Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review
Abstract
:1. Introduction
2. Structural Characterization and Bioavailability of EGCG
3. Beneficial Effects of EGCG in Repairing Photoaged Skin
3.1. EGCG Improves the Elasticity of Photoaged Skin
3.2. EGCG Enhances Skin Moisturization
3.3. EGCG Inhibits Photoaged Skin Damage
3.3.1. EGCG Reduces Oxidative Stress
3.3.2. EGCG Alleviates DNA Damage and Inflammation
3.3.3. EGCG Inhibits Mitochondrial Dysfunction
3.4. EGCG Reduces Pigmentation of Photoaged Skin
4. Application Forms of EGCG in Repairing Photoaged Skin
EGCG Forms | Other Drugs | Treatment | Results | Ref. |
---|---|---|---|---|
EGCG liposomes | Hyaluronic acid | Culturing HaCaT cells, constructing EGCG nano-transfers, applying UV irradiation and drug treatment; measuring the efficiency of EGCG liposomes through rat skin | Increasing skin penetration efficiency and EGCG deposition | [44] |
- | Culturing HDF cells, constructing EGCG microsomes by film hydration method, applying UVA irradiation and drug treatment | Extending drug release, improving skin penetration efficiency and EGCG deposition | [118] | |
- | Construction of solid lipid nanoparticles (SLNs) and evaluation of permeability and antioxidant properties | Improving skin penetration efficiency and stabilizing antioxidant properties | [106] | |
EGCG nanoparticles | Olive oil | Cultured HaCaT cells and hairless mice, constructed EGCG polymer nanoparticles, EGCG lipid nanoparticles, and EGCG emulsion nanoparticles, and applied UVB irradiation and drug treatments | Promoting EGCG skin penetration efficiency and stability | [36] |
- | DMBA-induced DNA damage in mouse skin tissues; construction of EGCG-PLGA nanosomes for topical application to mouse interscapular skin of both shoulder blades | Improving bioavailability and drug delivery efficiency | [119] | |
EGCG nanoethosomes | - | Sucrose ester-stabilized EGCG nano-ethanol bodies stored for 6 months and then applied to mouse skin; UVB irradiation of mouse skin induces damage | Enhancing skin penetration efficiency and stabilizing EGCG nanosomes | [120] |
EGCG | Pentagalloyl glucose | Culturing HDF cells, applying UVA irradiation, and combining two drugs | Increasing extracellular matrix deposition of elastin and collagen | [34] |
Collagen | EGCG-modified collagen-forming couplers, cultured hairless mice, imposed UVB irradiation and drug treatment | Improving antioxidant properties, more comprehensive effect of combined use | [41,113] | |
Soybean protein | Polymerization of EGCG with amino acid residues of soybean 7S globulin and verification of anti-UVB properties by mouse experiments | Inhibiting of UVB-induced apoptosis, inflammatory factors, and MAPK signaling pathways | [114] | |
TP emulsion | - | Hairless mice were cultured, carboxymethyl cellulose emulsified TPs to make an emulsion, and UV irradiation and drug treatments were applied separately | Stabilizing TPs in an aqueous solution and increasing deposition; inhibiting inflammatory cell infiltration skin thickness; increasing oxidative stress levels | [42] |
Catechin | Vitamin C | Prepared as capsules for combined use, volunteers take orally | Stabilizing catechins in the gut and improving antioxidant properties | [77,80] |
Glc-EGCG | - | Culture of HaCaT cells, HSF cells, melanocytes, endothelial cells with Glc-EGCG; UVA, UVB irradiation damage cells | Improving EGCG solubility, stability, and antioxidant properties | [45] |
ZNp-EG | - | EGCG-loaded zein nanoparticles, measurement of relevant properties | Increasing antioxidant and anti-tyrosinase activity and stability | [121] |
GTE (42.4% EGCG) | Quercetin and multi-nutrients | Oral administration to rats and determination of pharmacokinetic data | 56% increase in bioavailability and enhanced intestinal absorption efficiency | [116] |
5. Discussion and Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, A.H.; Chien, A.L. Photoaging: A Review of Current Literature. Curr. Dermatol. Rep. 2020, 9, 22–29. [Google Scholar] [CrossRef]
- Furukawa, J.Y.; Martinez, R.M.; Morocho-Jácome, A.L.; Castillo-Gómez, T.S.; Pereda-Contreras, V.J.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Skin Impacts from Exposure to Ultraviolet, Visible, Infrared, and Artificial Lights—A Review. J. Cosmet. Laser Ther. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Slominski, R.M.; Chen, J.Y.; Raman, C.; Slominski, A.T. Photo-Neuro-Immuno-Endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl. Acad. Sci. USA 2024, 121, e2308374121. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, M.A.; Rashid, H.; Tasduq, S.A. Molecular Basis of Skin Photoaging and Therapeutic Interventions by Plant-Derived Natural Product Ingredients: A Comprehensive Review. Heliyon 2023, 9, e13580. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The Impact of Ultraviolet Radiation on Skin Photoaging—Review of in Vitro Studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [Google Scholar] [CrossRef]
- Poon, F.; Kang, S.; Chien, A.L. Mechanisms and Treatments of Photoaging. Photodermatol. Photoimmunol. Photomed. 2015, 31, 65–74. [Google Scholar] [CrossRef]
- Jr, J.E.F.; Porumb, S. Chemical peels: Their Place Within the Range of Resurfacing Techniques. Am. J. Clin. Dermatol. 2004, 5, 179–187. [Google Scholar] [CrossRef]
- Helander, S.D. Treatment of Photoaged Skin: Efficacy, Tolerability and Costs of Available Agents. Drugs Aging 1996, 8, 12–16. [Google Scholar] [CrossRef]
- Roh, E.; Kim, J.-E.; Kwon, J.Y.; Park, J.S.; Bode, A.M.; Dong, Z.; Lee, K.W. Molecular Mechanisms of Green Tea Polyphenols with Protective Effects against Skin Photoaging. Crit. Rev. Food Sci. Nutr. 2015, 57, 1631–1637. [Google Scholar] [CrossRef]
- Cho, W.; Park, J.; Lee, M.; Park, S.-H.; Jung, J.; Kim, J.; Eun, S.; Kim, J. Gly-Pro-Val-Gly-Pro-Ser Peptide Fish Collagen Improves Skin Moisture and Wrinkles with Ameliorated the Oxidative Stress and Pro-Inflammatory Factors in Skin Photoaging Mimic Models. Prev. Nutr. Food Sci. 2023, 28, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yu, Y.; Wang, B.; Lu, B.; Zhang, J.; Zhang, H.; Ge, P. Ginsenoside Rb1 Attenuates Oxygen-Glucose Depriva-tion-Induced Apoptosis in SH-SY5Y Cells via Protection of Mitochondria and Inhibition of AIF and Cytochrome c Release. Molecules 2013, 18, 12777–12792. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Lim, S.S.; Kim, S.J.; Choi, J.; Park, J.; Ju, S.M.; Han, S.J.; Kang, I.; Kang, Y. Bog Blueberry Anthocyanins Alleviate Photoaging in ultraviolet-B Irradiation-induced Human Dermal Fibroblasts. Mol. Nutr. Food Res. 2009, 53, 726–738. [Google Scholar] [CrossRef]
- Prasanth, M.; Sivamaruthi, B.; Chaiyasut, C.; Tencomnao, T. A Review of the Role of Green Tea (Camellia sinensis) in An-tiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef]
- Frasheri, L.; Schielein, M.C.; Tizek, L.; Mikschl, P.; Biedermann, T.; Zink, A. Great Green Tea Ingredient? A Narrative Literature Review on Epigallocatechin Gallate and Its Biophysical Properties for Topical Use in Dermatology. Phytother. Res. 2020, 34, 2170–2179. [Google Scholar] [CrossRef]
- Zhang, S.; Mao, B.; Cui, S.; Zhang, Q.; Zhao, J.; Tang, X.; Chen, W. Absorption, Metabolism, Bioactivity, and Biotransformation of Epigallocatechin Gallate. Crit. Rev. Food Sci. Nutr. 2024, 64, 6546–6566. [Google Scholar] [CrossRef]
- Furniturewalla, A.; Barve, K. Approaches to Overcome Bioavailability Inconsistencies of Epigallocatechin Gallate, a Powerful Anti-Oxidant in Green Tea. Food Chem. Adv. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Fernández, V.A.; Toledano, L.A.; Lozano, N.P.; Tapia, E.N.; Roig, M.D.G.; Fornell, R.D.l.T.; Algar, G. Bioavailability of Epigallocatechin Gallate Administered with Different Nutritional Strategies in Healthy Volunteers. Antioxidants 2020, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Chen, L.; Lee, M.-J.; Balentine, D.; Kuo, M.C.; Schantz, S.P. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol. Biomark. Prev. 1998, 7, 351–354. [Google Scholar]
- Miyazawa, T. Absorption, Metabolism and Antioxidative Effects of Tea Catechin in Humans. BioFactors 2000, 13, 55–59. [Google Scholar] [CrossRef]
- Dube, A.; Nicolazzo, J.A.; Larson, I. Chitosan Nanoparticles Enhance the Plasma Exposure of (−)-Epigallocatechin Gallate in Mice through an Enhancement in Intestinal Stability. Eur. J. Pharm. Sci. 2011, 44, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Ruan, C.; Zhang, Y.; Wang, J.; Han, J.; Shao, Z.; Sun, Y.; Liang, J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J. Funct. Foods 2019, 65, 103732. [Google Scholar] [CrossRef]
- Matić, S.; Takač, M.J.-M.; Barbarić, M.; Lučić, B.; Gall Trošelj, K.; Stepanić, V. The Influence of In Vivo Metabolic Modifications on ADMET Properties of Green Tea Catechins–In Silico Analysis. J. Pharm. Sci. 2018, 107, 2957–2964. [Google Scholar] [CrossRef] [PubMed]
- Slot, G.V.; Humpf, H.-U. Degradation and Metabolism of Catechin, Epigallocatechin-3-Gallate (EGCG), and Related Compounds by the Intestinal Microbiota in the Pig Cecum Model. J. Agric. Food Chem. 2009, 57, 8041–8048. [Google Scholar] [CrossRef]
- Warden, B.A.; Smith, L.S.; Beecher, G.R.; Balentine, D.A.; Clevidence, B.A. Catechins Are Bioavailable in Men and Women Drinking Black Tea throughout the Day. J. Nutr. 2001, 131, 1731–1737. [Google Scholar] [CrossRef]
- Leslie, E.M.; Deeley, R.G.; Cole, S.P. Toxicological Relevance of the Multidrug Resistance Protein 1, MRP1 (ABCC1) and Related Transporters. Toxicology 2001, 167, 3–23. [Google Scholar] [CrossRef]
- Lambert, J.D.; Kim, D.H.; Zheng, R.; Yang, C.S. Transdermal Delivery of (-)-Epigallocatechin-3-Gallate, a Green Tea Polyphenol, in Mice. J. Pharm. Pharmacol. 2006, 58, 599–604. [Google Scholar] [CrossRef]
- Krupkova, O.; Ferguson, S.J.; Wuertz-Kozak, K. Stability of (−)-Epigallocatechin Gallate and Its Activity in Liquid Formulations and Delivery Systems. J. Nutr. Biochem. 2016, 37, 1–12. [Google Scholar] [CrossRef]
- Scalia, S.; Trotta, V.; Bianchi, A. In Vivo Human Skin Penetration of (–)-Epigallocatechin-3-Gallate from Topical Formulations. Acta Pharm. 2014, 64, 257–265. [Google Scholar] [CrossRef]
- Bianchi, A.; Marchetti, N.; Scalia, S. Photodegradation of (−)-Epigallocatechin-3-Gallate in Topical Cream Formulations and Its Photostabilization. J. Pharm. Biomed. Anal. 2011, 56, 692–697. [Google Scholar] [CrossRef]
- Won, H.-R.; Lee, P.; Oh, S.; Kim, Y.-M. Epigallocatechin-3-Gallate Suppresses the Expression of TNF-α-Induced MMP-1 via MAPK/ERK Signaling Pathways in Human Dermal Fibroblasts. Biol. Pharm. Bull. 2021, 44, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Mao, Q.; Yang, J.; Du, N.; Zhu, Y.; Min, W. (–)-Epigallocatechin-3-Gallate Protects Human Skin Fibroblasts from Ul-traviolet a Induced Photoaging. Clin. Cosmet. Investig. Dermatol. 2023, 16, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Abotorabi, Z.; Khorashadizadeh, M.; Arab, M.; Fard, M.H.; Zarban, A. Jujube and Green Tea Extracts Protect Human Fibro-blast Cells against UVB- Mediated Photo Damage and MMP-2 and MMP-9 Production. Avicenna J. Phytomed. 2020, 10, 287–296. [Google Scholar]
- Chowdhury, A.; Nosoudi, N.; Karamched, S.; Parasaram, V.; Vyavahare, N. Polyphenol Treatments Increase Elastin and Collagen Deposition by Human Dermal Fibroblasts; Implications to Improve Skin Health. J. Dermatol. Sci. 2021, 102, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chung, J.H.; Cho, K.H. The Effects of Epigallocatechin-3-Gallate on Extracellular Matrix Metabolism. J. Dermatol. Sci. 2005, 40, 195–204. [Google Scholar] [CrossRef]
- Salaheldin, T.A.; Adhami, V.M.; Fujioka, K.; Mukhtar, H.; Mousa, S.A. Photochemoprevention of Ultraviolet Beam Radia-tion-Induced DNA Damage in Keratinocytes by Topical Delivery of Nanoformulated Epigallocatechin-3-Gallate. Nanomed. Nanotechnol. Biol. Med. 2022, 44, 102580. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, K.; Lee, J.; Han, S.; Kim, E.-M.; Park, J.; Cho, J. Skin Protective Effect of Epigallocatechin Gallate. Int. J. Mol. Sci. 2018, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Min, W.; Lin, X.-F.; Wu, D.; Xu, Y.; Miao, X. Effect of Epigallocatechingallate on Ultraviolet B-Induced Photo-Damage in Keratinocyte Cell Line. Am. J. Chin. Med. 2006, 34, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Y.; Ruan, X.; Zhang, T.; Zi, M.; Zhang, Q. Photoprotective Effects of Epigallocatechin Gallate on Ultravio-let-Induced Zebrafish and Human Skin Fibroblasts Cells. Mediat. Inflamm. 2024, 2024, 7887678. [Google Scholar] [CrossRef]
- Wang, W.; Di, T.; Wang, W.; Jiang, H. EGCG, GCG, TFDG, or TSA Inhibiting Melanin Synthesis by Downregulating MC1R Expression. Int. J. Mol. Sci. 2023, 24, 11017. [Google Scholar] [CrossRef]
- Fan, Z.; Zhou, Y.; Gan, B.; Li, Y.; Chen, H.; Peng, X.; Zhou, Y. Collagen-EGCG Combination Synergistically Prevents UVB-Induced Skin Photoaging in Nude Mice. Macromol. Biosci. 2023, 23, 2300251. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, N.; Liu, Q.; Gao, A.; Zhou, X.; Liang, B.; Li, R.; Li, Z.; Zhu, H. Topical Treatment of Green Tea Polyphenols Emulsified in Carboxymethyl Cellulose Protects against Acute Ultraviolet Light B-Induced Photodamage in Hairless Mice. Photochem. Photobiol. Sci. 2016, 15, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.-Y.; Xiang, J.; Lu, J.-L.; Ye, J.-H.; Chen, Z.-J.; Zhao, J.-W.; Liang, Y.-R.; Zheng, X.-Q. Protective Effects of Gallocatechin Gallate against Ultraviolet B Induced Skin Damages in Hairless Mice. Sci. Rep. 2022, 12, 1310. [Google Scholar] [CrossRef] [PubMed]
- Avadhani, K.S.; Manikkath, J.; Tiwari, M.; Chandrasekhar, M.; Godavarthi, A.; Vidya, S.M.; Hariharapura, R.C.; Kalthur, G.; Udupa, N.; Mutalik, S. Skin Delivery of Epigallocatechin-3-Gallate (EGCG) and Hyaluronic Acid Loaded Nano-Transfersomes for Antioxidant and Anti-Aging Effects in UV Radiation Induced Skin Damage. Drug Deliv. 2017, 24, 61–74. [Google Scholar] [CrossRef]
- Nadim, M.; Auriol, D.; Lamerant-FayeL, N.; Lefèvre, F.; Dubanet, L.; Redziniak, G.; Kieda, C.; Grillon, C. Improvement of Polyphenol Properties upon Glucosylation in a UV-Induced Skin Cell Ageing Model. Int. J. Cosmet. Sci. 2014, 36, 579–587. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Khongkow, M.; Klinngam, W.; Chaikul, P.; Lourith, N.; Chueamchaitrakun, P. Recent Insights into Catechins-Rich Assam Tea Extract for Photoaging and Senescent Ageing. Sci. Rep. 2024, 14, 2253. [Google Scholar] [CrossRef]
- Charoenchon, N.; Rhodes, L.E.; Nicolaou, A.; Williamson, G.; Watson, R.E.B.; Farrar, M.D. Ultraviolet Radiation-Induced Degradation of Dermal Extracellular Matrix and Protection by Green Tea Catechins: A Randomized Controlled Trial. Clin. Exp. Dermatol. 2022, 47, 1314–1323. [Google Scholar] [CrossRef]
- Heinrich, U.; Moore, C.E.; De Spirt, S.; Tronnier, H.; Stahl, W. Green Tea Polyphenols Provide Photoprotection, Increase Microcirculation, and Modulate Skin Properties of Women. J. Nutr. 2011, 141, 1202–1208. [Google Scholar] [CrossRef]
- McCarty, M.F.; Benzvi, C.; Vojdani, A.; Lerner, A. Nutraceutical Strategies for Alleviation of UVB Phototoxicity. Exp. Dermatol. 2023, 32, 722–730. [Google Scholar] [CrossRef]
- Chen, X.; Yang, C.; Jiang, G. Research Progress on Skin Photoaging and Oxidative Stress. Adv. Dermatol. Allergol. 2021, 38, 931–936. [Google Scholar] [CrossRef]
- Freitas-Rodríguez, S.; Folgueras, A.R.; López-Otín, C. The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim. Biophys. Acta (BBA) Bioenerg. 2017, 1864, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.; Little, E.; Quan, H.; Qin, Z.; Voorhees, J.J.; Fisher, G.J. Elevated Matrix Metalloproteinases and Collagen Frag-mentation in Photodamaged Human Skin: Impact of Altered Extracellular Matrix Microenvironment on Dermal Fibroblast Function. J. Investig. Dermatol. 2013, 133, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.M.; Sharma, M.R.; Werth, V.P. TNF-α Production in the Skin. Arch. Dermatol. Res. 2009, 301, 87–91. [Google Scholar] [CrossRef]
- Ågren, M.S.; Schnabel, R.; Christensen, L.H.; Mirastschijski, U. Tumor Necrosis Factor-α-Accelerated Degradation of Type I Collagen in Human Skin Is Associated with Elevated Matrix Metalloproteinase (MMP)-1 and MMP-3 Ex Vivo. Eur. J. Cell Biol. 2014, 94, 12–21. [Google Scholar] [CrossRef]
- Quan, T.; He, T.; Kang, S.; Voorhees, J.J.; Fisher, G.J. Solar Ultraviolet Irradiation Reduces Collagen in Photoaged Human Skin by Blocking Transforming Growth Factor-β Type II Receptor/Smad Signaling. Am. J. Pathol. 2004, 165, 741–751. [Google Scholar] [CrossRef]
- Chen, B.; Li, R.; Yan, N.; Chen, G.; Qian, W.; Jiang, H.-L.; Ji, C.; Bi, Z.-G. Astragaloside IV Controls Collagen Reduction in Photoaging Skin by Improving Transforming Growth Factor-β/Smad Signaling Suppression and Inhibiting Matrix Metallo-proteinase-1. Mol. Med. Rep. 2015, 11, 3344–3348. [Google Scholar] [CrossRef] [PubMed]
- Verrecchia, F.; Pessah, M.; Atfi, A.; Mauviel, A. Tumor Necrosis Factor-α Inhibits Transforming Growth Factor-β /Smad Sig-naling in Human Dermal Fibroblasts via AP-1 Activation. J. Biol. Chem. 2000, 275, 30226–30231. [Google Scholar] [CrossRef]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green Tea Catechin, Epigallocatechin-3-Gallate (EGCG): Mechanisms, Perspectives and Clinical Applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef]
- Šínová, R.; Pavlík, V.; Ondrej, M.; Velebný, V.; Nešporová, K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp. Dermatol. 2021, 31, 442–458. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Kim, J.K.; Seo, D.B.; Cho, S.Y.; Lee, S.J. Beneficial Effect of Dietary Epigallocatechin-3-Gallate on Skin via En-hancement of Antioxidant Capacity in Both Blood and Skin. Ski. Pharmacol. Physiol. 2010, 23, 283–289. [Google Scholar] [CrossRef]
- Zhong, J.L.; Edwards, G.P.; Raval, C.; Li, H.; Tyrrell, R.M. The Role of Nrf2 in Ultraviolet A Mediated Heme Oxygenase 1 Induction in Human Skin Fibroblasts. Photochem. Photobiol. Sci. 2009, 9, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ikehata, H.; Yamamoto, M. Roles of the KEAP1-NRF2 System in Mammalian Skin Exposed to UV Radiation. Toxicol. Appl. Pharmacol. 2018, 360, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, J.; Shin, D.W. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022, 27, 4351. [Google Scholar] [CrossRef] [PubMed]
- Mafra, D.; Alvarenga, L.; Cardozo, L.F.; Stockler-Pinto, M.B.; Nakao, L.S.; Stenvinkel, P.; Shiels, P.G. Inhibiting BTB Domain and CNC Homolog 1 (Bach1) as an Alternative to Increase Nrf2 Activation in Chronic Diseases. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2022, 1866, 130129. [Google Scholar] [CrossRef] [PubMed]
- Mullenders, L.H.F. Solar UV Damage to Cellular DNA: From Mechanisms to Biological Effects. Photochem. Photobiol. Sci. 2018, 17, 1842–1852. [Google Scholar] [CrossRef]
- Son, N.; Cui, Y.; Xi, W. Association Between Telomere Length and Skin Cancer and Aging: A Mendelian Randomization Analysis. Front. Genet. 2022, 13, 931785. [Google Scholar] [CrossRef]
- Brem, R.; Guven, M.; Karran, P. Oxidatively-Generated Damage to DNA and Proteins Mediated by Photosensitized UVA. Free. Radic. Biol. Med. 2017, 107, 101–109. [Google Scholar] [CrossRef]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef]
- He, X.; Gao, X.; Xie, W. Research Progress in Skin Aging and Immunity. Int. J. Mol. Sci. 2024, 25, 4101. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV Radiation-Induced Inflammation and Immunosuppression Accelerate the Aging Process in the Skin. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef]
- Shim, J.H. Prostaglandin E2 Induces Skin Aging via E-Prostanoid 1 in Normal Human Dermal Fibroblasts. Int. J. Mol. Sci. 2019, 20, 5555. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Rodrigues, P.M.; Pintado, M.; Tavaria, F.K. A Systematic Review of Natural Products for Skin Applications: Targeting Inflammation, Wound Healing, and Photo-Aging. Phytomedicine 2023, 115, 154824. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.; Zhou, B.; Luo, D. Epigallocatechin-3-Gallate Decreases UVA-Induced HPRT Mutations in Human Skin Fibro-blasts Accompanied by Increased Rates of Senescence and Apoptosis. Exp. Ther. Med. 2012, 3, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Morley, N.; Clifford, T.; Salter, L.; Campbell, S.; Gould, D.; Curnow, A. The Green Tea Polyphenol (−)-Epigallocatechin Gallate and Green Tea Can Protect Human Cellular DNA from Ultraviolet and Visible Radiation-induced Damage. Photodermatol. Photoimmunol. Photomed. 2004, 21, 15–22. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Kim, J.K.; Kim, W.G.; Lee, S.J. Effects of Oral Epigallocatechin Gallate Supplementation on the Minimal Erythema Dose and UV-Induced Skin Damage. Ski. Pharmacol. Physiol. 2009, 22, 137–141. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Sugita, M.; Fukuzawa, Y.; Timm, D.; Ozeki, M.; Okubo, T. Green Tea Catechin Association with Ultraviolet Radiation-Induced Erythema: A Systematic Review and Meta-Analysis. Molecules 2021, 26, 3702. [Google Scholar] [CrossRef]
- Rhodes, L.E.; Darby, G.; Massey, K.A.; Clarke, K.A.; Dew, T.P.; Farrar, M.D.; Bennett, S.; Watson, R.E.B.; Williamson, G.; Nicolaou, A. Oral Green Tea Catechin Metabolites Are Incorporated into Human Skin and Protect against UV Radia-tion-Induced Cutaneous Inflammation in Association with Reduced Production of pro-Inflammatory Eicosanoid 12-Hydroxyeicosatetraenoic Acid. Br. J. Nutr. 2013, 110, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Sevın, A.; Öztaş, P.; Senen, D.; Han, Ü.; Karaman, Ç.; Tarimci, N.; Kartal, M.; Erdoǧan, B. Effects of Polyphenols on Skin Damage Due to Ultraviolet A Rays: An Experimental Study on Rats. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 650–656. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Mukhtar, H. Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate Treatment to Mouse Skin Prevents UVB-Induced Infiltration of Leukocytes, Depletion of Antigen-Presenting Cells, and Oxidative Stress. J. Leukoc. Biol. 2001, 69, 719–726. [Google Scholar] [CrossRef]
- Farrar, M.D.; Nicolaou, A.; Clarke, K.A.; Mason, S.; Massey, K.A.; Dew, T.P.; Watson, R.E.; Williamson, G.; Rhodes, L.E. A Randomized Controlled Trial of Green Tea Catechins in Protection against Ultraviolet Radiation–Induced Cutaneous In-flammation. Am. J. Clin. Nutr. 2015, 102, 608–615. [Google Scholar] [CrossRef]
- Martic, I.; Papaccio, F.; Bellei, B.; Cavinato, M. Mitochondrial Dynamics and Metabolism Across Skin Cells: Implications for Skin Homeostasis and Aging. Front. Physiol. 2023, 14, 1284410. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Xiong, L.; Jian, L.; Li, L.; Wu, Y.; Qiao, S. Role of Mitochondria on UV-Induced Skin Damage and Molecular Mechanisms of Active Chemical Compounds Targeting Mitochondria. J. Photochem. Photobiol. B Biol. 2022, 232, 112464. [Google Scholar] [CrossRef] [PubMed]
- Song, M.J.; Park, C.; Kim, H.; Han, S.; Lee, S.H.; Lee, D.H.; Chung, J.H. Carnitine Acetyltransferase Deficiency Mediates Mitochondrial Dysfunction-Induced Cellular Senescence in Dermal Fibroblasts. Aging Cell 2023, 22, e14000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Gao, X.; Li, M.; Yu, X.; Huang, F.; Wang, Y.; Yan, Y.; Zhang, H.; Shi, Y.; He, X. The Role of Mitochondrial Quality Surveillance in Skin Aging: Focus on Mitochondrial Dynamics, Biogenesis and Mitophagy. Ageing Res. Rev. 2023, 87, 101917. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, W.; Lin, C.; Zhang, L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mito-chondrial Diseases. Int. J. Mol. Sci. 2022, 23, 11569. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, X.-Q.; Xiang, L.-P.; Lu, J.-L.; Polito, C.A.; Liang, Y.-R. Protective Effect of (-)-Epigallocatechin Gallate on Ul-traviolet b-Induced Skin Damage in Hairless Mice. Trop. J. Pharm. Res. 2016, 15, 1183. [Google Scholar] [CrossRef]
- Meng, Q.; Velalar, C.N.; Ruan, R. Effects of Epigallocatechin-3-Gallate on Mitochondrial Integrity and Antioxidative Enzyme Activity in the Aging Process of Human Fibroblast. Free Radic. Biol. Med. 2008, 44, 1032–1041. [Google Scholar] [CrossRef]
- Wu, Q.; Song, J.; Gao, Y.; Zou, Y.; Guo, J.; Zhang, X.; Liu, D.; Guo, D.; Bi, H. Epigallocatechin Gallate Enhances Human Lens Epithelial Cell Survival after UVB Irradiation via the Mitochondrial Signaling Pathway. Mol. Med. Rep. 2022, 25, 1–12. [Google Scholar] [CrossRef]
- de Oliveira, M.R.; Daglia, M.; Rastrelli, L.; Nabavi, S.M. Epigallocatechin Gallate and Mitochondria—A Story of Life and Death. Pharmacol. Res. 2016, 104, 70–85. [Google Scholar] [CrossRef]
- Ma, L.-P.; Liu, M.-M.; Liu, F.; Sun, B.; Wang, S.-N.; Chen, J.; Yu, H.-J.; Yan, J.; Tian, M.; Gao, L.; et al. Melatonin Inhibits Senescence-Associated Melanin Pigmentation through the p53-TYR Pathway in Human Primary Melanocytes and the Skin of C57BL/6 J Mice after UVB Irradiation. J. Mol. Med. 2023, 101, 581–593. [Google Scholar] [CrossRef]
- Hong, Y.-H.; Jung, E.Y.; Noh, D.O.; Suh, H.J. Physiological Effects of Formulation Containing Tannase-Converted Green Tea Extract on Skin Care: Physical Stability, Collagenase, Elastase, and Tyrosinase Activities. Integr. Med. Res. 2013, 3, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Slominski, R.M.; Raman, C.; Chen, J.Y.; Athar, M.; Elmets, C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. -Cell Physiol. 2022, 323, C1757–C1776. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
- Rougier, A.; Schiller, M.; Brzoska, T.; Böhm, M.; Metze, D.; Scholzen, T.E.; Luger, T.A. Solar-Simulated Ultraviolet Radia-tion-Induced Upregulation of the Melanocortin-1 Receptor, Proopiomelanocortin, and α-Melanocyte-Stimulating Hormone in Human Epidermis In Vivo. J. Investig. Dermatol. 2004, 122, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Pourang, A.; Tisack, A.; Ezekwe, N.; Torres, A.E.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Effects of Visible Light on Mechanisms of Skin Photoaging. Photodermatol. Photoimmunol. Photomed. 2021, 38, 191–196. [Google Scholar] [CrossRef]
- Mita, S.R.; Husni, P.; Putriana, N.A.; Maharani, R.; Hendrawan, R.P.; Dewi, D.A. A Recent Update on the Potential Use of Catechins in Cosmeceuticals. Cosmetics 2024, 11, 23. [Google Scholar] [CrossRef]
- Chaikul, P.; Sripisut, T.; Chanpirom, S.; Ditthawutthikul, N. Anti-Skin Aging Activities of Green Tea (Camelliasinensis (L) Kuntze) in B16F10 Melanoma Cells and Human Skin Fibroblasts. Eur. J. Integr. Med. 2020, 40, 101212. [Google Scholar] [CrossRef]
- Song, X.; Ni, M.; Zhang, Y.; Zhang, G.; Pan, J.; Gong, D. Comparing the Inhibitory Abilities of Epigallocatechin-3-Gallate and Gallocatechin Gallate against Tyrosinase and Their Combined Effects with Kojic Acid. Food Chem. 2021, 349, 129172. [Google Scholar] [CrossRef]
- Liang, Y.; Kang, S.; Deng, L.; Xiang, L.; Zheng, X. Inhibitory Effects of (-)-Epigallocatechin-3-Gallate on Melanogenesis in Ul-traviolet A-Induced B16 Murine Melanoma Cell. Trop. J. Pharm. Res. 2014, 13, 1825. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Liang, B.; Zhu, H. Effects of Tea Polyphenols on UVA-Inducedmelanogenesis via Inhibition of α-MSH-MC1R Signalling pathway. Adv. Dermatol. Allergol./Postępy Dermatol. I Alergol. 2022, 39, 327–335. [Google Scholar] [CrossRef]
- Ullmann, U.; Haller, J.; Decourt, J.; Girault, N.; Girault, J.; Richard-Caudron, A.; Pineau, B.; Weber, P. A Single Ascending Dose Study of Epigallocatechin Gallate in Healthy Volunteers. J. Int. Med Res. 2003, 31, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.-H.S.; Cai, Y.; Hakim, I.A.; Crowell, J.A.; Shahi, F.; Brooks, C.A.; Dorr, R.T.; Hara, Y.; Alberts, D.S. Pharmaco-kinetics and Safety of Green Tea Polyphenols after Multiple-Dose Administration of Epigallocatechin Gallate and Polyphenon E in Healthy Individuals. Clin. Cancer Res. 2023, 9, 3312–3319. [Google Scholar]
- Oketch-Rabah, H.A.; Roe, A.L.; Rider, C.V.; Bonkovsky, H.L.; Giancaspro, G.I.; Navarro, V.; Paine, M.F.; Betz, J.M.; Marles, R.J.; Casper, S.; et al. United States Pharmacopeia (USP) Comprehensive Review of the Hepatotoxicity of Green Tea Extracts. Toxicol. Rep. 2020, 7, 386–402. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Wei, X.-L.; Fang, Y.-P.; Gan, R.-Y.; Wang, M.; Ge, Y.-Y.; Zhang, D.; Cheng, L.-Z.; Corke, H. Nanochemoprevention with Therapeutic Benefits: An Updated Review Focused on Epigallocatechin Gallate Delivery. Crit. Rev. Food Sci. Nutr. 2019, 60, 1243–1264. [Google Scholar] [CrossRef]
- Liang, J.; Yan, H.; Puligundla, P.; Gao, X.; Zhou, Y.; Wan, X. Applications of Chitosan Nanoparticles to Enhance Absorption and Bioavailability of Tea Polyphenols: A Review. Food Hydrocoll. 2017, 69, 286–292. [Google Scholar] [CrossRef]
- Dzulhi, S.; Anwar, E.; Nurhayati, T. Formulation, Characterization and In Vitro Skin Penetration of Green Tea (Camellia sinensis L.) Leaves Extract-Loaded Solid Lipid Nanoparticles. J. Appl. Pharm. Sci. 2018, 8, 57–62. [Google Scholar] [CrossRef]
- Ramesh, N.; Mandal, A.K.A. Pharmacokinetic, Toxicokinetic, and Bioavailability Studies of Epigallocatechin-3-Gallate Loaded Solid Lipid Nanoparticle in Rat Model. Drug Dev. Ind. Pharm. 2019, 45, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Ramalho, M.J.; Silva, R.; Silva, V.; Marques-Oliveira, R.; Silva, A.C.; Pereira, M.C.; Loureiro, J.A. Vine Cane Compounds to Prevent Skin Cells Aging through Solid Lipid Nanoparticles. Pharmaceutics 2022, 14, 240. [Google Scholar] [CrossRef]
- Zhuang, Y.; Quan, W.; Wang, X.; Cheng, Y.; Jiao, Y. Comprehensive Review of EGCG Modification: Esterification Methods and Their Impacts on Biological Activities. Foods 2024, 13, 1232. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, H.; Yin, J.; Wang, Y.; Zhao, Y.; Yu, J.; Engelhardt, U.H. Separation and Antioxidant Activities of New Acety-lated EGCG Compounds. Sci. Rep. 2023, 13, 20964. [Google Scholar] [CrossRef]
- Yazihan, N.; Akdas, S.; Olgar, Y.; Biriken, D.; Turan, B.; Ozkaya, M. Olive Oil Attenuates Oxidative Damage by Improving Mitochondrial Functions in Human Keratinocytes. J. Funct. Foods 2020, 71, 104008. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Li, B.; Lund, M.N.; Xing, Y.; Wang, Y.; Li, F.; Cao, X.; Liu, Y.; Chen, X.; et al. Engineering Polyphenols with Biological Functions via Polyphenol-Protein Interactions as Additives for Functional Foods. Trends Food Sci. Technol. 2021, 110, 470–482. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Sukketsiri, W.; Battino, M.; Benjakul, S. Conjugate between Hydrolyzed Collagen from Defatted Seabass Skin and Epigallocatechin Gallate (EGCG): Characteristics, Antioxidant Activity and in Vitro Cellular Bioactivity. RSC Adv. 2021, 11, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Messire, G.; Serreau, R.; Berteina-Raboin, S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants 2023, 12, 1317. [Google Scholar] [CrossRef] [PubMed]
- Scalia, S.; Marchetti, N.; Bianchi, A. Comparative Evaluation of Different Co-Antioxidants on the Photochemical- and Func-tional-Stability of Epigallocatechin-3-Gallate in Topical Creams Exposed to Simulated Sunlight. Molecules 2013, 18, 574–587. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.; Gawande, S.; Kotwal, S.; Netke, S.; Roomi, W.; Ivanov, V.; Niedzwiecki, A.; Rath, M. Studies on the Effects of Oral Administration of Nutrient Mixture, Quercetin and Red Onions on the Bioavailability of Epigallocatechin Gallate from Green Tea Extract. Phytother. Res. 2010, 24, S48–S55. [Google Scholar] [CrossRef]
- Choi, E.-H.; Rha, C.-S.; Balusamy, S.R.; Kim, D.-O.; Shim, S.-M. Impact of Bioconversion of Gallated Catechins and Flavonol Glycosides on Bioaccessibility and Intestinal Cellular Uptake of Catechins. J. Agric. Food Chem. 2019, 67, 2331–2339. [Google Scholar] [CrossRef]
- Li, D.; Martini, N.; Wu, Z.; Chen, S.; Falconer, J.R.; Locke, M.; Zhang, Z.; Wen, J. Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin. Pharmaceutics 2022, 14, 726. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Bhatnagar, P.; Singh, M.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. Synthesis of PLGA Nanoparticles of Tea Polyphenols and Their Strong in Vivo Protective Effect against Chemically Induced DNA Damage. Int. J. Nanomed. 2013, 8, 1451–1462. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.; Lv, T.; Fan, Z.; Xu, Y.; Yin, J.; Liao, B.; Ying, H.; Ravichandran, N.; Du, Q. Sucrose Esters Improve the Colloidal Stability of Nanoethosomal Suspensions of (−)-Epigallocatechin Gallate for Enhancing the Effectiveness against UVB-Induced Skin Damage. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 105, 2416–2425. [Google Scholar] [CrossRef]
- Vale, E.P.; Morais, E.d.S.; Tavares, W.d.S.; de Sousa, F.F.O. Epigallocatechin-3-Gallate Loaded-Zein Nanoparticles: Characterization, Stability and Associated Antioxidant, Anti-Tyrosinase and Sun Protection Properties. J. Mol. Liq. 2022, 358, 119107. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.-K.; Janjetovic, Z.; Slominski, R.M.; Li, W.; Jetten, A.M.; Indra, A.K.; Mason, R.S.; Tuckey, R.C. Biological Effects of CYP11A1-Derived Vitamin D and Lumisterol Metabolites in the Skin. J. Investig. Dermatol. 2024, 144, 2145–2161. [Google Scholar] [CrossRef] [PubMed]
- Chaiprasongsuk, A.; Janjetovic, Z.; Kim, T.-K.; Schwartz, C.J.; Tuckey, R.C.; Tang, E.K.Y.; Raman, C.; Panich, U.; Slominski, A.T. Hydroxylumisterols, Photoproducts of Pre-Vitamin D3, Protect Human Keratinocytes against UVB-Induced Damage. Int. J. Mol. Sci. 2020, 21, 9374. [Google Scholar] [CrossRef]
- Dańczak-Pazdrowska, A.; Gornowicz-Porowska, J.; Polańska, A.; Krajka-Kuźniak, V.; Stawny, M.; Gostyńska, A.; Rubiś, B.; Nourredine, S.; Ashiqueali, S.; Schneider, A.; et al. Cellular Senescence in Skin-Related Research: Targeted Signaling Pathways and Naturally Occurring Therapeutic Agents. Aging Cell 2023, 22, e13845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, H.; Man, M.; Hu, L. Aging in the Dermis: Fibroblast Senescence and Its Significance. Aging Cell 2023, 23, e14054. [Google Scholar] [CrossRef]
- Quan, T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023, 13, 1614. [Google Scholar] [CrossRef]
- Fisher, G.J.; Wang, B.; Cui, Y.; Shi, M.; Zhao, Y.; Quan, T.; Voorhees, J.J. Skin Aging from the Perspective of Dermal Fibroblasts: The Interplay between the Adaptation to the Extracellular Matrix Microenvironment and Cell Autonomous Processes. J. Cell Commun. Signal. 2023, 17, 523–529. [Google Scholar] [CrossRef]
- He, X.; Gao, X.; Xie, W. Research Progress in Skin Aging, Metabolism, and Related Products. Int. J. Mol. Sci. 2023, 24, 15930. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, S.K.; Afaq, F.; Perez, A.; Mukhtar, H. Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate Treatment of Human Skin Inhibits Ultraviolet Radiation-Induced Oxidative Stress. Carcinogenesis 2001, 22, 287–294. [Google Scholar] [CrossRef]
- Kim, H.-S.; Quon, M.J.; Kim, J.-A. New Insights into the Mechanisms of Polyphenols beyond Antioxidant Properties; Lessons from the Green Tea Polyphenol, Epigallocatechin 3-Gallate. Redox Biol. 2014, 2, 187–195. [Google Scholar] [CrossRef]
- Katiyar, S.K. Skin Photoprotection by Green Tea: Antioxidant and Immunomodulatory Effects. Curr. Drug Targets-Immune Endocr. Metab. Disord. 2003, 3, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.-Y.; Li, H.-B.; Sui, Z.-Q.; Corke, H. Absorption, Metabolism, Anti-Cancer Effect and Molecular Targets of Epigallocat-echin Gallate (EGCG): An Updated Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 924–941. [Google Scholar] [CrossRef]
- Jung, E.S.; Park, J.I.; Park, H.; Holzapfel, W.; Hwang, J.S.; Lee, C.H. Seven-Day Green Tea Supplementation Revamps Gut Microbiome and Caecum/Skin Metabolome in Mice from Stress. Sci. Rep. 2019, 9, 18418. [Google Scholar] [CrossRef]
- Revathy, S.; Satyam, S.; Anupama, B. Chemico-biological aspects of (-)-epigallocatechin-3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit. Rev. Food Sci. Nutr. 2022, 63, 10382–10411. [Google Scholar]
- Aljuffali, I.A.; Lin, C.-H.; Yang, S.-C.; Alalaiwe, A.; Fang, J.-Y. Nanoencapsulation of Tea Catechins for Enhancing Skin Ab-sorption and Therapeutic Efficacy. AAPS PharmSciTech 2022, 23, 187. [Google Scholar] [CrossRef]
- Chen, X.; Yi, Z.; Chen, G.; Ma, X.; Tong, Q.; Tang, L.; Li, X. Engineered Fabrication of EGCG-UV Absorber Conjugated Nano-assemblies for Antioxidative Sunscreens with Broad-Band Absorption. Colloids Surfaces B Biointerfaces 2022, 220, 112912. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.B.; Calixto, G.M.F.; Júnior, J.A.O.; Bombardelli, R.L.; Fonseca-Santos, B.; Rodero, C.F.; Chorilli, M. Structural Features and the Anti-Inflammatory Effect of Green Tea Extract-Loaded Liquid Crystalline Systems Intended for Skin Delivery. Polymers 2017, 9, 30. [Google Scholar] [CrossRef]
- Di Sotto, A.; Gullì, M.; Percaccio, E.; Vitalone, A.; Mazzanti, G.; Di Giacomo, S. Efficacy and Safety of Oral Green Tea Prepa-rations in Skin Ailments: A Systematic Review of Clinical Studies. Nutrients 2022, 14, 3149. [Google Scholar] [CrossRef]
Compounds | Model | Treatments | Effects | Ref. |
---|---|---|---|---|
EGCG | HSF cells | EGCG (1–20 µM) pretreatment for 45 min, TNF-α (20 ng/mL) induction for 15 min | ↓ MMP-1, ERK ↓ MEK, Src | [31] |
EGCG was applied to the medium for 24 h, and HSF cells were exposed to UVA radiation | ↓ MMPs, MDA ↑ TGF-β, TIMP-1, SOD, GSH-Px, CAT | [32] | ||
Tea extract (0.5 mg/mL) was applied to the culture medium, and HSF cells were exposed to UVB radiation (0–20 mJ/cm2) | ↓ MMP-2, MMP-9 ↑ Cell viability | [33] | ||
HDF cells | 10 mg/mL EGCG treated HDF cells exposed to UVA (10 mW/cm2) | ↑ Collagen deposition, insoluble elastin ↓ MDA | [34] | |
Artificial skin | EGCG (0.01 mM) was applied to the medium for 6 h and exposed to UVA (20 J/cm2) radiation | ↓ MMPs ↑ TIMP-1 | [35] | |
EGCG–chitosan nanoparticles | HaCaT cells | EGCG nanoformulations were pretreated for 24 h and exposed to UVB (40 mJ/cm2) radiation for 4 h | ↓ CPDs, 6-4PPs | [36] |
EGCG | HaCaT cells B16F10 cells | EGCG was used to pretreat HaCaT cells for 30 min, UVB (30 mJ/cm2) radiation, B16F10 cells were co-treated with αMSH and EGCG (0–100 µM) for 48 h | ↑ NMFs, HYAL | [37] |
HaCaT cells | Exposure to UVB (30/60/90 mJ/cm2) radiation followed by application of EGCG (200 µg/mL) | ↓ IL-6, TNF-α, P53 ↓ P21, C-Fos | [38] | |
Zebrafish HSF cells | 0–100 μM EGCG used to treat zebrafish, 50 μM EGCG used to treat HSF cells for 72 h followed by exposure to UVR (UVA (10 J/cm2) and UVB (30 mJ/cm2)) | ↓ ROS, p38 MAPK, NF-κB, AP-1 ↑ SOD ↓ IL-1α, IL-6, TNF-α, MMP-1 | [39] | |
B16F10 cells | EGCG (100 µg/mL) was applied to the medium, and the experimental group was treated with the addition of α-MSH | ↓ TYR, α-MSH ↓ MC1R, MITF | [40] | |
EGCG–collagen | Mice | Hairless back treated topically with EGCG–collagen (0.5 mL, 20 mg mL−1) followed by exposure to UVB (80 µW/cm2) | ↑ SOD, GSH-Px ↑ Epidermal thickness, HYP ↓ MDA, TNF-α, MMP-1 | [41] |
CMC-Na GTPs | Mice | Hairless mice were exposed to UVB (540 mJ/cm2) radiation by applying CMC-Na GTPs externally on the back for 30 min | ↓ Inflammatory cell infiltration ↑ Nrf2, GSH-Px, CAT, SOD ↓ Bach1, MDA | [42] |
EGCG | Mice | Hairless mice topically coated with EGCG preparation (20 µL/cm2) and exposed to UVB (fluence rate 1.7 µmol/m2 s) 45 min | ↓ Melanosomes ↑ Mitochondrial structure ↑ Collagen, elastic fibers | [43] |
EGCG nano-transfersomes | HaCaT cells | Application of EGCG (10 mg/mL) and UVB (60 J/m2) radiation | ↓ MDA, ROS, MMP-2, MMP-9 | [44] |
Glc-EGCG | Human skin cell models | Exposure to UVA (3 J/cm2) and UVB (50 mJ/cm2), application of EGCG (0–50 µM) to skin cells | ↓ ROS, IL-6, IL-8, IL-1 | [45] |
Tea extracts | HaCaT cells HDF cells | The cells were incubated with tea extract (50 µg/mL), exposed to UVA (1 J/cm2) and UVB (30 mJ/cm2), and incubated for 24 h | ↑ Hyaluronic acid, collagen ↓ IL6, IL8, MMP1, MMP9 | [46] |
GTE | Healthy white | 50 healthy white (Fitzpatrick skin type I–II) adults aged 18–65 years were randomized to a combination of GTE 540 mg plus vitamin C 50 mg or to placebo twice daily for 12 weeks, exposure to UVR mimicking sunlight (290–400 nm; 5% UVB, 95% UVA) | ↑ Fibulin-5 | [47] |
GTE | Female adults | 60 female volunteers consumed green tea polyphenols providing 1402 mg total catechins/d (50% EGCG) for 12 weeks; individual MED was determined for each participant. Irradiation was applied to dorsal skin, with 1.25 MEDs using a blue-light solar simulator | ↓ Erythema ↑ Skin elasticity, roughness, scaling, density, and water homeostasis | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Jiang, Y.; Fu, J.; He, L.; Guo, X.; Ye, H.; Yin, C.; Li, H.; Jiang, H. Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review. Molecules 2024, 29, 5226. https://doi.org/10.3390/molecules29225226
Sun J, Jiang Y, Fu J, He L, Guo X, Ye H, Yin C, Li H, Jiang H. Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review. Molecules. 2024; 29(22):5226. https://doi.org/10.3390/molecules29225226
Chicago/Turabian StyleSun, Jiaqiang, Yuelu Jiang, Jing Fu, Linlin He, Xinmiao Guo, Hua Ye, Cuiyuan Yin, Hongbo Li, and Heyuan Jiang. 2024. "Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review" Molecules 29, no. 22: 5226. https://doi.org/10.3390/molecules29225226
APA StyleSun, J., Jiang, Y., Fu, J., He, L., Guo, X., Ye, H., Yin, C., Li, H., & Jiang, H. (2024). Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review. Molecules, 29(22), 5226. https://doi.org/10.3390/molecules29225226