Optimization of Sol–Gel Catalysts with Zirconium and Tungsten Additives for Enhanced CF4 Decomposition Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Ni/ZrO2-Al2O3
2.2. Acid-Base Properties of the Ni/ZrO2-Al2O3
2.3. Catalytic Properties of the Ni/ZrO2-Al2O3
3. Experimental Setup
3.1. Catalyst Preparation and Characterization
3.1.1. Preparation of Support
3.1.2. Activity Tests
3.1.3. Characterization
4. Conclusions
- The investigation revealed that introducing zirconium significantly improved the catalyst’s specific surface area and sintering resistance, which are crucial for maintaining high catalytic activity. The addition of tungsten further optimized the distribution of active sites, contributing to the superior performance of the catalyst. However, excessive amounts or incorrect placement of these additives led to structural changes that negatively impacted the catalyst activity.
- The analysis of the catalyst surface exposed to CF4 revealed that while the addition of tungsten increased the surface acidity, excessive acidity led to a reduction in CF4 adsorption capacity, thereby lowering the reaction rate. When NiO species formed strong bonds on the surface, a decline in catalytic activity was observed, indicating the need for an optimal tungsten content to balance acidity and maintain high catalytic performance.
- Long-term exposure tests revealed that conventional Al2O3 catalysts demonstrated excellent initial activity, which rapidly declined after 3 h. In contrast, the sol–gel-prepared catalysts exhibited superior durability and maintained both activity and stability, despite having lower acidity compared to Ni/S1. This underscores the critical role that surface acidity plays in both initial catalytic activity and long-term durability. The addition of zirconium further enhanced durability by preventing sintering at high temperatures, while optimizing the tungsten content improved the surface acidity, leading to a significant enhancement in initial activity. These findings suggest that balancing acidity and surface area through appropriate material modifications is key to achieving high performance in catalytic applications.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dreveton, A. Overview of the Fluorochemicals Industrial Sectors. In Procedia Engineering; Elsevier: Amsterdam, The Netherlands, 2016; Volume 138, pp. 240–247. [Google Scholar]
- Qin, L.; Han, J.; Wang, G.; Kim, H.J.; Kawaguchi, I. Highly Efficient Decomposition of CF4 Gases by Combustion. In Proceedings of the Conference of Environmental Pollution and Public Health, Wuhan, China, 10–11 September 2010; pp. 126–130. [Google Scholar]
- Hannus, I. Adsorption and Transformation of Halogenated Hydrocarbons over Zeolites. Appl. Catal. A Gen. 1999, 189, 263–276. [Google Scholar] [CrossRef]
- Koike, K.; Fukuda, T.; Fujikawa, S.; Saeda, M. Study of CF4, C2F6, SF6 and NF3 Decomposition Characteristics and Etching Performance in Plasma State. Jpn. J. Appl. Phys. 1997, 36, 5724–5728. [Google Scholar] [CrossRef]
- Stahl, T.; Klare, H.F.T.; Oestreich, M. Main-Group Lewis Acids for C-F Bond Activation. ACS Catal. 2013, 3, 1578–1587. [Google Scholar] [CrossRef]
- Sun, J.-W.; Park, D.-W. CF4 Decomposition by Thermal Plasma Processing. Korean J. Chem. Eng. 2003, 20, 476–481. [Google Scholar] [CrossRef]
- Okuda, I.; Takahashi, E.; Kato, S.; Matsumoto, Y. Enhanced Decomposition of CF4 in Atmospheric-Pressure Nonthermal Nitrogen Plasmas by Pulsed-Electron-Beam Pumping. Jpn. J. Appl. Phys. 2008, 47, 8054–8056. [Google Scholar] [CrossRef]
- Radoiu, T.M. Studies of 2.45 GHz Microwave Induced Plasma Abatement of CF4. Environ. Sci. Technol. 2003, 37, 3985–3988. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Sun, B.; Zhu, X. Abatement of Perfluorocompounds with Microwave Plasma in Atmospheric Pressure Environment. J. Hazard. Mater. 2009, 168, 765–769. [Google Scholar] [CrossRef]
- Futamura, S.; Gurusamy, A. Synergy of Nonthermal Plasma and Catalysts in the Decomposition of Fluorinated Hydrocarbons. J. Electrostatisc 2005, 63, 949–954. [Google Scholar] [CrossRef]
- Takita, Y.; Ninomiya, M.; Miyake, H.; Wakamatsu, H.; Yoshinaga, Y.; Ishihara, T. Catalytic Decomposition of Perfluorocarbons, Part II. Decomposition of CF4 over AlPO4-Rare Earth Phosphate Catalysts. Phys. Chem. Chem. Phys. 1999, 1, 4501–4504. [Google Scholar] [CrossRef]
- Takita, Y.; Morita, C.; Ninomiya, M.; Wakamatsu, H.; Nishiguchi, H.; Ishihara, T. Catalytic Decomposition of CF4 over AlPO4-Based Catalysts. Chem. Lett. 1999, 28, 417–418. [Google Scholar] [CrossRef]
- Song, J.Y.; Chung, S.H.; Kim, M.S.; Seo, M.G.; Lee, Y.H.; Lee, K.Y.; Kim, J.S. The Catalytic Decomposition of CF4 over Ce/Al2O3 Modified by a Cerium Sulfate Precursor. J. Mol. Catal. A Chem. 2013, 370, 50–55. [Google Scholar] [CrossRef]
- El-Bahy, Z.M.; Ohnishi, R.; Ichikawa, M. Hydrolytic Decomposition of CF4 over Alumina-Based Binary Metal Oxide Catalysts: High Catalytic Activity of Gallia-Alumina Catalyst. Catal. Today 2004, 90, 283–290. [Google Scholar] [CrossRef]
- Zheng, X.; Xiang, K.; Shen, F.; Liu, H. The Zr Modified γ-Al2O3 Catalysts for Stable Hydrolytic Decomposition of CF4 at Low Temperature. Catalysts 2022, 12, 313. [Google Scholar] [CrossRef]
- Xu, X.; Niu, X.; Fan, J.; Wang, Y.; Feng, M. CF4 Decomposition without Water over a Solid Ternary Mixture Consisting of NaF, Silicon and One Metal Oxide. J. Nat. Gas. Chem. 2011, 20, 543–546. [Google Scholar] [CrossRef]
- Pan, Y.; Niu, X.; Wang, Y.; Xu, X. CF4 Decomposition over Solid Ternary Mixture NaF-Si-MO (MO = La2O3, CeO2, Pr6O11, Nd2O3, Y2O3). J. Nat. Gas. Chem. 2012, 21, 109–112. [Google Scholar] [CrossRef]
- Cho, D.W.; Kim, W.S.; Chang, H.; Jung, T.S.; Park, J.; Park, J.H. Adsorption and Desorption Dynamics of CF4 on Activated Carbon Beds: Validity of the Linear Driving Force Approximation for Pressure-Changing Steps. Korean J. Chem. Eng. 2017, 34, 2922–2932. [Google Scholar] [CrossRef]
- Li, P.; Ng, L.M.; Liang, J. Surface Chemistry of Alkyl and Perfluoro Ethers: A FTIR and Ab Initio Study of Adsorption and Decomposition of CF3OCF3 on an A12O3 Surface. Surf. Sci. 1997, 380, 530–539. [Google Scholar] [CrossRef]
- Lee, M.C.; Choi, W. Efficient Destruction of CF4 through In Situ Generation of Alkali Metals from Heated Alkali Halide Reducing Mixtures. Environ. Sci. Technol. 2002, 36, 1367–1371. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, D.; Tang, W.; Hu, X.; Wang, Z. Abatement of Tetrafluoromethane by Chemical Absorption with Molten Aluminum. J. Environ. Manag. 2017, 204, 375–382. [Google Scholar] [CrossRef]
- Araki, S.; Hayashi, Y.; Hirano, S.; Yamamoto, H. Decomposition of Tetrafluoromethane by Reaction with CaO-Enhanced Zeolite. J. Environ. Chem. Eng. 2020, 8, 103763. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.; He, X.; Song, M.; Westerhoff, P.; Doudrick, K.; Hanigan, D. Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. Environ. Sci. Technol. 2022, 56, 5355–5370. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.K.; Shiue, A.; Huang, D.W.; Chang, C.T. Catalytic Decomposition of CF4 over Iron Promoted Mesoporous Catalysts. J. Nanosci. Nanotechnol. 2014, 14, 3202–3208. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Jeon, J.Y.; Choi, M.H.; Kim, H.Y.; Choi, W.C.; Park, Y.K. The Modification and Stability of γ-Al2O3 Based Catalysts for Hydrolytic Decomposition of CF4. J. Mol. Catal. A Chem. 2007, 266, 131–138. [Google Scholar] [CrossRef]
- Tachikawa, H. Ionization Dynamics of CF4-H2O Complexes: A Full Dimensional Ab Initio Trajectory Study. Chem. Phys. 2001, 273, 149–157. [Google Scholar] [CrossRef]
- Tajima, M.; Niwaa, M.; Fujiib, Y.; Koinuma, Y.; Aizawac, R.; Kushiyama, S.; Kobayashi, S.; Mizunoc, K.; Ohgchi, H. Decomposition of Chlorofluorocarbons on W/TiO2-ZrO2. Appl. Catal. B 1997, 14, 97–103. [Google Scholar] [CrossRef]
- Takita, Y.; Wakamatsu, H.; Tokumaru, M.; Nishiguchi, H.; Ito, M.; Ishihara, T. Decomposition of Chlorofluorocarbons over Metal Phosphate Catalysts III. Reaction Path of CCl2F2 Decomposition over AlPO4. Appl. Catal. A Gen. 2000, 194–195, 55–61. [Google Scholar] [CrossRef]
- Abbattista, F.; Delmastro, A.; Gozzelino, G.; Mazza, D.; Vallino, M.; Busca, G.; Lorenzelli, V. Effect of Phosphate Ions on the Surface Chemistry and Microstructure of Amorphous Alumina. J. Chem. Soc. Faraday Trans. 1990, 86, 3653–3658. [Google Scholar] [CrossRef]
- Moriyama, J.; Nishiguchi, H.; Ishihara, T.; Takita, Y. Metal Sulfate Catalyst for CCl2F2 Decomposition in the Presence of H2O. Ind. Eng. Chem. Res. 2002, 41, 32–36. [Google Scholar] [CrossRef]
- El-Bahy, Z.M.; Ohnishi, R.; Ichikawa, M. Hydrolysis of CF4 over Alumina-Based Binary Metal Oxide Catalysts. Appl. Catal. B 2003, 40, 81–91. [Google Scholar] [CrossRef]
- Reddy, B.M.; Sreekanth, P.M.; Yamada, Y.; Kobayashi, T. Surface Characterization and Catalytic Activity of Sulfate-, Molybdate- and Tungstate-Promoted Al2O3-ZrO2 Solid Acid Catalysts. J. Mol. Catal. A Chem. 2005, 227, 81–89. [Google Scholar] [CrossRef]
- Luo, Y.J.; Zhou, Y.H.; Huang, Y.B. A New Lewis Acidic Zr Catalyst for the Synthesis of Furanic Diesel Precursor from Biomass Derived Furfural and 2-Methylfuran. Catal. Lett. 2019, 149, 292–302. [Google Scholar] [CrossRef]
- Anus, A.; Sheraz, M.; Jeong, S.; Kim, E.K.; Kim, S. Catalytic Thermal Decomposition of Tetrafluoromethane (CF4): A Review. J. Anal. Appl. Pyrolysis 2021, 156, 105126. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Xu, X.F.; Choi, M.H.; Kim, H.Y.; Park, Y.K. Hydrolytic Decomposition of PFCs over AlPO4-Al2O3 Catalyst. Chem. Comm. 2003, 3, 1244–1245. [Google Scholar] [CrossRef]
- Xu, X.F.; Jeon, J.Y.; Choi, M.H.; Kim, H.Y.; Choi, W.C.; Park, Y.K. A Strategy to Protect Al2O3-Based PFC Decomposition Catalyst from Deactivation. Chem. Lett. 2005, 34, 364–365. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, T.; Long, Y.; Chen, Y.; Fu, J.; Liu, H.; Hu, J.; Lin, Z.; Chai, L.; Liu, M. Identification of the active site during CF4 hydrolytic decomposition over γ-Al2O3. Env. Sci. Nano 2022, 9, 954–963. [Google Scholar] [CrossRef]
- Jeon, H.; Oh, M.; Han, J.W.; Lee, S.; Chang, J.S.; Choi, M. Understanding Remarkable Promotional Effects of Zn on Alumina in Catalytic Hydrolysis of Perfluorocarbon. J. Catal. 2023, 426, 361–367. [Google Scholar] [CrossRef]
- Chen, Y.S.; Pan, K.L.; Machmud, A.; Chang, M.B. Integration of Plasma with Catalyst for Removing CF4 from Gas Streams. Int. J. Plasma Environ. Sci. Technol. 2021, 15, e03004. [Google Scholar] [CrossRef]
- Pan, K.L.; Chen, Y.S.; Chang, M.B. Effective Removal of CF4 by Combining Nonthermal Plasma with γ-Al2O3. Plasma Chem. Plasma Process. 2019, 39, 877–896. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, S.; Liu, W.; Xiang, K.; Liu, H. The Design of Sulfated Ce/HZSM-5 for Catalytic Decomposition of CF4. Polymers 2022, 14, 2717. [Google Scholar] [CrossRef]
- Chen, Y.; Qu, W.; Luo, T.; Zhang, H.; Fu, J.; Li, H.; Liu, C.; Zhang, D.; Liu, M. Promoting C-F Bond Activation via Proton Donor for CF4 Decomposition. Proc. Natl. Acad. Sci. USA 2023, 120, e2312480120. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, K.; Chen, Y.; Wang, X.; Li, H.; Fu, J.; Chai, L.; Lin, Z.; Liu, M. Efficient and Stable CF4 Decomposition over θ-Al2O3 with Extraordinary Resistance to HF. Environ. Sci. Nano 2023, 10, 3149–3155. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, Y.; Zheng, J.; Chen, H.; Liu, K.; Fu, J.; Lin, Z.; Chai, L.; Liu, M. Promoted CF4 Decomposition via Enhanced Tricoordinated Al Active Sites. ACS ES&T Eng. 2024, 4, 1142–1148. [Google Scholar] [CrossRef]
- Feng, Z.; Postula, W.S.; Akgerman, A.; Anthony, R.G. Characterization of Zirconia-Based Catalysts Prepared by Precipitation, Calcination, and Modified Sol-Gel Methods. Ind. Eng. Chem. Res. 1995, 34, 78–82. [Google Scholar] [CrossRef]
- Sarkar, D.; Mohapatra, D.; Ray, S.; Bhattacharyya, S.; Adak, S.; Mitra, N. Synthesis and Characterization of Sol-Gel Derived ZrO2 Doped Al2O3 Nanopowder. Ceram. Int. 2007, 33, 1275–1282. [Google Scholar] [CrossRef]
- Chavez-Esquivel, G.; Garcia-Martinez, J.C.; De Los Reyes, J.A.; Suárez-Toriello, V.A.; Vera-Ramirez, M.A.; Huerta, L. The Influence of Al2O3 Content on Al2O3-ZrO2 Composite-Textural Structural and Morphological Studies. Mater. Res. Express 2019, 6, 105201. [Google Scholar] [CrossRef]
- Luo, T.; Chen, Y.; Liu, K.; Fu, J.; Zhang, H.; Chen, S.; Wang, Q.; Chen, K.; Wang, J.; Liao, W.; et al. Rational Design of Active Sites in Alumina-Based Catalysts to Optimize Antibonding-Orbital Occupancy for Tetrafluoromethane Decomposition. Environ. Sci. Nano 2023, 10, 3307–3316. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, F.; Zhong, Z.; Xu, G.; Su, F. Anti-Sintering ZrO2-Modified Ni/α-Al2O3 Catalyst for CO Methanation. RSC Adv. 2016, 6, 20979–20986. [Google Scholar] [CrossRef]
- Yatsenko, D.A.; Pakharukova, V.P.; Tsybulya, S.V.; Kharton, V.V. Low Temperature Transitional Aluminas: Structure Specifics and Related X-Ray Diffraction Features. Crystals 2021, 11, 690. [Google Scholar] [CrossRef]
- Zhu, T.; Song, H.; Li, F.; Chen, Y. Hydrodeoxygenation of Benzofuran over Bimetallic Ni-Cu/γ-Al2O3 Catalysts. Catalysts 2020, 10, 274. [Google Scholar] [CrossRef]
- Mangla, O.; Roy, S. Monoclinic Zirconium Oxide Nanostructures Having Tunable Band Gap Synthesized under Extremely Non-Equilibrium Plasma Conditions. Proceedings 2019, 3, 10. [Google Scholar]
- Khajuria, P.; Mahajan, R.; Prakash, R. Synthesis and Luminescent Properties of ZrO2 and Dy3+-Activated ZrO2 Powders. J. Mater. Sci. Mater. Electron. 2021, 32, 27441–27448. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Geng, L. Effect of Heat Treatment on Interfacial Bonding and Strengthening Efficiency of Graphene in GNP/Al Composites. Compos. Part. A Appl. Sci. Manuf. 2019, 121, 487–498. [Google Scholar] [CrossRef]
- Liu, J.; Xu, G.; An, Q.; Wang, Y.; Yu, Y.; He, H. Heat Treatment Improves the Activity and Water Tolerance of Pt/Al2O3 Catalysts in Ammonia Catalytic Oxidation. ACS Omega 2023, 8, 13944–13954. [Google Scholar] [CrossRef] [PubMed]
- Lima, N.A.; Alencar, L.D.S.; Siu-Li, M.; Feitosa, C.A.C.; Mesquita, A.; M’peko, J.C.; Bernardi, M.I.B. NiWO4 Powders Prepared via Polymeric Precursor Method for Application as Ceramic Luminescent Pigments. J. Adv. Ceram. 2020, 9, 55–63. [Google Scholar] [CrossRef]
- Sifontes, Á.B.; Gutierrez, B.; Mónaco, A.; Yanez, A.; Díaz, Y.; Méndez, F.J.; Llovera, L.; Cañizales, E.; Brito, J.L. Preparation of Functionalized Porous Nano-γ-Al2O3 Powders Employing Colophony Extract. Biotechnol. Rep. 2014, 4, 21–29. [Google Scholar] [CrossRef]
- Jia, W.; Wu, Q.; Lang, X.; Hu, C.; Zhao, G.; Li, J.; Zhu, Z. Influence of Lewis Acidity on Catalytic Activity of the Porous Alumina for Dehydrofluorination of 1,1,1,2-Tetrafluoroethane to Trifluoroethylene. Catal. Lett. 2015, 145, 654–661. [Google Scholar] [CrossRef]
- Ni, J.; Leng, W.; Mao, J.; Wang, J.; Lin, J.; Jiang, D.; Li, X. Tuning Electron Density of Metal Nickel by Support Defects in Ni/ZrO2 for Selective Hydrogenation of Fatty Acids to Alkanes and Alcohols. Appl. Catal. B 2019, 253, 170–178. [Google Scholar] [CrossRef]
- Martín, C.; Malet, P.; Solana, G.; Rives, V. Structural Analysis of Silica-Supported Tungstates. J. Phys. Chem. B 1998, 102, 2759–2768. [Google Scholar] [CrossRef]
- Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef]
- Kim, D.S.; Ostromecki, M.; Wachs, E.I. Surface Structures of Supported Tungsten Oxide Catalysts under Dehydrated Conditions. J. Mol. Catal. A Chem. 1996, 106, 93–102. [Google Scholar] [CrossRef]
- Wachs, E.I.; Kim, T.; Ross, I.E. Catalysis Science of the Solid Acidity of Model Supported Tungsten Oxide Catalysts. Catal. Today 2006, 116, 162–168. [Google Scholar] [CrossRef]
- Naito, N.; Katada, N.; Niwa, M. Tungsten Oxide Monolayer Loaded on Zirconia: Determination of Acidity Generated on the Monolayer. J. Phys. Chem. B 1999, 103, 7206–7213. [Google Scholar] [CrossRef]
- Liu, N.; Ding, S.; Cui, Y.; Xue, N.; Peng, L.; Guo, X.; Ding, W. Optimizing Activity of Tungsten Oxides for 1-Butene Metathesis by Depositing Silica on γ-Alumina Support. Chem. Eng. Res. Des. 2013, 91, 573–580. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Yang, W.; Xie, Z.; Xu, W.; Huang, D. Effect of Support Nature on WO3/SiO2 Structure and Butene-1 Metathesis. Appl. Catal. A Gen. 2003, 250, 25–37. [Google Scholar] [CrossRef]
- Hathaway, E.P.; Davis, E.A. Base Catalysis by Alkali Modified Zeolites III. Alkylation with Methanol. J. Catal. 1989, 119, 497–507. [Google Scholar] [CrossRef]
- Cheng, M.; Fan, H.; Song, Y.; Cui, Y.; Wang, R. Interconnected Hierarchical NiCo2O4 Microspheres as High-Performance Electrode Materials for Supercapacitors. Dalton Trans. 2017, 46, 9201–9209. [Google Scholar] [CrossRef]
- Zhang, J. Preparation and Catalytic Performance of an Efficient Raney Nickel Catalyst for Syngas Methanation. J. Mater. Sci. 2019, 54, 14197–14208. [Google Scholar] [CrossRef]
- Liu, G.X.; Liu, A.; Meng, Y.; Shan, F.K.; Shin, B.C.; Lee, W.J.; Cho, C.R. Annealing Dependence of Solution-Processed Ultra-Thin ZrOx Films for Gate Dielectric Applications. J. Nanosci. Nanotechnol. 2015, 15, 2185–2191. [Google Scholar] [CrossRef]
- Gondal, M.A.; Fasasi, T.A.; Baig, U.; Mekki, A. Effects of Oxidizing Media on the Composition, Morphology and Optical Properties of Colloidal Zirconium Oxide Nanoparticles Synthesized via Pulsed Laser Ablation in Liquid Technique. J. Nanosci. Nanotechnol. 2017, 18, 4030–4039. [Google Scholar] [CrossRef]
- Koltsov, I.; Smalc-Koziorowska, J.; Prześniak-Welenc, M.; Małysa, M.; Kimmel, G.; McGlynn, J.; Ganin, A.; Stelmakh, S. Mechanism of Reduced Sintering Temperature of Al2O3-ZrO2 Nanocomposites Obtained by Microwave Hydrothermal Synthesis. Materials 2018, 11, 829. [Google Scholar] [CrossRef]
- Li, Y.; Lin, B.; Zhang, X.; Tian, X.; Zhou, Y. Promotion of ZrO2 on RuO2/Al2O3 Catalyst for HCl Catalytic Oxidation: Effect of High Temperature Holding in Nitrogen Atmosphere. Ind. Eng. Chem. Res. 2024, 63, 7605–7613. [Google Scholar] [CrossRef]
- Pulgarín, H.L.C.; Albano, M.P. Sintering and Microstrusture of Al2O3 and Al2O3-ZrO2 Ceramics. Procedia Mater. Sci. 2015, 8, 180–189. [Google Scholar] [CrossRef]
- Anis, A.A.; Hadzley, A.B.; Umar, A.A.; Fairuz, M.R.; Herawan, S.G.; Thongkaew, K.; Kejuruteraan Pembuatan, F.; Teknikal Malaysia Melaka, U.; Tuah Jaya, H.; Tunggal, D.; et al. Influence of Sintering Temperature on Density, Hardness, Shrinkage and Microstructure of Alumina-Zirconia Cutting Tool. Int. J. Nanoelectron. Mater. 2021, 14, 135–144. [Google Scholar]
Catalysts | The Crystal Size of Al2O3, nm | BET Surface Area, m2∙g−1 |
---|---|---|
S1 | 38.6 | 218.09 |
S2 | 42.5 | 224.56 |
S3 | 32.5 | 197.73 |
S4 | 39.5 | 183.21 |
Ni/S1 | 52.5 | 15.90 |
Ni/S2 | 48.2 | 224.08 |
Ni/S3 | 45.9 | 195.14 |
Ni/S4 | 32.5 | 140.34 |
Ni/3W-S3 | 54.7 | 165.38 |
Ni/5W-S3 | 40.0 | 166.12 |
Ni/10W-S3 | 50.8 | 169.74 |
Ni-3W/S3 | 50.5 | 167.02 |
Ni/3W/S3 | 61.6 | 146.70 |
Samples | Elemental Composition of Supports | ||
---|---|---|---|
Zirconium | Tungsten | Boehmite | |
S1 | 0 | 0 | 100 |
S2 | 3 | 0 | 97 |
S3 | 7.5 | 0 | 92.5 |
S4 | 15 | 0 | 85 |
3W-S3 | 7.5 | 3.0 | 89.5 |
5W-S3 | 7.5 | 5.0 | 87.5 |
10W-S3 | 7.5 | 10.0 | 82.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.; Lee, S.M.; Kim, S.S.; Nguyen, D.D. Optimization of Sol–Gel Catalysts with Zirconium and Tungsten Additives for Enhanced CF4 Decomposition Performance. Molecules 2024, 29, 5179. https://doi.org/10.3390/molecules29215179
Jang Y, Lee SM, Kim SS, Nguyen DD. Optimization of Sol–Gel Catalysts with Zirconium and Tungsten Additives for Enhanced CF4 Decomposition Performance. Molecules. 2024; 29(21):5179. https://doi.org/10.3390/molecules29215179
Chicago/Turabian StyleJang, Younghee, Sang Moon Lee, Sung Su Kim, and D. Duc Nguyen. 2024. "Optimization of Sol–Gel Catalysts with Zirconium and Tungsten Additives for Enhanced CF4 Decomposition Performance" Molecules 29, no. 21: 5179. https://doi.org/10.3390/molecules29215179
APA StyleJang, Y., Lee, S. M., Kim, S. S., & Nguyen, D. D. (2024). Optimization of Sol–Gel Catalysts with Zirconium and Tungsten Additives for Enhanced CF4 Decomposition Performance. Molecules, 29(21), 5179. https://doi.org/10.3390/molecules29215179