Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of ZnO and ZnO@APTES Nanoparticles
2.2. Gas Adsorption Experiments for ZnONPs@APTES
3. Discussion
- Nucleophilic attack of the amino group on the carbon of CO2 and formation of the intermediate zwitterion (R1R2NH+COO−).
- 2.
- Acceptance of the proton by a base. Under anhydrous conditions, this function is performed by an adjacent amino group (primary or secondary) leading to the formation of the carbamate (R1R2NCOO−).
4. Materials and Methods
4.1. Materials
4.2. Synthesis of ZnO Nanoparticles (ZnONPs)
4.3. Synthesis of ZnO Nanoparticles Functionalized with APTES (ZnONPs@APTES)
4.4. Spectroscopic, Morphological and Thermogravimetric Characterization of ZnONPs and ZnONPs@APTES
4.5. N2, CO2 and CH4 Adsorption Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, M.; Guo, Z.; Zhou, L.; Fang, X.; Zhang, L.; Zeng, L.; Xie, L.; Zhao, H. One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices. Crystals 2018, 8, 223. [Google Scholar] [CrossRef]
- Saleem, S.; Jameel, M.H.; Rehman, A.; Tahir, M.B.; Irshad, M.I.; Jiang, Z.-Y.; Malik, R.Q.; Hussain, A.A.; Rehman, A.; Jabbar, A.H.; et al. Evaluation of structural, morphological, optical, and electrical properties of zinc oxide semiconductor nanoparticles with microwave plasma treatment for electronic device applications. J. Mater. Res. Technol. 2022, 19, 2126–2134. [Google Scholar] [CrossRef]
- Jian, J.-C.; Chang, Y.-C.; Chang, S.-P.; Chang, S.-J. Biotemplate-Assisted Growth of ZnO in Gas Sensors for ppb-Level NO2 Detection. ACS Omega 2024, 9, 1077–1083. [Google Scholar] [CrossRef]
- Xia, Y.; Pan, A.; Su, Y.Q.; Zhao, S.; Li, Z.; Davey, A.K.; Zhao, L.; Maboudian, R.; Carraro, C. In-situ synthesized N-doped ZnO for enhanced CO2 sensing: Experiments and DFT calculations. Sens. Actuators B Chem. 2022, 357, 131359. [Google Scholar] [CrossRef]
- Deng, Y. Semiconducting Metal Oxides: Microstructure and Sensing Performance. In Semiconducting Metal Oxides for Gas Sensing; Springer: Singapore, 2023; pp. 271–297. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Zhang, N.; Zhao, X.; Zhang, Z.; Wang, Y. Self-sacrificial templated formation of ZnO with decoration of catalysts for regulating CO and CH4 sensitive detection. Sens. Actuators B Chem. 2021, 330, 129286. [Google Scholar] [CrossRef]
- Sangchap, M.; Hashtroudi, H.; Thathsara, T.; Harrison, C.J.; Kingshott, P.; Kandjani, A.E.; Trinchi, A.; Shafiei, M. Exploring the promise of one-dimensional nanostructures: A review of hydrogen gas sensors. Int. J. Hydrogen Energy 2024, 50, 1443–1457. [Google Scholar] [CrossRef]
- Chen, X.; Bagnall, D.; Nasiri, N. Capillary-Driven Self-Assembled Microclusters for Highly Performing UV Photodetectors. Adv. Funct. Mater. 2023, 33, 2302808. [Google Scholar] [CrossRef]
- Alba-Cabañas, J.; Rodríguez-Martínez, Y.; Vaillant-Roca, L. Effects on the ZnO nanorods array of a seeding process made under a static electric field. Mater. Today Commun. 2024, 39, 108917. [Google Scholar] [CrossRef]
- Crapanzano, R.; Villa, I.; Mostoni, S.; D’Arienzo, M.; Di Credico, B.; Fasoli, M.; Scotti, R.; Vedda, A. Morphology Related Defectiveness in ZnO Luminescence: From Bulk to Nano-Size. Nanomaterials 2020, 10, 1983. [Google Scholar] [CrossRef]
- Güell, F.; Galdámez-Martínez, A.; Martínez-Alanis, P.; Catto, A.C.; da Silva, L.F.; Mastelaro, V.R.; Santana, G.; Dutt, A. ZnO-based nanomaterials approach for photocatalytic and sensing applications: Recent progress and trends. Mater. Adv. 2023, 4, 3685–3707. [Google Scholar] [CrossRef]
- Motelica, L.; Vasile, B.-S.; Ficai, A.; Surdu, A.-V.; Ficai, D.; Oprea, O.-C.; Andronescu, E.; Mustățea, G.; Ungureanu, E.L.; Dobre, A.A. Antibacterial Activity of Zinc Oxide Nanoparticles Loaded with Essential Oils. Pharmaceutics 2023, 15, 2470. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Viswanathan, K.; Kasi, G.; Sadeghi, K.; Thanakkasaranee, S.; Seo, J. Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens. Microb. Pathog. 2020, 149, 104290. [Google Scholar] [CrossRef] [PubMed]
- Najafi, A.M.; Soltanali, S.; Khorashe, F.; Ghassabzadeh, H. Effect of binder on CO2, CH4, and N2 adsorption behavior, structural properties, and diffusion coefficients on extruded zeolite 13X. Chemosphere 2023, 324, 138275. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Yao Ya Wang, L.; Zhang, K. High-Pressure adsorption of supercritical methane and carbon dioxide on Coal: Analysis of adsorbed phase density. Chem. Eng. J. 2024, 487, 150483. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Lu, K.; Jiang, W.; Xu Huakai Wei, X.; Wang, Z.; Ouyang, Y.; Dai, F. From layered structure to 8-fold interpenetrated MOF with enhanced selective adsorption of C2H2/CH4 and CO2/CH4. J. Solid State Chem. 2022, 307, 122881. [Google Scholar] [CrossRef]
- Abid, H.R.; Shang, J.; Ang, H. Amino-functionalized Zr-MOF nanoparticles for adsorption of CO2 and CH4. Int. J. Smart Nano Mater. 2013, 4, 72–82. [Google Scholar] [CrossRef]
- Jiang, Q.; Rentschler, J.; Sethia, G.; Weinman, S.; Perrone, R.; Liu, K. Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process. Chem. Eng. J. 2013, 230, 380–388. [Google Scholar] [CrossRef]
- Gordijo, J.S.; Rodrigues, N.M.; Martins, J.B.L. CO2 and CO Capture on the ZnO Surface: A GCMC and Electronic Structure Study. ACS Omega 2023, 8, 46830–46840. [Google Scholar] [CrossRef] [PubMed]
- Montejo-Mesa, L.A.; Autié-Castro, G.I.; Cavalcante, C.C.L. Evaluation of Zinc Oxide nanoparticles for separation of CH4-CO2. Rev. Cub. Quím. 2018, 30, 119–130. Available online: http://scielo.sld.cu/scielo.php?pid=S2224-54212018000100010&script=sci_abstract&tlng=en (accessed on 11 October 2023).
- Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A Gen. 2006, 304, 55–61. [Google Scholar] [CrossRef]
- Erhart, P.; Albe, K.; Klein, A. First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B 2006, 73, 205203. [Google Scholar] [CrossRef]
- Segets, D.; Gradl, J.; Taylor, R.K.; Vassilev, V.; Peukert, W. Analysis of Optical Absorbance Spectra for the Determination of ZnO. ACS Nano 2009, 3, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Viswanatha, R.; Sapra, S.; Satpati, B.; Satyam, P.V.; Dev, B.N.; Sarma, D.D. Understanding the quantum size effects in ZnO nanocrystals. J. Matter Chem. 2004, 14, 661–668. [Google Scholar] [CrossRef]
- Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. Review—Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.T. Increasing Selective CO2 Adsorption on Amine-Grafted SBA-15 by Increasing Silanol Density. J. Phys. Chem. C 2011, 115, 21264–21272. [Google Scholar] [CrossRef]
- Roslan, A.A.; Zaine SN, A.; Zaid, H.M.; Umar, M.; Beh, H.G. Nanofluids stability on amino-silane and polymers coating titanium dioxide and zinc oxide nanoparticles. Eng. Sci. Technol. Int. J. 2023, 37, 101318. [Google Scholar] [CrossRef]
- File, Powder Diffraction. “JCPDS: International Centre for Diffraction Data, 1601 Park Lane.” Swarthmore, PA 19801 (1982): 19-105. Available online: https://www.icdd.com/ (accessed on 26 October 2023).
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Mahdavi, R.; Talesh, S.S.A. Effects of amine (APTES) and thiol (MPTMS) silanes-functionalized ZnO NPs on the structural, morphological and, selective sonophotocatalysis of mixed pollutants: Box–Behnken design (BBD). J. Alloys Compd. 2022, 896, 163121. [Google Scholar] [CrossRef]
- Rao, X.; Abou, A.; Cédric, H.; Mengxue, G.; Stephanie, Z. Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano-and Microparticles. Plasma Chem. Plasma Process. 2020, 40, 589–606. [Google Scholar] [CrossRef]
- Min, H.; Gross, T.; Lippitz, A.; Dietrich, P.; Unger, W.E.S. Ambient-ageing processes in amine self-assembled monolayers on microarray slides as studied by ToF-SIMS with principal component analysis, XPS, and NEXAFS spectroscopy. Anal. Bioanal. Chem. 2012, 403, 613–623. [Google Scholar] [CrossRef]
- Casula, G.; Fantauzzi, M.; Elsener, B.; Rossi, A. XPS and ARXPS for Characterizing Multilayers of Silanes on Gold Surfaces. Coatings 2024, 14, 327. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Siriwardane, R.V.; Shen, M.S.; Fisher, E.P.; Losch, J. Adsorption of CO2 on Zeolites at Moderate Temperatures. Energy Fuels 2005, 19, 1153–1159. [Google Scholar] [CrossRef]
- Arencibia, A.; Pizarro, P.; Sanz, R.; Serrano, D.P. CO2 adsorption on amine-functionalized clays. Microporous Mesoporous Mater. 2019, 282, 38–47. [Google Scholar] [CrossRef]
- Ozdemir, E.; Schroeder, K. Effect of Moisture on Adsorption Isotherms and Adsorption Capacities of CO2 on Coals. Energy Fuels 2009, 23, 2821–2831. [Google Scholar] [CrossRef]
- Vilarrasa-García, E.; Cecilia, J.A.; Santos, S.M.L.; Cavalcante, C.L.; Jiménez-Jiménez, J.; Azevedo, D.C.S.; Rodríguez-Castellón, E. CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous Mesoporous Mater. 2014, 187, 125–134. [Google Scholar] [CrossRef]
- Vilarrasa-García, E.; Cecilia, J.A.; Bastos-Neto, M.; Cavalcante, C.L.; Azevedo, D.C.S.; Rodriguez-Castellón, E. CO2/CH4 adsorption separation process using pore expanded mesoporous silicas functionalizated by APTES grafting. Adsorption 2015, 21, 565–575. [Google Scholar] [CrossRef]
- Caplow, M. Kinetics of Carbamate Formation and Breakdown. J. Am. Chem. Soc. 1968, 89, 6795–6803. [Google Scholar] [CrossRef]
- Danckwerts, P.V. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 1979, 34, 443–446. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Dreisbach, F.; Staudt, R.; Keller, J.U. High Pressure Adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated Carbon. Adsorption 1999, 5, 215–227. [Google Scholar] [CrossRef]
Elements/Series | Weight (%) | Atomic (%) | ||
---|---|---|---|---|
ZnO | ZnONPs@APTES | ZnO | ZnONPs@APTES | |
Zn/K-series | 70.9 | 59.1 | 37.3 | 23.5 |
O/K-series | 29.1 | 20.5 | 62.7 | 33.3 |
N/K-series | - | 0.3 | - | 0.6 |
Si/K-series | - | 0.7 | - | 0.6 |
C/K-series | - | 19.4 | - | 41.9 |
Sample | C 1s | N 1s | O 1s | Si 2s | Zn 2p3/2 | |
---|---|---|---|---|---|---|
BE (eV) | ZnONPs | 284.8 (88) | 530.1 (69) | - | ||
285.9 (7) | - | 531.2 (17) | 1021.3 | |||
288.8 (5) | 532.2 (14) | |||||
ZnONPs@APTES | 284.8 (73) 285.9 (23) 288.0 (4) | 399.7 | 530.1 (42) 531.6 (40) 532.4 (18) | 153.1 | 1021.4 | |
At. conc. (%) | ZnONPs | 20.0 | - | 42.7 | - | 37.2 |
ZnONPs@APTES | 39.3 | 7.2 | 32.3 | 8.8 | 11.4 |
Sample | Surface Area (m2g−1) | Pore Volume (cm3g−1) | C |
---|---|---|---|
ZnONPs [19] | 7 | 0.018 | 2.11 |
ZnONPs@APTES | 8 | 0.011 | 27.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montejo-Mesa, L.A.; Díaz-García, A.M.; Cavalcante, C.L., Jr.; Vilarrasa-García, E.; Rodríguez-Castellón, E.; Ballesteros-Plata, D.; Autié-Castro, G.I. Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2. Molecules 2024, 29, 5219. https://doi.org/10.3390/molecules29215219
Montejo-Mesa LA, Díaz-García AM, Cavalcante CL Jr., Vilarrasa-García E, Rodríguez-Castellón E, Ballesteros-Plata D, Autié-Castro GI. Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2. Molecules. 2024; 29(21):5219. https://doi.org/10.3390/molecules29215219
Chicago/Turabian StyleMontejo-Mesa, Luis A., Alicia M. Díaz-García, Celio L. Cavalcante, Jr., Enrique Vilarrasa-García, Enrique Rodríguez-Castellón, Daniel Ballesteros-Plata, and Giselle I. Autié-Castro. 2024. "Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2" Molecules 29, no. 21: 5219. https://doi.org/10.3390/molecules29215219
APA StyleMontejo-Mesa, L. A., Díaz-García, A. M., Cavalcante, C. L., Jr., Vilarrasa-García, E., Rodríguez-Castellón, E., Ballesteros-Plata, D., & Autié-Castro, G. I. (2024). Evaluation of APTES-Functionalized Zinc Oxide Nanoparticles for Adsorption of CH4 and CO2. Molecules, 29(21), 5219. https://doi.org/10.3390/molecules29215219