produced in the Last 10 Years. Int. J. Mol. Sci. 2022, 23, 10198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ahmed, A.; Cong, H.; Wang, S.; Shen, Y.; Yu, B. Application of multifunctional BODIPY in photodynamic therapy. Dye. Pigment. 2021, 185, 108937. [Google Scholar] [CrossRef]
- Boens, N.; Verbelen, B.; Ortiz, M.J.; Jiao, L.; Dehaen, W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord. Chem. Rev. 2019, 399, 213024. [Google Scholar] [CrossRef]
- Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 2014, 43, 4778–4823. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef]
- Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent BODIPY dyes: Versatility unsurpassed. Angew. Chem. Int. Ed. 2008, 47, 1184–1201. [Google Scholar] [CrossRef]
- Benstead, M.; Mehl, G.H.; Boyle, R.W. 4,40-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) as components of novel light active materials. Tetrahedron 2011, 67, 3573–3601. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, K.; Yang, W.; Wang, W.; Zhong, F. The triplet excited state of BODIPY: Formation, modulation and application. Chem. Soc. Rev. 2015, 44, 8904–8939. [Google Scholar] [CrossRef]
- Lu, H.; Shen, Z. BODIPYs and Their Derivatives: The Past, Present and Future. Front. Chem. 2020, 8, 290. [Google Scholar] [CrossRef]
- Ziessel, R.; Ulrich, G.; Harriman, A. The chemistry of BODIPY: A new El Dorado for fluorescence tools. New J. Chem. 2007, 31, 496–501. [Google Scholar] [CrossRef]
- Liandrah Gapare, R.; Thompson, A. Substitution at boron in BODIPYs. Chem. Commun. 2022, 58, 7351–7359. [Google Scholar] [CrossRef] [PubMed]
- Bodio, E.; Goze, C. Investigation of B-F substitution on BODIPY and aza-BODIPY dyes: Development of B-O and B-C BODIPYs. Dye. Pigment. 2019, 160, 700–710. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Z.; Yan, M.; Wang, X. Recent Progress of BODIPY Dyes with Aggregation-Induced Emission. Front. Chem. 2019, 7, 712. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Mack, J.; Nyokong, T.; Kobayashi, N.; Shen, Z. Optically Active BODIPYs. Coord. Chem. Rev. 2016, 318, 1–15. [Google Scholar] [CrossRef]
- Solomonov, A.V.; Marfin, Y.S.; Rumyantsev, E.V. Design and Applications of Dipyrrin-based Fluorescent Dyes and Related Organic Luminophores: From Individual Compounds to Supramolecular Self-Assembled Systems. Dye. Pigment. 2019, 162, 517–542. [Google Scholar] [CrossRef]
- Bessette, A.; Hanan, G.S. Design, synthesis and photophysical studies of dipyrromethene-based materials: Insights into their applications in organic photovoltaic devices. Chem. Soc. Rev. 2014, 43, 3342–3405. [Google Scholar] [CrossRef]
- Clarke, R.G.; Hall, M.J. Recent developments in the synthesis of the BODIPY dyes. Adv. Hetrocycl. Chem. 2019, 128, 181–261. [Google Scholar]
- Fan, G.; Yang, L.; Chen, Z. Water-soluble BODIPY and aza-BODIPY dyes: Synthetic progress and applications. Front. Chem. Sci. Eng. 2014, 8, 405–417. [Google Scholar] [CrossRef]
- Bañuelos, J. BODIPY Dye, the Most Versatile Fluorophore Ever? Chem. Rec. 2016, 16, 335–348. [Google Scholar] [CrossRef]
- Jiang, X.-D.; Li, S.; Guan, J.; Fang, T.; Liu, X.; Xiao, L.-J. Recent Advances of the Near-infrared Fluorescent aza-BODIPY Dyes. Curr. Org. Chem. 2016, 20, 1736–1744. [Google Scholar] [CrossRef]
- Bassan, E.; Gualandi, A.; Cozzi, P.G.; Ceroni, P. Design of BODIPY dyes as triplet photosensitizers: Electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chem. Sci. 2021, 12, 6607–6628. [Google Scholar] [CrossRef] [PubMed]
- Krumova, K.; Cosa, G. BODIPY dyes with tunable redox potentials and functional groups for further tethering: Preparation, electrochemical, and spectroscopic characterization. J. Am. Chem. Soc. 2010, 132, 17560–17569. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.E.; Thompson, A. Advances in the chemistry of dipyrrins and their complexes. Chem. Rev. 2007, 107, 1831–1861. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, G.P.; Bullock, E.; MacDonald, S.F. Pyrromethanes and Porphyrins Therefrom. J. Am. Chem. Soc. 1960, 82, 4384–4389. [Google Scholar] [CrossRef]
- Litter, B.J.; Miller, M.A.; Hung, C.-H.; Wagner, R.W.; O’Shea, D.F.; Boyle, P.D.; Lindsey, J.S. Refined Synthesis of 5-Substituted Dipyrromethanes. J. Org. Chem. 1999, 64, 1391–1396. [Google Scholar] [CrossRef]
- Qin, W.; Baruah, M.; Van der Auweraer, M.; De Schryver, F.C.; Boens, N. Photophysical Properties of Borondipyrromethene Analogues in Solution. J. Phys. Chem. A 2005, 109, 7371–7384. [Google Scholar] [CrossRef]
- Kee, H.L.; Kirmaier, C.; Yu, L.H.; Thamyongkit, P.; Youngblood, W.J.; Calder, M.E.; Ramos, L.; Noll, B.C.; Bocian, D.F.; Scheidt, W.R.; et al. Structural Control of the Photodynamics of Boron-Dipyrrin Complexes. J. Phys. Chem. B 2005, 109, 20433–20443. [Google Scholar] [CrossRef]
- Lincoln, R.; Greene, L.E.; Bain, C.; Flores-Rizo, J.O.; Bohle, D.S.; Cosa, G. When Push Comes to Shove: Unravelling the Mechanism and Scope of Nonemissive meso-Unsaturated BODIPY Dyes. J. Phys. Chem. B 2015, 119, 4758–4765. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Kohn, A.W.; Van Voorhis, T. Toward Prediction of Nonradiative Decay Pathways in Organic Compounds II: Two Internal Conversion Channels in BODIPYs. J. Phys. Chem. C 2020, 124, 3925–3938. [Google Scholar] [CrossRef]
- Dent, M.R.; López-Duarte, I.; Dickson, C.J.; Geoghegan, N.D.; Cooper, J.M.; Gould, I.R.; Krams, R.; Bull, J.A.; Brooks, N.J.; Kuimova, M.K. Imaging phase separation in model lipid membranes through the use of BODIPY based molecular rotors. Phys. Chem. Chem. Phys. 2015, 17, 18393–18402. [Google Scholar] [CrossRef]
- Suhina, T.; Amirjalayer, S.; Woutersen, S.; Bonn, D.; Brouwer, A.M. Ultrafast dynamics and solvent-dependent deactivation kinetics of BODIPY molecular rotors. Phys. Chem. Chem. Phys. 2017, 19, 19998–20007. [Google Scholar] [CrossRef]
- Frank, F.J.; Waddell, P.G.; Hall, M.J.; Knight, J.G. Synthesis and Reactivity of 3,5-Diiodo-BODIPYs via a Concerted, Double Aromatic Finkelstein Reaction. Org. Lett. 2021, 23, 8595–8599. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Pang, W.; Zhou, J.; Wei, Y.; Mu, X.; Bai, G.; Hao, E. Regioselective Stepwise Bromination of Boron Dipyrromethene (BODIPY) Dyes. J. Org. Chem. 2011, 76, 9988–9996. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yamaguchi, S.; Cha, W.Y.; Kim, D.; Shinokubo, H. Synthesis of Directly Connected BODIPY Oligomers through Suzuki—Miyaura Coupling. Org. Lett. 2011, 13, 2992–2995. [Google Scholar] [CrossRef]
- Wang, G.; Huang, C.; Hu, Z.; Zhang, W.; Zhang, Y. An Efficient and Convenient Bromination of BODIPY Derivatives with Copper (II) Bromide. Synthesis 2011, 44, 104–110. [Google Scholar]
- Duran-Sampedro, G.; Agarrabeitia, A.R.; Garcia-Moreno, I.; Costela, A.; Bañuelos, J.; Arbeloa, T.; LópezArbeloa, I.; Chiara, J.L.; Ortiz, M.J. Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes. Eur. J. Org. Chem. 2012, 2012, 6335–6350. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, C.; Feng, Z.; Yu, Y.; Wang, J.; Hao, E.; Wei, Y.; Mu, X.; Jiao, L. Highly Regioselective α-Chlorination of the BODIPY Chromophore with Copper(II) Chloride. Org. Lett. 2015, 17, 4632–4635. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, L.; Ulrich, G.; Ziessel, R. Tailoring the Properties of Boron—Dipyrromethene Dyes with Acetylenic Functions at the 2, 6, 8 and 4-B Substitution Positions. Org. Lett. 2008, 10, 2183–2186. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Vegesna, G.; Tiwari, A.; Luo, F.-T.; Zeller, M.; Luck, R.; Li, H.; Green, S.; Liu, H. Controlled Knoevenagel reactions of methyl groups of 1,3,5,7-tetramethyl BODIPY dyes for unique BODIPY dyes. RSC Adv. 2012, 2, 404–407. [Google Scholar] [CrossRef]
- Slanina, T.; Sharestha, P.; Palao, E.; Kand, D.; Peterson, J.A.; Dutton, A.S.; Rubinstein, N.; Weinstain, R.; Winter, A.H.; Klán, P. In Search of the Perfect Photocage: Structure-Reactivity Relationships in meso-Methyl BODIPY Photoremovable Protecting Groups. J. Am. Chem. Soc. 2017, 139, 15168–15175. [Google Scholar] [CrossRef]
- Rohand, T.; Baruah, M.; Qin, W.; Boens, N.; Dehaen, W. Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution. Chem. Commun. 2006, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Rohand, T.; Qin, W.; Boens, N.; Dehaen, W. Palladium-catalyzed coupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum. European J. Org. Chem. 2006, 20, 4658–4663. [Google Scholar] [CrossRef]
- Jiao, L.; Yu, C.; Uppal, T.; Liu, M.; Li, Y.; Zhou, Y.; Hao, E.; Hu, X.; Vicente, M.G.H. Long wavelength red fluorescent dyes from 3,5-diiodo-BODIPYs. Org. Biomol. Chem. 2010, 8, 2517–2519. [Google Scholar] [CrossRef]
- Verbelen, B.; Lenn, V.; Wang, L.; Boens, N.; Dehaen, W. Direct palladium-catalysed C-H arylation of BODIPY dyes at the 3- and 3,5-positions. Chem. Commun. 2012, 48, 9129–9131. [Google Scholar] [CrossRef] [PubMed]
- Deniz, E.; Isbasar, G.C.; Bozdemir, O.A.; Yildirim, L.T.; Siemiarczuk, A.; Akkaya, E.U. Bidirectional switching of near IR emitting boradiazaindacene fluorophores. Org. Lett. 2008, 10, 3401–3403. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Sun, D.; Sun, L.; Li, Z.; Fu, B.; Liu, J.; Zhang, L.; Wang, S.; Fang, Y.; Xu, H. Tuning the photo-physical properties of BODIPY dyes: Effects of 1, 3, 5, 7- substitution on their optical and electrochemical behaviours. Dye. Pigment. 2019, 168, 166–174. [Google Scholar] [CrossRef]
- Boens, N.; Qin, W.; Baruah, M.; de Borgggraeve, W.M.; Filarowski, A.; Smisdom, N.; Ameloot, M.; Crovetto, L.; Talavera, E.M.; Alvarez-Pez, J.M. Rational design, synthesis, and spectroscopic and photophysical properties of a visible-light-excitable, ratiometric, fluorescent near-neutral pH indicator based on BODIPY. Chem.—Eur. J. 2011, 17, 10924–10934. [Google Scholar] [CrossRef]
- Zlatić, K.; Bogomolec, M.; Cindrić, M.; Uzelac, L.; Basarić, N. Synthesis, photophysical properties, anti-Kasha photochemical reactivity and biological activity of vinyl- and alkynyl-BODIPY derivatives. Tetrahedron 2022, 124, 132995. [Google Scholar] [CrossRef]
- Waldeck, D.H. Photoisomerization Dynamics of Stilbenes. Chem. Rev. 1991, 91, 415–436. [Google Scholar] [CrossRef]
- Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallée, R.A.L.; Beljonne, D.; van der Auweraer, M.; de Borgggraeve, W.M.; Boens, N. Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution. J. Phys. Chem. A 2006, 110, 5998–6009. [Google Scholar] [CrossRef]
- Liu, K.M.; Tsai, M.S.; Jan, M.S.; Chau, C.M.; Wang, W.J. Convenient one-pot procedure for synthesizing 4,4′-dimethoxy- boradiaza-s-indacene dyes and their application to cell labeling. Tetrahedron 2011, 67, 7919–7922. [Google Scholar] [CrossRef]
- Sawazaki, T.; Shimizu, Y.; Oisaki, K.; Sohma, Y.; Kanai, M. Convergent and Functional-Group-Tolerant Synthesis of B-Organo BODIPYs. Org. Lett. 2018, 20, 7767–7770. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, A.; Sawazaki, T.; Shimizu, Y.; Sohma, Y.; Kanai, M. Photophysical properties and application in live cell imaging of B,B-fluoro-perfluoroalkyl BODIPYs. Med. Chem. Commun. 2019, 10, 1121–1125. [Google Scholar] [CrossRef]
- Suzuki, T.; Hori, Y.; Sawazaki, T.; Shimizu, Y.; Nemoto, Y.; Taniguchi, A.; Ozawa, S.; Sohma, Y.; Kanai, M.; Tomita, T. Photo-oxygenation inhibits tau amyloid formation. Chem. Commun. 2019, 55, 6165–6168. [Google Scholar] [CrossRef]
- Jiménez, J.; Moreno, F.; Arbeloa, T.; Cabreros, A.T.; Muller, G.; Bañuelos, J.; García-Moreno, I.; Maroto, B.L.; de al Moya, S. Isopinocampheyl-based C-BODIPYs: A model strategy to construct cost-effective boron-chelate emitters of circularly polarized light. Org. Chem. Front. 2021, 8, 4752. [Google Scholar] [CrossRef]
- Gabe, Y.; Ueno, T.; Urano, Y. Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: Improvement of highly sensitive fluorescence probe for nitric oxide. Anal. Bioanal. Chem. 2006, 386, 621–626. [Google Scholar] [CrossRef]
- Smithen, D.A.; Baker, A.E.G.; Offman, M.; Crawford, S.M.; Cameron, T.S.; Thompson, A. Use of F-BODIPYs as a protection strategy for dipyrrins: Optimization of BF2 removal. J. Org. Chem. 2012, 77, 3439–3453. [Google Scholar] [CrossRef] [PubMed]
- Courtis, M.A.; Santos, S.A.; Guan, Y.; Hendricks, J.A.; Ghosh, B.; Miklos Szantai-Kis, D.; Reis, S.A.; Shah, J.V.; Mazitschek, R. Monoalkoxy BODIPYs-A fluorophore class for bioimaging. Bioconjug. Chem. 2014, 25, 1043–1051. [Google Scholar] [CrossRef]
- Tahtaoui, C.; Thomas, C.; Rohmer, F.; Klotz, P.; Duportail, G.; Mély, Y.; Bonnet, D.; Hibert, M. Convenient Method to Access New 4,4-Dialkoxy- and 4,4-Diaryloxy-diaza-s-indacene Dyes: Synthesis and Spectroscopic Evaluation. J. Org. Chem. 2006, 72, 269–272. [Google Scholar] [CrossRef]
- Shaban Ragab, S.; Swaminathan, S.; Deniz, E.; Captain, B.; Raymo, F.M. Fluorescence photoactivation by ligand exchange around the boron center of a BODIPY chromophore. Org. Lett. 2013, 15, 3154–3157. [Google Scholar] [CrossRef]
- Jiménez, J.; Cerdán, L.; Moreno, F.; Maroto, B.L.; García-Moreno, I.; Lunkley, J.L.; Muller, G.; de la Moya, S. Chiral Organic Dyes Endowed with Circularly Polarized LaserEmission. J. Phys. Chem. C 2017, 121, 5287–5292. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carnerero, E.M.; Moreno, F.; Maroto, B.L.; Agarrabeitia, A.R.; Ortiz, M.J.; Vo, B.G.; Muller, G.; de la Moya, S. Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral O-BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores. J. Am. Chem. Soc. 2014, 136, 3346–3349. [Google Scholar] [CrossRef] [PubMed]
- Alnoman, R.B.; Rihn, S.; O’Connor, D.C.; Black, F.A.; Costello, B.; Waddell, P.G.; Clegg, W.; Peacock, R.D.; Herrebout, W.; Knight, J.G.; et al. Circularly Polarized Luminescence from Helically Chiral N,N,O,O-Boron-Chelated Dipyrromethenes. Chem. Eur. J. 2016, 22, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, C.; Maruyama, T.; Nabeshima, T. Convenient and highly efficient synthesis of boron–dipyrrins bearing an arylboronate center. Tetrahedron Lett. 2009, 50, 3349–3351. [Google Scholar] [CrossRef]
- Haefele, A.; Zedde, C.; Retailleau, P.; Ulrich, G.; Ziessel, R. Boron Asymmetry in a BODIPY Derivative. Org. Lett. 2010, 12, 1672–1675. [Google Scholar] [CrossRef]
- Ren, L.-Q.; Zhan, B.; Zhao, J.; Guo, Y.; Zu, B.; Li, Y.; He, C. Modular enantioselective assembly of multi-substituted boron-stereogenic BODIPYs. Nat. Chem. 2024. [Google Scholar] [CrossRef]
- Clarke, R.G.; Weatherston, J.; Taj-Aldeen, R.A.; Waddell, P.G.; McFarlane, W.; Penfold, T.J.; Bogaerts, J.; Herrebout, W.; Mackenzie, L.E.; Pal, R.; et al. Synthesis and Structural Diversification of Circularly Polarised Luminescence Active, Helically Chiral, “Confused” N,N,O,C-BODIPYs. ChemPhotoChem 2023, 7, e202200194. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Meng, F.; Dai, C.; Cheng, Y.; Zhu, C. Circularly polarized luminescence of AIE-active chiral O-BODIPYs induced via intramolecular energy transfer. Chem. Commun. 2015, 51, 9014–9017. [Google Scholar] [CrossRef]
- Hicguet, M.; Mongin, O.; Leroux, Y.R.; Roisnel, T.; Berrée, F.; Trolez, Y. Synthesis and Optoelectronic Properties of Threaded BODIPYs. Chem. Open 2024, e202400196. [Google Scholar] [CrossRef]
- Bandi, V.; Das, S.K.; Awuah, G.S.; You, Y.; D’Souza, F. Thieno-Pyrrole-Fused 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene–Fullerene Dyads: Utilization of Near-Infrared Sensitizers for Ultrafast Charge Separation in Donor–Acceptor Systems. J. Am. Chem. Soc. 2014, 136, 7571–7574. [Google Scholar] [CrossRef]
- Lundrigan, T.; Crawford, S.M.; Cameron, T.S.; Thompson, A. Cl-BODIPYs: A BODIPY class enabling facile B-substitution. Chem. Commun. 2012, 48, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Lundrigan, T.; Thompson, A. Conversion of F -BODIPYs to Cl-BODIPYs: Enhancing the reactivity of F-BODIPYs. J. Org. Chem. 2013, 78, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Groves, B.R.; Crawford, S.M.; Lundrigan, T.; Matta, C.F.; Sowlati-Hashjin, S.; Thompson, A. Synthesis and characterisation of the unsubstituted dipyrrin and 4,4-dichloro-4-bora-3a,4a-diaza-s-indacene: Improved synthesis and functionalisation of the simplest BODIPY framework. Chem. Commun. 2013, 49, 816–818. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.; Díaz-Casado, L.; Avellanal-Zaballa, E.; Bañuelos, J.; Cerdán, L.; García-Moreno, I.; Moreno, F.; Maroto, B.L.; López-Arbeloa, Í.; de la Moya, S. N-BODIPYs Come into Play: Smart Dyes for Photonic Materials. Chem.—Eur. J. 2017, 23, 9383–9390. [Google Scholar] [CrossRef]
- Ray, C.; Avellanal-Zaball, E.; Muñoz-Úbeda, M.; Colligan, J.; Moreno, F.; Muller, G.; López-Montero, I.; Bañuelos, J.; Maroto, B.L.; de la Moya, S. Dissimilar-at-boron N-BODIPYs: From light-harvesting multichromophoric arrays to CPL-bright chiral-at-boron BODIPYs. Org. Chem. Front. 2023, 10, 5834–5842. [Google Scholar] [CrossRef]
- Ray, C.; Schad, C.; Moreno, F.; Maroto, B.L.; Banuelos, J.; Arbeloa, T.; García-Moreno, I.; Villafuerte, C.; Muller, G.; de la Moya, S. BCl3-Activated Synthesis of COO-BODIPY Laser Dyes: General Scope and High Yields under Mild Conditions. J. Org. Chem. 2020, 85, 4594–4601. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Yin, J.; Yu, C.; Cheng, K.; Wei, Y.; Hao, E.; Jiao, L. Metal-Free and Versatile Synthetic Routes to Natural and Synthetic Prodiginines from Boron Dipyrrin. Org. Lett. 2016, 18, 5696–5699. [Google Scholar] [CrossRef]
- Travis Lundrigan, T.; Cameron, S.; Thompson, A. Activation and deprotection of F-BODIPYs using boron trihalides. Chem. Commun. 2014, 50, 7028–7031. [Google Scholar] [CrossRef]
- Durán-Sampedro, G.; Agarrabetia, A.R.; Cerdán, L.; Perez-Ojeda Rodriguez, M.E.; Costela, A.; García-Moreno, I.; Esnal, I.; Bañuelos, J.; López-Arbeloa, Í.; Ortiz, M.J. Carboxylates versus fluorines: Boosting the emission properties of commercial BODIPYs in liquid and solid media. Adv. Funct. Mater. 2013, 23, 4195–4205. [Google Scholar] [CrossRef]
- Manzano, H.; Esnal, I.; Marqués-Matesanz, T.; Bañuelos, J.; López-Arbeloa, Í.; Ortiz, M.J.; Cerdán, L.; Costela, A.; García-Moreno, I.; Chiara, J.L. Unprecedented J-Aggregated Dyes in Pure Organic Solvents. Adv. Funct. Mater. 2016, 26, 2756–2769. [Google Scholar] [CrossRef]
- Wang, M.; Vicente, M.G.H.; Mason, D.; Bobadova-Parvanova, P. Stability of a Series of BODIPYs in Acidic Conditions: An Experimentaland Computational Study into the Role of the Substituents at Boron. ACS Omega 2018, 3, 5502–5510. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Fronczek, F.R.; Smith, K.M.; Vicente, M.G.H. Lewis-Acid-Catalyzed BODIPY Boron Functionalization Using Trimethylsilyl Nucleophiles. Inorg. Chem. 2018, 57, 14493–14496. [Google Scholar] [CrossRef]
- Hudnall, T.W.; Gabbaï, F.P. A BODIPY boronium cation for the sensing of fluoride ions. Chem. Commun. 2008, 4596–4597. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, G.; Goze, C.; Goeb, S.; Retailleau, P.; Ziessel, R. New fluorescent aryl- or ethynylaryl-boron-substituted indacenes as promising dyes. New J. Chem. 2006, 30, 982–986. [Google Scholar] [CrossRef]
- Goze, C.; Ulrich, G.; Mallon, L.J.; Allen, B.D.; Harriman, A.; Ziessel, R. Synthesis and Photophysical Properties of Borondipyrromethene Dyes Bearing Aryl Substituents at the Boron Center. J. Am. Chem. Soc. 2006, 128, 10231–10239. [Google Scholar] [CrossRef] [PubMed]
- Goze, C.; Ulrich, G.; Ziessel, R. Tetrahedral Boron Chemistry for the Preparation of Highly Efficient “Cascatelle” Devices. J. Org. Chem. 2007, 72, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Filatov, M.A.; Karuthedath, S.; Polestshuk, P.M.; Savoie, H.; Flanagan, K.J.; Sy, C.; Sitte, E.; Telitchko, M.; Laquai, F.; Boyle, R.W.; et al. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro. J. Am. Chem. Soc. 2017, 139, 6282–6285. [Google Scholar] [CrossRef]
- Ziessel, R.; Ulrich, G.; Haefele, A.; Harriman, A. An artificial light-harvesting array constructed from multiple BODIPY dyes. J. Am. Chem. Soc. 2013, 135, 11330–11344. [Google Scholar] [CrossRef]
- Haefele, A.; Ulrich, G.; Retailleau, P.; Ziessel, R. Synthesis of multi-branched dipyrromethene dyes with soluble diethynylphenyl links. Tetrahedron Lett. 2008, 49, 3716–3721. [Google Scholar] [CrossRef]
- Harriman, A.; Mallon, L.J.; Elliot, K.J.; Haefele, A.; Ulrich, G.; Ziessel, R. Length Dependence for Intramolecular Energy Transfer in Three- and Four-Color Donor−Spacer−Acceptor Arrays. J. Am. Chem. Soc. 2009, 131, 13375–13386. [Google Scholar] [CrossRef]
- Goze, C.; Ulrich, G.; Ziessel, R. Unusual Fluorescent Monomeric and Dimeric Dialkynyl Dipyrromethene−ipyrromethene−Bora. Org. Lett. 2006, 8, 4445–4448. [Google Scholar] [CrossRef] [PubMed]
- Ziessel, R.; Goze, C.; Ulrich, G. Design and Synthesis of Alkyne-Substituted Boron in Dipyrromethene Frameworks. Synthesis 2007, 936–949. [Google Scholar] [CrossRef]
- Duran–Sampedro, G.; Esnal, I.; Agarrabeitia, A.R.; Bañuelos Prieto, J.; Cerdán, L.; García–Moreno, I.; Costela, A.; Lopez–Arbeloa, I.; Ortiz, M.J. First Highly Efficient and Photostable E and C Derivatives of 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin Films, and Solid-State Rods. Chem. Eur. J. 2014, 20, 2646–2653. [Google Scholar] [CrossRef]
- Poirel, A.; Retailleau, P.; de Nicol, A.; Ziessel, R. Synthesis of Water-Soluble Red-Emitting Thienyl–BODIPYs and Bovine Serum Albumin Labeling. Chem. Eur. J. 2014, 20, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Klan, P.; Šolomek, T.; Bochet, C.G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chem. Rev. 2013, 113, 119–191. [Google Scholar]
- Šolomek, T.; Wirz, J.; Klan, P. Searching for Improved Photoreleasing Abilities of Organic Molecules. Acc. Chem. Res. 2015, 48, 3064–3072. [Google Scholar] [CrossRef]
- Weinstain, R.; Slanina, T.; Kand, D.; Klan, P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem. Rev. 2020, 120, 13135–13272. [Google Scholar]
- Ellis-Davies, G.C.R. Reverse Engineering Caged Compounds: Design Principles for their Application in Biology. Angew. Chem. Int. Ed. 2023, 62, e202206083. [Google Scholar] [CrossRef]
- Shrestha, P.; Kand, D.; Weinstain, R.; Winter, A.H. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J. Am. Chem. Soc. 2023, 145, 17497–17514. [Google Scholar] [CrossRef]
- Singh, P.K.; Majumdar, P.; Singh, S.P. Advances in BODIPY photocleavable protecting groups. Coord. Chem. Rev. 2021, 449, 214193. [Google Scholar] [CrossRef]
- Shrestha, P.; Dissanayake, K.C.; Gehrmann, E.J.; Wijesooriya, C.S.; Mukhopadhyay, A.; Smith, E.A.; Winter, A.H. Efficient Far-Red/Near-IR Absorbing BODIPY Photocages by Blocking Unproductive Conical Intersections. J. Am. Chem. Soc. 2020, 142, 15505–15512. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.; Mukhopadhyay, A.; Dissanayake, K.C.; Winter, A.H. Efficiency of Functional Group Caging with Second-Generation Green- and Red-Light-Labile BODIPY Photoremovable Protecting Groups. J. Org. Chem. 2022, 87, 14334–14341. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, K.C.; Yuan, D.; Winter, A.H. Structure-Photoreactivity Studies of BODIPY Photocages: Limitations of the Activation Barrier for Optimizing Photoreactions. J. Org. Chem. 2024, 89, 6740–6748. [Google Scholar] [CrossRef]
- Goswami, P.P.; Syed, A.; Beck, C.L.; Albright, T.R.; Mahoney, K.M.; Unash, R.; Smith, E.A.; Winter, A.H. BODIPY-Derived Photoremovable Protecting Groups Unmasked with Green Light. J. Am. Chem. Soc. 2015, 137, 3783–3786. [Google Scholar] [CrossRef]
- Zlatić, K.; Popović, M.; Uzelac, L.; Kralj, M.; Basarić, N. Antiproliferative activity of meso-substituted BODIPY photocages: Effect of electrophiles vs singlet oxygen. Eur. J. Med. Chem. 2023, 259, 115705. [Google Scholar] [CrossRef]
- Umeda, N.; Takahashi, H.; Kamiya, M.; Ueno, T.; Komatsu, T.; Terai, T.; Hanaoka, K.; Nagano, T.; Urano, Y. Boron dipyrromethene as a fluorescent caging group for single-photon uncaging with long-wavelength visible light. ACS Chem. Biol. 2014, 9, 2242–2246. [Google Scholar] [CrossRef] [PubMed]
- Kawatani, M.; Kamiya, M.; Takahashi, H.; Urano, Y. Factors affecting the uncaging efficiency of 500 nm light-activatable BODIPY caging group. Bioorg. Med. Chem. Lett. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Carl, P.L.; Chakravarty, P.K.; Katzenellenbogen, J.A. A Novel Connector Linkage Applicable in Prodrug Design. J. Med. Chem. 1981, 24, 479–480. [Google Scholar] [CrossRef] [PubMed]
- Gavriel, A.G.; Sambrook, M.R.; Russell, A.T.; Hayes, W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym. Chem. 2022, 13, 3188–3269. [Google Scholar] [CrossRef]
- Gnaim, S.; Shabat, D. Quinone-methide species, a gateway to functional molecular systems: From self-immolative dendrimers to long-wavelength fluorescent dyes. Acc. Chem. Res. 2014, 47, 2970–2984. [Google Scholar] [CrossRef]
- Sharma, A.K.; Nair, M.; Chauhan, P.; Gupta, K.; Saini, D.K.; Chakrapani, H. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H2S) Release. Org. Lett. 2017, 19, 4822–4825. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, K.K.; Shivran, N.; Mula, S.; Naik, D.B.; Sarkar, S.K.; Mukherjee, T.; Maity, D.K.; Ray, A.K. Change of Boron Substitution Improves the Lasing Performance of Bodipy Dyes: A Mechanistic Rationalisation. Chem. Eur. J. 2013, 19, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Stachelek, P.; Alsimaree, A.A.; Alnoman, R.B.; Harriman, A.; Knight, J.G. Thermally-Activated, Delayed Fluorescence in O,B,O- and N,B,O-Strapped Boron Dipyrromethene Derivatives. J. Phys. Chem. A 2017, 121, 2096–2107. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.L.; Ulrich, G.; Retailleau, P.; Harrowfield, J.; Ziessel, R. New insights into the solubilization of BODIPY dyes. Tetrahedron Lett. 2009, 50, 3840–3844. [Google Scholar] [CrossRef]
- Romieu, A.; Massif, C.; Rihn, S.; Ulrich, G.; Ziessel, R.; Renard, P.-Y. The first comparative study of the ability of different hydrophilic groups to water-solubilise fluorescent BODIPY dyes. New J. Chem. 2013, 37, 1016–1027. [Google Scholar] [CrossRef]
- Yang, L.; Fan, G.; Ren, X.; Zhao, L.; Wang, J.; Chen, Z. Aqueous self-assembly of a charged BODIPY amphiphile via nucleation-growth mechanism. Phys. Chem. Chem. Phys. 2015, 17, 9167–9172. [Google Scholar] [CrossRef]
R | λab/nm a | λem/nm b | ε (×104 M−1 cm−1) c | Φr (%) d | εΦr/M−1 cm−1 |
---|---|---|---|---|---|
phenol | 522 | 540 | 9.2 | 0.31 | 285 |
BnOH | 522 | 550 | 7.2 | 0.08 | 58 |
phenylacetic acid | 523 | 547 | 10 | 0.08 | 80 |
catechol | 524 | 538 | 5.9 | 0.12 | 71 |
benzotriazole | 526 | 556 | 5.5 | 0.10 | 55 |
CN | 521 | 536 | 4.6 | 0.08 | 37 |
Me | 519 | 556 | 6.1 | 6.30 | 3842 |
OMe | 522 | 540 | 4.0 | 0.20 | 80 |
F | 517 | 529 | 7.1 | 0.14 | 99 |
CH2TMS | 518 | 546 | 7.6 | 5.74 | 4362 |
R1 | R2 | λab/nm a | ΦF b | Φr (×10−4) c |
---|---|---|---|---|
Et | COOMe | 523 | 0.62 | ND |
CH2COOMe | 523 | 0.42 | 19.8 ± 0.4 | |
Me | 523 | 0.15 | 51.7 ± 2.1 | |
OMe | 522 | 0.013 | 19.2 ± 0.4 | |
H | COOMe | 499 | 0.52 | 2.8 ± 0.2 |
CH2COOMe | 498 | 0.035 | 44.6 ± 3.6 | |
Me | 498 | 0.029 | 53.8 ± 2.2 | |
OMe | 500 | 0.011 | 25.6 ± 0.1 | |
Cl | COOMe | 524 | 0.32 | 6.5 ± 0.2 |
CH2COOMe | 522 | 0.038 | 19.3 ± 0.1 | |
Me | 524 | 0.060 | 23.0 ± 3.3 | |
OMe | 525 | 0.004 | 7.6 ± 1.6 |
Comp. | λab /nm a | λem/nm b | ε (×104 dm3 mol−1 cm−1) c | ν/cm−1 d | ΦF e | τ/ns f |
---|---|---|---|---|---|---|
31b | 517 | 534 | 8.3 | 616.0 | 0.84 | 6.43 |
85a | 513 | 529 | 8.4 | 589.6 | 0.84 | 6.22 |
86b | 523 | 533 | 9.4 | 358.7 | 0.81 | 6.61 |
Comp. | λab /nm a | ε (×104 dm3 mol−1 cm−1) b | λem /nm c | ΦF (%) d | τ/ns e |
---|---|---|---|---|---|
31a | 495 | 9.347 | 508 | 0.94 | 5.6 |
86a | 533 | 3.650 | 540 | 0.003 | <0.03; 0.39 |
86b | 533 | 2.832 | 543 | 0.001 | 0.04; 0.75 |
86c | 533 | 2.766 | 549 | 0.004 | 0.04; 0.65 |
86d | 535 | 2.816 | 540 | 0.015 | 0.18; 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogomolec, M.; Glavaš, M.; Škorić, I. BODIPY Compounds Substituted on Boron. Molecules 2024, 29, 5157. https://doi.org/10.3390/molecules29215157
Bogomolec M, Glavaš M, Škorić I. BODIPY Compounds Substituted on Boron. Molecules. 2024; 29(21):5157. https://doi.org/10.3390/molecules29215157
Chicago/Turabian StyleBogomolec, Marko, Mladena Glavaš, and Irena Škorić. 2024. "BODIPY Compounds Substituted on Boron" Molecules 29, no. 21: 5157. https://doi.org/10.3390/molecules29215157
APA StyleBogomolec, M., Glavaš, M., & Škorić, I. (2024). BODIPY Compounds Substituted on Boron. Molecules, 29(21), 5157. https://doi.org/10.3390/molecules29215157